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Abstract

We consider the numerical solution of differential Riccati equations. We review
the existing methods and investigate whether they are suitable for large-scale prob-
lems arising in LQR and LQG design for semi-discretized partial differential equa-
tions. Based on this review, we suggest an efficient matrix-valued implementation of
the BDF for differential Riccati equations.
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1 Introduction

Consider the differential Riccati equation (DRE)

Ẋ(t) + Q(t) + X(t)A(t) + B(t)X(t) − X(t)R(t)X(t) = 0

X(t0) = X0 t0 ≤ t ≤ T
(1)

where t ∈ [t0, T ] and A(t) ∈ R
n×n, B(t) ∈ R

m×m, Q(t) ∈ R
m×n, R(t) ∈ R

n×m, X(t) ∈ R
m×n

are smooth matrix-valued functions.
The DRE arises in several applications, especially in control theory. Here, we will be

particularly interested in the case of symmetric DREs, where (1) is called symmetric if
Q(t), R(t) are square, symmetric matrices and B(t) = A(t)T for all t ∈ [t0, T ]. Throughout
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this paper we assume that there exists a unique solution on [t0, T ] (for a discussion of
existence and uniqueness of DREs see [1, 20, 34]). With this assumption, it follows that
the solution X(t) is symmetric as X(t)T is also a solution of (1). Symmetric DREs arise
from linear-quadratic optimal control problems like LQR and LQG design with finite-time
horizon, in H∞ control of linear-time varying systems, as well as in differential games; see,
e.g., [1, 14, 18, 32]. Unfortunately, in most control problems, fast and slow modes are
present. This implies that the associated DRE will be fairly stiff which in turn demands
for implicit methods to solve such DREs numerically. Therefore, we will focus here on the
stiff case.

Large-scale DREs result from semi-discretized optimal control problems for instationary
partial differential equations (PDEs) of parabolic or hyperbolic type, like, e.g., the heat
equation, reaction-diffusion or convection-diffusion equations, the wave equation, etc., with
point or boundary control; see, e.g., [17, 23, 24, 25]. Imposing a quadratic cost functional,
the solution of the optimal control is often given via feedback control where the feedback
operator is given in terms of an operator-valued differential Riccati equation, see [28,
23, 24, 25]. In order to solve such a problem numerically, the PDE has to be discretized
appropriately. Under suitable conditions for the finite-dimensional approximation, it can be
shown that the solutions of the finite-dimensional linear-quadratic optimal control problems
arising from a semi-discretization of the PDE in space converge to the optimal control for
the infinite-dimensional problem. Hence, in order to apply such a feedback control strategy
to PDE control, we need to solve the large-scale symmetric DREs resulting from the semi-
discretization. Typically, A(t) represents a discretized elliptic operator and Q(t), R(t) are
semi-definite with low rank. Hence, we will derive numerical methods capable of exploiting
the given structure of the coefficient matrices.

Besides the vast variety of linear-quadratic problems that can be solved if an efficient
DRE solver is available, the task of solving large-scale DREs appears also to become an
increasingly important issue in nonlinear optimal control problems of tracking-type and
stabilization problems for classes of nonlinear instationary PDEs. LQG design on short
time intervals is the main computational ingredient in recently proposed receding horizon
and model predictive control approaches for such problems, see [16, 17, 15]. The ability to
efficiently solve large-scale DREs is therefore of paramount importance there, too.

This paper is organized as follows. First, we will review (without guaranteeing com-
pleteness) the existing methods for solving DREs numerically in Section 2. We will also
discuss whether these methods are suitable for large-scale computations. In Section 3
we then suggest a possible implementation of the backward differentiation formulas (BDF)
methods based on exploiting the structure arising in semi-discretized optimal control prob-
lems for PDEs. It has been observed before [8] that the nonlinear systems of equations that
have to be solved in each time step are algebraic Riccati equation (AREs). The sparsity
structure of the state coefficient matrices as well as the low-rank structure of the constant
and quadratic term in the resulting AREs allows to apply the recently suggested low-rank
ADI Newton method for AREs [4, 5, 6]. We therefore review this approach in Section 4.
A brief summary and an outlook on future work conclude the paper.
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2 Numerical Methods for Solving DREs

The numerical methods for DREs of the form (1) can essentially be distinguished into five
classes. In this section, we will briefly review the methods and discuss their suitability for
solving large-scale problems. Note that the solution matrix of the DRE is a symmetric
n×n matrix. Even in case symmetry is exploited, the storage needed is of size n(n+1)/2.
For example, for a semi-discretized 2D PDE problem with say, 11, 000 degrees of freedom,
this would require about 1 GB of storage for each time step if double precision is to be used!
Therefore, we will examine the available methods regarding their potential to circumvent
the storage of X(t) as a square matrix.

The naive approach. The first idea is to vectorize the DRE, i.e., to unroll the matrices
into vectors and to integrate the resulting system of n2 differential equations using
any kind of numerical integration scheme. This approach is not suitable for large-scale
problems, as for implicit methods, nonlinear systems of equations with n2 unknowns
have to be solved in each time step. This can be reduced exploiting symmetry to
n(n + 1)/2, but still this would require O(n2) workspace.

Linearization. The second type of methods is based on transforming the quadratic DRE
into the system of linear first-order matrix differential equations

d

dt

[
U(t)
V (t)

]

=

[
−A(t) R(t)
Q(t) A(t)T

]

︸ ︷︷ ︸

:=H(t)

[
U(t)
V (t)

]

, t ∈ (t0, T ],

[
U(t0)
V (t0)

]

=

[
U0

V0

]

,

(2)

where U(t) ∈ R
n×n, V (t) ∈ R

n×n, V0U
−1
0 = X(t0) for some U0 ∈ R

n×n invertible and
some V0 ∈ R

n×n. If the solution of (1) exists on the interval [t0, T ], then the solution
of (2) exists, U(t) is invertible on [t0, T ], and

X(t) = V (t)U−1(t). (3)

Conversely, if the solution of (2) exists and U(t) is nonsingular for all t ∈ [t0, T ],
then the solution of (1) exists in the same interval and is given by (3). The linear
differential equation (2) is a Hamiltonian differential equation. In the time-invariant
case, this allows an efficient integration for dense problems, [26], using numerical
methods for the Hamiltonian eigenproblem.

Another approach which is applicable to time-varying systems uses the fundamental
solution of the linear first-order ordinary differential equation. This method, called
now the Davison-Maki method, is proposed in [9]. A modified variant, avoiding some
numerical instabilities due to the inversion of possibly ill-conditioned matrices, is
proposed in [19]. As the exponential of the 2n × 2n-matrix H(t0) is required, this
cannot be applied in the large-scale case.
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Chandrasekhar’s method. The third type of algorithms is applicable to symmetric
time-invariant DREs and is based on the transformation of (1) into two coupled
systems of nonlinear differential equations, the so-called Chandrasekhar system

L̇ = (KT GT − AT )L, L(0) = L0 ∈ R
n×l

K̇ = −GT LLT , K(0) = GT X0 ∈ R
m×n

(4)

where Q(t) ≡ CCT , R(t) ≡ GGT . The solution of the DRE can be recovered from
that of the Chandrasekhar system. The method can be adapted to the time-varying
case, see [21], but there are several numerical difficulties involved in integrating (4),
see [35]. In general, the method is unstable and is therefore not considered here any
further although it is suitable for large-scale problems [2].

Superposition methods. This type of methods is based on the superposition property
of Riccati solutions, see [13]. The general solution of a DRE can be expressed as a
nonlinear combination of at most five independent solutions. This class of methods
requires integration of the DRE several times with different initial conditions be-
fore applying the complex superposition formulas and the computational complexity
therefore is too high to apply these formulae to the large-scale problems considered
here.

Matrix-versions of standard ODE methods. These methods solve the DRE using
matrix-valued algorithms based on standard numerical algorithms (see [7, 10]) for
solving ordinary differential equations (ODEs). As we are concerned with stiffness,
we only consider implicit methods here. In order to use the given structure as much
as possible, we are interested in methods which, written in matrix form, yield an
algebraic Riccati equation (ARE) as the nonlinear system of equations to be solved
in each time step. It turns out that there is a vast variety of methods that are ap-
plicable here, e.g., the backward differentiation formulas (BDF), the midpoint and
trapezoidal rules.

The BDF schemes allow an efficient implementation for the large-scale problems
considered here. Moreover, BDF schemes are particularly suitable for stiff ODEs.
Therefore, we will concentrate on this class of methods.

In the next section, we describe the matrix-valued implementation of the BDF for DREs.

3 BDF methods for large-scale DREs

We briefly describe the BDF method for DREs in matrix-valued form similar to [7]. We
will then discuss how this scheme can be implemented for large-scale problems. For this
purpose, we only consider symmetric DREs of the form

Ẋ(t) = Q(t) + AT (t)X(t) + X(t)A(t) − X(t)R(t)X(t) ≡ F (t,X(t))

X(t0) = X0, t0 ≤ t ≤ T.
(5)
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p β α0 α1 α2 α3 α4

1 1 1

2 2
3

4
3

−1
3

3 6
11

18
11

− 9
11

2
11

4 12
25

48
25

−36
25

16
25

− 3
25

5 60
137

300
137

−300
137

200
137

− 75
137

− 12
137

Table 1: coefficients of the BDF p-step methods for p < 6.

The BDF applied to the DRE (5) yield

Xk+1 =

p−1
∑

j=0

αjXk−j + hβF (tk+1, Xk+1)

where h is the step size, tk+1 = h + tk, Xk+1 ≡ X(tk+1) and αj, β are the coefficients for
the p-step BDF formula, given in Table 1.

Hence we obtain the Riccati-BDF difference equation

−Xk+1 + hβ(Qk+1 + AT
k+1Xk+1 + Xk+1Ak+1 − Xk+1Rk+1Xk+1) +

p−1
∑

j=0

αjXk−j = 0.

Re-arranging terms, we see that this is an ARE for Xk+1,

(hβQk+1 +

p−1
∑

j=0

αjXk−j) + (hβAk+1 −
1

2
I)T Xk+1 +

+ Xk+1(hβAk+1 −
1

2
I) − Xk+1(hβRk+1)Xk+1 = 0 (6)

that can be solved via any method for AREs. Assuming that

Qk = CT
k Ck, Ck ∈ R

p×n,

Rk = BkB
T
k , Bk ∈ R

n×m,

Xk = ZkZ
T
k , Zk ∈ R

n×zk ,

the ARE (6) can be written as

ĈT
k+1Ĉk+1 + ÂT

k+1Zk+1Z
T
k+1 + Zk+1Z

T
k+1Âk+1 − Zk+1Z

T
k+1B̂k+1B̂

T
k+1Zk+1Z

T
k+1 = 0, (7)

where

Âk+1 = hβAk+1 −
1

2
I,

B̂k+1 =
√

hβBk+1,

Ĉk+1 = [
√

hβCk+1,
√

α0Zk, . . . ,
√

αp−1Zk+1−p ].

5



If zk ≪ n for all times, and (7) can be solved efficiently by exploiting sparsity in Ak+1 as
well as the low-rank nature of the constant and quadratic terms, this can serve as the basis
for a DRE solver for large-scale problems. It should be noted that for p ≥ 2, some of the
αj are negative. This can be treated using complex arithmetic and replacing all transposes
in (7) by conjugate complex transposes, but in general it will be more efficient to split the
constant term into

ĈT
k+1Ĉk+1 − C̃T

k+1C̃k+1

where Ĉk+1 only contains the factors corresponding to positive αj and C̃k+1 the factors
corresponding to negative αj. We will show how this can be exploited in the ARE solver
below.

In our numerical implementation, we benefit from recent algorithmic progress in solving
large-scale AREs resulting from semi-discretized control problems for AREs [4, 5, 6]. We
will discuss the details of this approach in the next section.

4 Numerical Solution of Large-Scale AREs

Since the ARE (6) is a nonlinear system of equations, it is quite natural to apply Newton’s
method to find its solutions. This approach has been investigated; details and further
references can be found in [36, 22, 29, 33, 3]. To make the derivation more concise, we will
use in this section the generic form of an ARE as it arises in LQR and LQG problems,
given by

0 = R(P ) := CT C + AT P + PA − PBBT P. (8)

The case important here, i.e., constant terms of the form ĈĈT − C̃T C̃, will be explained
in Remark 4.1 below.

Observing that the (Frechét) derivative of R at P is given by the Lyapunov operator

R′

P : Q → (A − BBT P )Q + Q(A − BBT P )T ,

Newton’s method for AREs can be written as

Nℓ :=
(

R′

Pℓ

)
−1

R(Pℓ),

Xℓ+1 := Xℓ + Nℓ.

Then one step of the Newton iteration for a given starting matrix P0 can be implemented
as follows:

1. Aℓ ← A − BBT Pℓ.

2. Solve the Lyapunov equation AT
ℓ Nℓ + NℓAℓ = −R(Pℓ).

3. Pℓ+1 ← Pℓ + Nℓ.

6



Assume a stabilizing P0 is given such that A0 is stable. (In the applications considered
here, we can use the fact that for a small time step, the approximate solution Xk ≈ X(tk)
will in general be a good stabilizing starting value.) Then all Aℓ are stable and the iterates
Pℓ converge to P∗ quadratically. (Here: P∗ = Xk+1 ≈ X(tk+1).) In order to make this
iteration work for large-scale problems, we need a Lyapunov equation solver that employs
the structure of Aℓ as “sparse + low-rank perturbation” by avoiding to form Aℓ explicitly,
and which computes a low-rank approximation to the solution of the Lyapunov equation.
A relevant method is derived in detail in [6, 30] and is described in the following.

First, we re-write Newton’s method for AREs such that the next iterate is computed
directly from the Lyapunov equation in Step 2,

AT
ℓ Pℓ+1 + Pℓ+1Aℓ = −CT C − PℓBBT Pℓ =: −WℓW

T
ℓ . (9)

Assuming that Pℓ = ZℓZ
T
ℓ for rank (Zℓ) ≪ n and observing that rank (Wℓ) ≤ m + p ≪ n,

we need only a numerical method to solve Lyapunov equations having a low-rank right
hand side which returns a low-rank approximation to the (Cholesky) factor of its solution.
For this purpose, we can use a modified version of the alternating directions implicit (ADI)
method for Lyapunov equations of the form FQ + QF T = −WW T with F stable, W ∈
R

n×nw . The ADI iteration can be written as [37]

(F T + pjI)Q(j−1)/2 = −WW T − Qj−1(F − pjI),
(F T + pjI)QT

j = −WW T − Q(j−1)/2(F − pjI),
(10)

where p denotes the complex conjugate of p ∈ C. If the shift parameters pj are chosen
appropriately, then limj→∞ Qj = Q with a superlinear convergence rate. Starting this
iteration with Q0 = 0 and observing that for stable F , Q is positive semidefinite, it follows
that Qj = YjY

T
j for some Yj ∈ R

n×rj . Inserting this factorization into the above iteration,
re-arranging terms and combining two iteration steps, we obtain a factored ADI iteration
that in each iteration step yields nw new columns of a full-rank factor of Q (see [6, 27, 30]
for several variants of this method):

V1 ←
√

−2Re (p1)(F
T + p1I)−1W, Y1 ← V1

FOR j = 2, 3, . . .

Vj ←
√

Re(pj)
√

Re(pj−1)

(
I − (pj + pj−1)(F

T + pjI)−1
)
Vj−1,

Yj ←
[

Yj−1 Vj

]
.

END FOR

It should be noted that all Vj’s have the same number of columns as W ∈ R
n×nw , i.e.,

at each iteration j, we have to solve w linear systems of equations with the same coefficient
matrix F T + pjI. If convergence of the factored ADI iteration with respect to a suitable
stopping criterion is achieved after jmax steps, then Yjmax

= [ V1, . . . , Vjmax
] ∈ R

n×jmaxnw ,
where Vj ∈ R

n×nw . For large n and small nw we therefore expect that rj := jmaxnw ≪ n. In
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that case, we have computed a low-rank approximation Yjmax
to a factor Y of the solution,

that is Q = Y Y T ≈ Yjmax
Y T

jmax

. In case nw · jmax becomes large, a column compression
technique from [12] can be applied to reduce the number of columns in Yjmax

without adding
significant error.

For an implementation of this method, we need a strategy to select the shift parameters
pj. We will not discuss this problem here in detail; see [30, 27] and references therein
for a detailed discussion. A numerically inexpensive, heuristic algorithm that gives good
performance in practice can be found in [30]. Usually, a finite number of shifts is computed
in advance and applied cyclically if the ADI method needs more iterations than the number
of available shifts.

Since Aℓ is stable for all ℓ we can apply the modified ADI iteration to (9). Then,
W =

[
CT PℓB

]
and hence, nw = m + p, so that usually nw ≪ n.

Remark 4.1 The solution of the AREs (7) arising for BDF methods with p > 1, where
the constant term is replaced by

ĈT
k+1Ĉk+1 − C̃T

k+1C̃k+1

as described in the last section, only requires to split the Lyapunov equation (9) into the
two equations

AT
ℓ P̂ℓ+1 + P̂ℓ+1Aℓ = −ĈT Ĉ − PℓBBT Pℓ,

AT
ℓ P̃ℓ+1 + P̃ℓ+1Aℓ = −C̃T C̃.

Then Pℓ+1 = P̂ℓ+1− P̃ℓ+1. The two Lyapunov equations can be solved simultaneously by the
factored ADI iteration as the linear systems of equations to be solved in each step have the
same coefficient matrices.

Note that the above algorithm can be implemented in real arithmetic by combining two
steps, even if complex shifts need to be used, which may be the case if Aℓ is nonsymmetric.
A complexity analysis of the factored ADI method depends on the method used for solving
the linear systems in each iteration step. If applied to F = AT

ℓ from (9), we have to
deal with the situation that Aℓ is a shifted sparse matrix plus a low-rank perturbation.
If we can solve for the shifted linear system of equations in (10) efficiently, the low-rank
perturbation can be dealt with using the Sherman-Morrison-Woodbury formula [11] in the
following way: let ℓ be the index of the Newton iterates and let j be the index of the ADI
iterates used to solve the ℓth Lyapunov equation, respectively, and set Kℓ := BT Pℓ. Then

(

F T + p
(ℓ)
j In

)
−1

=
(

A + p
(ℓ)
j In − BKℓ

)
−1

=
(
In + Lℓ(Im − KℓLℓ)

−1Kℓ

)
(A + p

(ℓ)
j In)−1,

where Lℓ := (A + p
(ℓ)
j In)−1B. Hence, all linear systems of equations to be solved in one

iteration step have the same coefficient matrix A+p
(ℓ)
j In. If A+p

(ℓ)
j In is a banded matrix or

can be re-ordered to become banded, then a direct solver can be employed. If workspace
permits, it is desirable to compute a factorization of A + p

(ℓ)
j In for each different shift
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parameter beforehand (usually, very few parameters are used). These factorizations can
then be used in each iteration step of the ADI iteration. In particular, if A is symmetric
positive definite, as will be the case in many applications from PDE constrained optimal
control problems, and can be re-ordered in a narrow band matrix, then each factorization
requires O(n) flops, and the total cost O(ℓmax max(jmax)n) scales with n as desired. If
iterative solvers are employed for the linear systems, it should be noted that only one
Krylov space needs to be computed (see [27] for details) and hence we obtain an efficient
variant of the factored ADI iteration.

Stopping criteria for the modified ADI iteration can be based either on the fact that
‖Vj‖ → 0 very rapidly or on the residual norm ‖FYjY

T
j + YjY

T
j F T + WW T‖; see [31] for

an efficient way to compute the Frobenius norms of the residuals. Moreover, the stopping
criteria should be based on the tolerance for the accuracy provided by the BDF method.

5 Conclusions and Outlook

Solving large-scale differential Riccati equations is a central issue in many control de-
sign problems for instationary partial differential equations. Linear-quadratic optimiza-
tion problems on a finite time-horizon immediately lead to the problem of solving DREs.
As LQG design on short time intervals is the main computational ingredient in recently
proposed receding horizon and model predictive control approaches for stabilization and
tracking-type control problems, the ability to efficiently solve large-scale DREs is of para-
mount importance for nonlinear optimal control problems, too.

By rewriting the BDF method for stiff ordinary differential equations in terms of matrix
operations, it turns out that the nonlinear equations to be solved in each time step are
algebraic Riccati equations that can efficiently be solved using Newton’s method with
stating guess taken from the last time step. For large-scale problems arising in LQG design,
it is possible to efficiently implement Newton’s method for AREs based on a low-rank
version of the ADI method for Lyapunov equations. We expect this approach to become
a computationally efficient core procedure for LGQ design or LQG-based receding horizon
control for instationary PDE-constrained optimal control problems. An implementation
of the proposed algorithm is in preparation and will be tested for several PDE control
problems. The results of these tests will be reported elsewhere.
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