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Abstract: Efficient numerical techniques for multivariable system identification and model

reduction are investigated. The techniques are implemented in the system identification

and model reduction toolboxes based on the Fortran 77 Subroutine Library in Control

Theory (SLICOT). Besides highly performant Fortran drivers and computational routines,

these toolboxes provide MATLAB or Scilab interfaces, implementing several algorithmic

approaches. Extensive numerical testing and comparisons with similar MATLAB tools

show that the solvers in these toolboxes are reliable, efficient, and able to solve industrially

relevant problems. Copyright ©2007 IFAC
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1. INTRODUCTION

The availability of powerful system identification and

model reduction tools is very important in practice,

since modern control techniques are increasingly de-

pendent on suitable dynamical models. The numeri-

cal procedures need to be based on reliable and ro-

bust numerical software provided by well-tested and

user-friendly software libraries. This paper summa-

rizes the functional and computational performances

of the MATLAB
1 identification and model reduction

toolboxes based on the SLICOT Library (Benner et

al., 1999). 2

1 MATLAB is a registered trademark of The MathWorks.
2 The SLICOT (Subroutine Library in Control Theory) software

library and the related CACSD tools based on SLICOT were de-

veloped within the Numerics in Control Network (NICONET)

funded by the European Community BRITE-EURAM III RTD The-

matic Networks Programme, see http://www.icm.tu-bs.

The SLICOT-based MATLAB toolboxes provide a

user-friendly interface to the highly efficient, ro-

bust, and portable Fortran 77 SLICOT routines. The

MATLAB M-functions contained in these toolboxes

are based on MEX-files calling the Fortran routines.

While the M-functions are destined to all user cat-

egories, the more sophisticated and flexible MEX-

functions are intended for expert users and software

developers. Executable SLICOT MEX-files are pro-

vided for MATLAB running under WINDOWS 95–XP,

Sun Solaris, and Linux.

Most of the SLICOT functionality is concerned with

linear time-invariant (LTI) systems in state-space

form:

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t),

(1)

de/NICONET. SLICOT can be used free of charge by academic

users, see http://www.slicot.org.



in the continuous-time case, and

xk+1 = Axk +Buk

yk = Cxk +Duk,
(2)

in the discrete-time case, where A is n×n, B is n×m,

C is ℓ×n, and D is ℓ×m. All matrices are assumed to

be real.

Alternatively, an LTI system (1) or (2) may be repre-

sented by a rational transfer-function matrix (TFM),

G(λ ) = C(λ I−A)−1B+D, (3)

where λ is the variable s appearing in the Laplace

transform, or the z variable appearing in the z-

transform, respectively.

Sections 2 and 3 provide a short description of the

two SLICOT toolboxes emphasizing their potential in

solving computationally challenging problems.

2. THE SYSTEM IDENTIFICATION TOOLBOX

Consider a discrete-time system in innovation form,

xk+1 = Axk +Buk +Kek ,

yk = Cxk +Duk + ek , (4)

where xk is the state vector at time k, uk and yk are the

input and output vectors, respectively, {ek} is a zero

mean white noise sequence, uncorrelated with {uk}
and with the initial state of the system, and K is the

Kalman gain matrix; (A,C) is assumed observable.

In system identification problems, the system order,

n, and the quadruple of system matrices (A,B,C,D)
have to be determined (up to a system similarity trans-

formation) using the input and output data sequences,

{uk} and {yk}, k = 1: N̄. In addition, the Kalman gain

matrix K in (4) has often to be found.

The SLICOT calculations are based on subspace iden-

tification algorithms, which use a matrix H, built

from block-Hankel matrices, using part of the avail-

able input-output (I/O) data. Two approaches, MOESP

(Multivariable Output Error state-space) (Verhaegen

and Dewilde, 1992), and N4SID (Numerical algo-

rithm for Subspace State Space System IDentifica-

tion) (Van Overschee and De Moor, 1994), and their

combination are used. The matrix H is given by

H =
[

UT
q+1,q+s,N+q UT

1,q,N YT
1,r+s,N

]
(MOESP),

H =
[

UT
1,q+s,N YT

1,r+s,N

]
(N4SID),

with H ∈ R
N×(mq+ℓr+(m+ℓ)s), where N ≤ N̄ − s −

min(q,r)+1 (usually N ≫ mq+ ℓr +(m+ ℓ)s),

Ua,b,c =




ua ua+1 ua+2 · · · uc

ua+1 ua+2 ua+3 · · · uc+1

...
...

...
...

...

ub ub+1 ub+2 · · · uc+b−a


 , (5)

and similarly for Ya,b,c. The latest version of the

MATLAB function n4sid from the System Identifi-

cation Toolbox (Ljung, 2000) can use different “pre-

diction horizons” s, q, and r. But standard MOESP

and N4SID algorithms, assumed below, use q = r = s,

where s denotes the “number of block rows”, and s

usually satisfies s ≥ n.

The first step in a subspace identification procedure

is to perform a “data compression” by computing the

upper triangular factor R of a QR factorization of the

matrix H, H = QR ; the matrix Q ∈ R
N×2(m+ℓ)s , sat-

isfying QT Q = I2(m+ℓ)s , is not needed subsequently.

Parts of R are further used to estimate n and sys-

tem matrices. As many theoretical results concerning,

e.g., consistency and normality of the estimates of the

system matrices hold asymptotically, for N̄ → ∞, the

algorithms should work with large amounts of data,

if available. The standard QR factorization algorithm

could be too costly, because H can have very large

dimensions. Since matrix H is highly structured, effi-

cient data processing is possible by using the problem

structure. Two such techniques implemented in the

SLICOT Library are based on fast Cholesky and fast

QR factorization algorithms, which exploit the special

structure of the matrix H.

The Cholesky factorization algorithm efficiently builds

the inter-correlation matrix W = HT H, and then fac-

tors W, assuming it is positive definite. (In the rare

case when this algorithm fails, the usual QR factoriza-

tion is automatically used.) For the standard N4SID

approach, the block-Hankel matrices corresponding to

the inputs and outputs are Hu = UT
1,2s,N and Hy =

YT
1,2s,N , and H =

[
Hu Hy

]
. The definitions extend

to multiple I/O data batches. Actually, assuming that

the latest batch to be processed is defined by H,

then W = W̃ + HT H, where W̃ corresponds to the

already processed data batches. Clearly, W̃ = 0 if the

first (or single) data batch is processed. Two lemmas

in (Sima et al., 2004; Sima, 2004) give cheap formulas

for computing the symmetric block matrix W for the

N4SID and MOESP approaches, respectively. In the

later case, the matrix for the N4SID technique is built,

and then it is transformed for the MOESP case.

Consider now the fast QR factorization algorithm for

the N4SID approach. Define the shift matrix Z =
diag(Zu,Zy), where Zu (Zy) is a 2s×2s block matrix

with m×m (ℓ× ℓ) blocks, all zero except for identity

blocks on the superdiagonal. A lemma in (Sima et

al., 2004) shows that the symmetric matrix ∇W =
W−ZT WZ, called the displacement of W (Kailath

and Sayed, 1995), has a low rank factorization. Specif-

ically, ∇W can be written as

∇W = GT ΣG, Σ = diag(Ip,−Iq), (6)

where p = q = m + ℓ + 1, hence ∇W has the rank

2(m+ℓ+1) at most. The matrix G∈R
2(m+ℓ+1)×2(m+ℓ)s

is called the generator of W, and efficient techniques

are available to build the generators and the factor



R (Kailath and Sayed, 1995; Mastronardi et al., 2001).

In practical calculations, the generalized Schur algo-

rithm is used to find all rows of the Cholesky fac-

tor of W, W = W̃ + HT H. Householder transforma-

tions and hyperbolic rotations are involved. Details are

given in (Mastronardi et al., 2001). For the MOESP

approach, the same algorithm as for N4SID is used,

but the first two block columns of the resulting upper

triangular factor R are interchanged, and then retrian-

gularized, exploiting the structure.

SLICOT System Identification Toolbox can also be

used to identify Wiener systems. A discrete-time

Wiener system has a state-space representation

xk+1 = Axk +Buk, zk = Cxk +Duk,

yk = f(zk)+ ek, (7)

where f(·) is a nonlinear vector function from R
ℓ to

R
ℓ. Briefly speaking, a Wiener system consists of a

linear dynamic block followed by a static nonlinear-

ity. The system identification problem for (7) requires

to find an approximation of f(·), besides estimating

n, the quadruple (A,B,C,D), and the initial condi-

tions. The implemented approach uses a state-space

representation for the linear part and a single layer

neural network to model the static nonlinearity. Fast

subspace identification algorithms are employed for

estimating the linear part, based on the available input-

output data. The resulted state-space model is used for

finding an approximate model of the nonlinear part by

a Levenberg-Marquardt (LM) algorithm. Finally, the

whole model is refined using a specialized, structure-

exploiting LAPACK-based scaling-invariant LM algo-

rithm. The output normal form is used to parameter-

ize the linear part. The parameters corresponding to

the nonlinear part come first in the global parameter

vector. Using this ordering, the Jacobian matrices in

the multi-output case (ℓ > 1) have a block diagonal

form, with an additional block column at the right.

This structure is preserved in a QR factorization with

column pivoting restricted to each block column. The

rank deficient case is also covered. The Jacobian is

computed analytically, for the nonlinear part, and nu-

merically, for the linear part. The implementation is

memory conserving and significantly faster than stan-

dard LM algorithms or specialized LM calculations

based on conjugate gradients (without precondition-

ing) for solving linear systems. Details and numerical

results are given, e.g., in (Sima, 2003a; Sima, 2003b).

2.1 Functionality of the Toolbox

Summarizing, SLICOT System Identification Toolbox

includes SLICOT-based MATLAB and Fortran tools

for linear and Wiener-type, time-invariant discrete-

time multivariable systems. The approaches MOESP,

N4SID, and their combination, are used to identify

linear systems, and to initialize the parameters of the

linear part of a Wiener system. The toolbox function-

alities include:

• identification of linear discrete-time state-space

systems (A,B,C,D);
• identification of state and output covariance ma-

trices for such systems;

• estimation of the associated Kalman gain matrix;

• estimation of the initial state;

• conversion from/to a state-space representation

to/from the output normal form;

• identification of discrete-time Wiener systems;

• computation of the output of Wiener systems.

Attractive features of this toolbox include:

• possible speed-up factors larger then 10 in com-

parison with the commonly used software tools;

• standard or fast techniques for data compression

(exploiting the block-Hankel structure);

• fast estimation of system models of various,

specified orders;

• ability to process multiple data batches;

• specialized, structure-exploiting LM algorithm

using block QR factorization with pivoting;

• optional assessing the quality of the intermediate

results using the associated condition numbers.

2.2 Performance Results

Performance evaluation of the system identification

software has been performed using data sets from

the DAISY collection, publicly available from the

Internet site www.esat.kuleuven.be/sista/

daisy. Accuracy and efficiency comparisons of the

SLICOT linear systems identification software and the

available subspace-based codes for 25 applications are

presented in (Sima et al., 2004). New results are given

below, comparing the SLICOT code slmoen4 and

MATLAB function n4sid (Ljung, 2000). The main

SLICOT-based call for standard calculations was

[sys,K,rcnd] = slmoen4(s,y,u,n,alg);

The results have been obtained on an Intel Pentium 4

computer, at 3 GHz, with 1 GB RAM, under Windows

XP, with Compaq Visual Fortran V6.5 and optimized

LAPACK and BLAS (available in MATLAB), under

MATLAB 7.0.4.365 (R14) Service Pack 2.

Figure 1 shows a timing comparison of slmoen4

with fast QR factorization (alg = 2) vs MATLAB 7.0.4

n4sid with standard QR factorization and default

options, but with order = n, ’N4Weight’ =

’MOESP’, and four cases (a)–(d) for the possible

combinations of values for ’N4H’ := ’N4Horizon’

and ’Cov’ := ’CovarianceMatrix’ (see the

caption). Here n is the chosen order of the system, and

s is the number of block rows, set to the same values

as for slmoen4 (see, e.g., (Sima et al., 2004)). Set-

ting ’Cov’ = ’None’ avoids the calculation of the

covariance information, reducing the execution times.
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Fig. 1. slmoen4 with fast QR versus MATLAB

7.0.4 n4sid with QR factorization and de-

fault options, but order = n, ’N4Weight’

= ’MOESP’, and: (a) ’Cov’ = [ ], ’N4H’

= ’Auto’; (b) ’Cov’ = ’None’, ’N4H’ =

’Auto’; (c) ’Cov’ = [ ], ’N4H’ = [sss ]; (d)

’Cov’ = ’None’, ’N4H’ = [sss ].

Specifically, Figure 1 shows the ratios between the

execution times of n4sid and slmoen4—the speed-

up factors—for each application and each case (a)-(d).

Clearly, the use of a fast algorithm is very advanta-

geous. The figure also illustrates the strong influence

the n4sid options can have on the execution times.

It should be mentioned that n4sid computes the co-

variance matrices of the estimated systems in the cases

(a) and (c), while SLICOT function does not compute

them. These results are shown since ’Cov’ = [ ] is

the default value for the corresponding n4sid para-

meter. Similarly, ’Auto’ (as in cases (a) and (b)) is

the default value for the parameter ’N4Horizon’.

But for large systems, the use of these default values

involve significant computational effort. The largest

speed-up factors have been usually obtained in case

(a), normally followed by (c). Even if ’Cov’ =

’None’ (and ’N4H’ = [sss ], as for slmoen4), the

SLICOT function can be much more efficient than

n4sid, see the case (b) (and the case (d)) in Fig. 1.

Moreover, the timing results for slmoen4 (and other

SLICOT functions) with alg = 1 or alg = 2 are

essentially independent on the number of data samples

N̄, used for identification (see (Sima, 2004)). This is

due to the use of fast factorization algorithms. On the

other hand, the computing time for n4sid, which

uses standard QR factorization of the block-Hankel-

block matrix H, grows linearly with N̄, for large N̄.

3. THE MODEL AND CONTROLLER

REDUCTION TOOLBOX

SLICOT provides a wide variety of model (order)

reduction techniques for LTI systems of the form (1)

or (2). Model reduction is often used in system analy-

sis and is mostly absolutely necessary for the compu-

tation of controllers. The reason is that modern and

robust controllers like those based on LQG, H2, or H∞

design techniques are themselves LTI systems of the

form (1) or (2) with state dimension N ≥ n, while in

practice, only very low values N should be used. The

reduction of n can be achieved using model reduc-

tion techniques, while N can be directly reduced us-

ing controller reduction techniques, see, e.g., (Obinata

and Anderson, 2001; Varga, 2001; Varga, 2003). In

contrast to the MATLAB Control and Robust Control

Toolboxes, SLICOT offers several controller reduc-

tion functions. Due to space limitations, here we will

consider only continuous-time LTI systems although

most SLICOT routines can be applied also to discrete-

time systems.

Applying the Laplace transformation to (1) (with

x(0) = 0), the system dynamics are then given as

Y(s) = G(s)U(s), where U,Y are the Laplace trans-

forms of u,y, respectively, and G is given in (3).

The aim of model reduction is to find an LTI system,

˙̂x(t) = Âx̂(t)+ B̂u(t),

ŷ(t) = Ĉx̂(t)+ D̂u(t),
(8)

of order r, r ≪ n, such that the associated TFM Ĝ(s) =
Ĉ(sIr − Â)−1B̂ + D̂ approximates the original TFM

G(s). This is motivated by the inequality ‖y− ŷ‖2 ≤
‖G − Ĝ‖∞‖u‖2, where ‖ · ‖2 corresponds to the L2-

norm and ‖ · ‖∞ is the H∞-norm. Note that model and

controller reduction for unstable systems is possible

by an additive decomposition of the transfer-function

into its stable and unstable parts or by a coprime

factorization (where both factors are stable), see, e.g.,

(Varga, 2003).

Methods that attempt to minimize ‖G− Ĝ‖ are called

absolute error methods while relative error methods

try to minimize ‖∆r‖, where ∆r is implicitly defined

by G− Ĝ = ∆rG. Nevertheless, balanced truncation

and related methods can be used to obtain good ap-

proximations using either one of these measures. An

alternative is to use the Hankel (semi-)norm of (1)

which is defined as the maximum Hankel singular

value of G(s) for s on the imaginary axis. Formulae

for computing the best Hankel norm approximation

to a given stable system G can for instance be found

in (Antoulas, 2005; Obinata and Anderson, 2001) and

references therein.

There is a vast variety of model reduction techniques

serving different purposes; in case of linear systems,

it seems that modal truncation and the related tech-

niques of substructuring and static condensation, Padé

and Padé-type approximations, and balancing-related

truncation techniques play the most prominent role;

see the recent monographs and surveys (Antoulas,

2005; Benner et al., 2005; Benner et al., 2006; Obi-

nata and Anderson, 2001). SLICOT’s model and con-

troller reduction routines are all based on the latter

approach. One reason is that SLICOT uses dense lin-

ear algebra while modal as well as Padé techniques

have only advantages if large and sparse systems have

to be reduced and n is too large to use dense lin-



ear algebra—regarding their model reduction abilities,

they are quite inferior to balancing-related techniques.

Balanced truncation is based on finding a state-

space transformation which balances the controllabil-

ity Gramian P versus the observability Gramian Q of

the system (1). The Gramians are given as the solu-

tions of the Lyapunov equations

AP+PAT +BBT = 0, AT Q+QA+CT C = 0. (9)

A minimal and stable LTI system can be transformed

by a state-space transformation (change of coordinates

in state-space) such that the Gramians P,Q become

equal and diagonal and the diagonal elements σ j, j =
1, . . . ,n, are monotonically decreasing positive real

numbers, called the Hankel singular values of the LTI

system (1). The reduced-order model is obtained by

truncating the balanced state-space representation of

the system at an order r so that σr > σr+1. The so-

obtained reduced-order model is stable and satisfies

the error bound

σr+1 ≤ ‖G− Ĝ‖∞ ≤ 2
n

∑
k=r+1

σk , (10)

which allows an adaptive choice of r given an error

tolerance. In the SLICOT toolbox, there are also sev-

eral functions implementing balancing-related meth-

ods that can be used if other system properties are to

be preserved (e.g., minimum-phase) or if controller

reduction is desired. To overcome a disadvantage of

balanced truncation of not preserving the steady-state

performance, i.e., G(0) 6= Ĝ(0), it can be combined

with singular perturbation approximation (SPA).

3.1 Functionality of the Toolbox

The SLICOT Model and Controller Reduction Tool-

box for MATLAB provides numerically reliable and

efficient functions for balanced truncation, singular

perturbation approximation, balanced stochastic trun-

cation, frequency-weighting balancing, Hankel-norm

approximation, coprime factorization, etc. The al-

gorithms are based on methods with theoretically

sound mathematical background described well in

(Antoulas, 2005; Obinata and Anderson, 2001). The

functionality of the toolbox includes

• order reduction for continuous-time and discrete-

time LTI systems and controllers;

• order reduction for stable or unstable mod-

els/controllers;

• additive and relative error model reduction;

• frequency-weighted reduction with special sta-

bility/performance enforcing weights;

• coprime factorization-based reduction of state

feedback and observer-based controllers.

The main features of the toolbox are:

• computational reliability using square-root and

balancing-free accuracy enhancing techniques;

0 100 200 300 400 500

0

5

10

15

20

order of the system (n)

C
P

U
 t

im
e

 (
se

c)

Random SISO Systems

 

 

SLICOT (spabal)

CST (balred)

0 100 200 300 400 500
0

5

10

15

20

25

order of the system (n)

C
P

U
 t

im
e

 (
se

c)

Random MIMO Systems

 

 

SLICOT (spabal)

CST (balred)

Fig. 2. Comparison of MATLAB functions for singular

perturbation approximation for SISO (top) and

MIMO (bottom, m = 5, ℓ = 10) systems.

• high numerical efficiency, using latest develop-

ments and structure-exploiting algorithms;

• enhanced functionality, e.g, controller reduction.

For a more detailed description of the SLICOT Fortran

77 routines for model and controller reduction see

(Varga, 2003).

3.2 Performance results

In this section we present some typical results for

functions from the SLICOT Model and Controller

Reduction Toolbox. All tests are performed on a

Toshiba notebook with 1.25 GB main memory, an In-

tel M processor at 1.1 Ghz, running MATLAB R2006a.

We compare the functions for balanced truncation

with matching DC gain, i.e., the balanced truncation

method with singular perturbation approximation is

used. This is the default in the function balred from

the MATLAB Control System Toolbox (in the follow-

ing, CST for short) and implemented as MATLAB

function spabal in the SLICOT Model and Con-

troller Reduction Toolbox. Note that balancmr from

the MATLAB Robust Control Toolbox does not offer

an option for matching DC gains and is thus not in-

cluded in the comparison. It should be noted, though,

that its performance is usually much worse than that

of balred, see, e.g., (Benner, 2006).

We generate systems with A,B,C having normally

distributed random entries. Figure 2 shows the CPU

times needed for systems of increasing order for



single-input/single-output (SISO, m = ℓ = 1) and

multi-input/multi-output (MIMO; here, m = 5, ℓ = 10)

systems. In contrast to spabal, balred does not

offer to compute a reduced-order model satisfying a

given error tolerance based on the computable error

bound (10). Thus, in all cases, a reduced-order model

of prescribed order nu + 5 is computed, where nu is

the number of unstable poles of the system. For all

systems except for the smallest one tested (n = 20),

spabal requires less than 40% of the CPU time of

the already quite efficient routine balred. The accu-

racy of the reduced-order models is comparable for all

routines and all tests.

Besides the often significant advantage in execu-

tion times shown above, the main advantage of the

SLICOT Model and Controller Reduction Toolbox

is the availability of frequency-weighted versions of

balanced truncation methods for model and controller

reduction. None of these are available in current

MATLAB toolboxes. Also, as mentioned above, even

for standard model reduction techniques, the SLICOT-

based functions are sometimes more flexible and offer

a better functionality.

4. CONCLUSIONS

The results show that the fast and reliable system iden-

tification and model/controller reduction algorithms

and solvers included in the SLICOT toolboxes can be

safely used, and they are significantly more efficient

than the existing MATLAB codes.
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