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Given a dynamical system described by the ordinary differential equation (ODE)

ẋ(t) = f(t,x(t),u(t)), x(t0) = x0,

where x is the state of system and u serves as input, the major problem in control theory is to
steer the state from x0 to some desired state, i.e., for a given initial value x(t0) = x0 and target
x1, can we find a piecewise continuous or L2 (i.e., square-integrable, Lebesgue measurable)
control function û such that there exists t1 ≥ t0 with x(t1; û) = x1 where x(t; û) is the solution
trajectory of the ODE given above for u ≡ û? Often, the target is x1 = 0, in particular if x
describes the deviation from a nominal path. A weaker demand is to asymptotically stabilize
the system, i.e., to find an admissible control function û (i.e., a piecewise continuous or L2

function û : [t0, t1] 7→ U) such that limt→∞ x(t; û) = 0.
Another major problem in control theory arises from the fact that often, not all states are
available for measurements or observations. Thus we are faced with the question: given partial
information about the states, is it possible to reconstruct the solution trajectory from the
measurements/observations? If this is the case, the states can be estimated by state observers.
The classical approach leads to the Luenberger observer, but nowadays most frequently the
famous Kalman-Bucy filter [KB61] is used as it can be considered as an optimal state observer
in a least-squares sense and allows for stochastic uncertainties in the system.
Analyzing the above questions concerning controllability, observability, etc. for general control
systems is beyond the scope of linear algebra. Therefore we will mostly focus on linear time-
invariant systems which can be analyzed with tools relying on linear algebra techniques. For
further reading, see, e.g., [Lev96, Mut99, Son98].
Once the above questions are settled, it is interesting to ask how the desired control objectives
can be achieved in an optimal way. The linear-quadratic regulator (LQR) problem is equivalent
to a dynamic optimization problem for linear differential equations. Its significance for control
theory was fully discovered first by Kalman in 1960 [Kal60]. One of its main applications is to
steer the solution of the underlying linear differential equation to a desired reference trajectory
with minimal cost given full information on the states. If full information is not available, then
the states can be estimated from the measurements or observations using a Kalman-Bucy filter.
This leads to the linear-quadratic Gaussian (LQG) control problem. The latter problem and its
solution were first described in the classical papers [Kal60, KB61] and are nowadays contained
in any textbook on control theory.
In the past decades, the interest has shifted from optimal control to robust control: the question
raised is whether a given control law is still able to achieve a desired performance in the presence
of uncertain disturbances. In this sense, the LQR control law has some robustness, while
the LQG design cannot be considered to be robust [Doy78]. The H∞ control problem aims
at minimizing the worst-case error that can occur if the system is perturbed by exogenous
perturbations. It is thus one example of a robust control problem. We will only introduce
the standard H∞ control problem, though there exist many other robust control problems and
several variations of the H∞ control problem, see [GL95, PUA00, ZDG96].
Many of the above questions lead to methods that involve the solution of linear and nonlin-
ear matrix equations, in particular Lyapunov, Sylvester, and Riccati equations. For instance,
stability, controllability, observability of LTI systems can be related to solutions of Lyapunov
equations; see, e.g., [LT85, Section 13] and [HJ91], while the LQR, LQG, and H∞ control
problems lead to the solution of algebraic Riccati equations, see, e.g., [AKFIJ03, Dat04, LR95,
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Meh91, Sim96]. Therefore, we will provide the most relevant properties of these matrix equa-
tions.
The concepts and solution techniques contained in this section and many other control-related
algorithms are implemented in the Matlab Control System Toolbox, the Subroutine Library
in Control SLICOT [BMS+99], and many other computer-aided control systems design tools.
Finally, we note that all concepts described in this section are related to continuous-time sys-
tems. Analogous concepts hold for discrete-time systems whose dynamics are described by
difference equations, see, e.g., [Kuc91].

1 BASIC CONCEPTS

Definitions:
Given vector spaces X (the state space), U (the input space), and Y (the output space)
and measurable functions f ,g : [t0, tf ] ×X × U 7→ R

n, a control system is defined by

ẋ(t) = f(t,x(t),u(t)),

y(t) = g(t,x(t),u(t)),

where the differential equation is called the state equation, the second equation is called the
observer equation, and t ∈ [t0, tf ] (tf ∈ [ 0,∞ ]).

Here,

x : [t0, tf ] 7→ X is the state (vector) ,

u : [t0, tf ] 7→ U is the control (vector) ,

y : [t0, tf ] 7→ Y is the output (vector) .

A control system is called autonomous (time-invariant) if

f(t,x,u) ≡ f(x,u) and g(t,x,u) ≡ g(x,u).

The number of state-space variables n is called the order or degree of the system.

Let x1 ∈ R
n. A control system with initial value x(t0) = x0 is controllable to x1 in time

t1 > t0 if there exists an admissible control function u (i.e., a piecewise continuous or L2

function u : [t0, t1] 7→ U) such that x(t1;u) = x1. (Equivalently, (t1,x
1) is reachable from

(t1,x
0).)

A control system with initial value x(t0) = x0 is controllable to x1 if there exists t1 > t0 such
that (t1,x

1) is reachable from (t0,x
0).

If the control system is controllable to all x1 ∈ X for all (t0,x
0) with x0 ∈ X , it is (completely)

controllable.

A control system is linear if X = R
n, U = R

m, Y = R
p and

f(t,x,u) = A(t)x(t) + B(t)u(t),

g(t,x,u) = C(t)x(t) + D(t)u(t),
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where A : [t0, tf ] 7→ R
n×n, B : [t0, tf ] 7→ R

n×m, C : [t0, tf ] 7→ R
p×n,D : [t0, tf ] 7→ R

p×m are
smooth functions.

A linear time-invariant system (LTI system) has the form

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and D ∈ R

p×m.

An LTI system is (asymptotically) stable if the corresponding linear homogeneous ODE
ẋ = Ax is (asymptotically) stable. (For a definition of (asymptotic) stability confer §12.1,
§12.2.)

An LTI system is stabilizable (by state feedback) if there exists an admissible control in
the form of a state feedback

u(t) = Fx(t), F ∈ R
m×n,

such that the unique solution of the corresponding closed-loop ODE

ẋ(t) = (A + BF )x(t) (1)

is asymptotically stable.

An LTI system is observable (reconstructible) if for two solution trajectories x(t) and x̃(t)
of its state equation, it holds that

Cx(t) = Cx̃(t) ∀t ≤ t0 (∀t ≥ t0)

implies x(t) = x̃(t) ∀t ≤ t0 (∀t ≥ t0).

An LTI system is detectable if for any solution x(t) of ẋ = Ax with Cx(t) ≡ 0 we have
lim

t→∞
x(t) = 0.

Facts:

1. For LTI systems, all controllability and reachability concepts are equivalent. Therefore,
we only speak of controllability of LTI systems.

2. Observability implies that one can obtain all necessary information about the LTI system
from the output equation.

3. Detectability weakens observability in the same sense as stabilizability weakens controlla-
bility: not all of x can be observed, but the unobservable part is asymptotically stable.

4. Observability (detectability) and controllability (stabilizability) are dual concepts in the
following sense: an LTI system is observable (detectable) if and only if the dual system

ż(t) = AT z(t) + CT v(t)

is controllable (stabilizable). This fact is sometimes called the duality principle of
control theory.
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Examples:

1. A fundamental problem in robotics is to control the position of a single–link rotational
joint using a motor placed at the “pivot”. A simple mathematical model for this is the
pendulum [Son98]. Applying a torque u as external force, this can serve as a means to
control the motion of the pendulum; see Figure 1.

θmg sin mg

θ

u

m

Figure 1: Pendulum as mathematical model
of a single-link rotational joint

m

ϕ

u

Figure 2: Inverted pendulum: apply control
to move to upright position.

If we neglect friction and assume that the mass is concentrated at the tip of the pendulum,
Newton’s law for rotating objects

mΘ̈(t) + mg sin Θ(t) = u(t)

describes the counter clockwise movement of the angle between the vertical axis and the
pendulum subject to the control u(t). This is a first example of a (nonlinear) control
system if we set

x(t) =

[

x1(t)
x2(t)

]

=

[

Θ(t)

Θ̇(t)

]

,

f(t,x,u) =

[

x2

−mg sin(x1)

]

, g(t,x,u) = x1,

where we assume that only Θ(t) can be measured, but not the angular velocity Θ̇(t)

For u(t) ≡ 0, the stationary position Θ = π, Θ̇ = 0 is an unstable equilibrium, i.e., small
perturbations will lead to unstable motion. The objective now is to apply a torque (control
u) to correct for deviations from this unstable equilibrium, i.e., to keep the pendulum in
the upright position, see Figure 2.
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2. Scaling the variables such that m = 1 = g and assuming a small perturbation Θ − π in
the inverted pendulum problem described above, we have

sinΘ = −(Θ − π) + o((Θ − π)2).

(Here, g(x) = o(x) if lim
x→∞

g(x)
x

= 0.) This allows us to linearize the control system in

order to obtain a linear control system for ϕ(t) := Θ(t) − π:

ϕ̈(t) − ϕ(t) = u(t).

This can be written as an LTI system, assuming only positions can be observed, with

x =

[

ϕ

ϕ̇

]

, A =

[

0 1
1 0

]

, B =

[

0
1

]

, C =
[

1 0
]

, D = 0.

Now the objective translates to: given initial values x1(0) = ϕ(0), x2(0) = ϕ̇(0), find
u(t) to bring x(t) to zero “as fast as possible”. It is usually an additional goal to avoid
overshoot and oscillating behaviour as much as possible.

2 FREQUENCY-DOMAIN ANALYSIS

So far LTI systems are treated in state-space. In systems and control theory, it is often beneficial
to use the frequency domain formalism obtained from applying the Laplace transformation
to its state and observer equations.

Definitions:
The rational matrix function

G(s) = C(sI − A)−1B + D ∈ R
p×m[s]

is called the transfer function of the LTI system defined in §12.3.1.

In a frequency domain analysis, G(s) is evaluated for s = iω, where ω ∈ [ 0,∞ ] has the
physical interpretation of a frequency and the input is considered as a signal with frequency ω.

The L∞-norm of a transfer function is the operator norm induced by the frequency domain ana-
logue of the L2-norm which applies to Laplace transformed input functions u ∈ L2(−∞,∞; Rm),
where L2(a, b; Rm) is the Lebesgue space of square-integrable, measurable functions on the in-
terval (a, b) ⊂ R with values in R

m.

The p × m-matrix-valued functions G for which ‖G‖L∞
is bounded form the space L∞.

The subset of L∞ containing all p×m-matrix-valued functions that are analytical and bounded
in the open right half complex plane form the Hardy space H∞.

The H∞-norm of G ∈ H∞ is defined as

‖G‖H∞
= ess sup

ω∈R

σmax(G(iω)), (2)

where σmax(M) is the maximum singular value of the matrix M and ess supt∈M h(t) is the
essential supremum of a function h evaluated on the set M , that is the function’s supremum on
M \ L where L is a set of Lebesgue measure zero.
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For T ∈ R
n×n nonsingular, the mapping implied by

(A,B,C,D) 7→ (TAT−1, TB,CT−1,D)

is called a state-space transformation.

(A,B,C,D) is called a realization of an LTI system if its transfer function can be expressed
as G(s) = C(sIn − A)−1B + D.

The minimum number n̂ so that there exists no realization of a given LTI system with n < n̂ is
called the McMillan degree of the system.

A realization with n = n̂ is a minimal realization.

Facts:

1. If X,Y,U are the Laplace transforms of x,y,u, respectively, s is the Laplace variable and
x(0) = 0, the state and observer equation of an LTI system transform to

sX(s) = AX(s) + BU(s),

Y(s) = CX(s) + DU(s).

Thus, the resulting input-output relation

Y(s) =
(

C(sI − A)−1B + D
)

U(s) = G(s)U(s) (3)

is completely determined by the transfer function of the LTI system.

2. As a consequence of the maximum modulus theorem, H∞ functions must be bounded
on the imaginary axis so that the essential supremum in the definition of the H∞-norm
simplifies to a supremum for rational functions G.

3. The transfer function of an LTI system is invariant w.r.t. state-space transformations:

D + (CT−1)(sI − TAT−1)−1(TB) = C(sIn − A)−1B + D = G(s).

Consequently, there exist infinitely many realizations of an LTI system.

4. Adding zero inputs/outputs does not change the transfer function, thus the order n of the
system can be increased arbitrarily.

Examples:

1. The LTI system corresponding to the inverted pendulum has the transfer function

G(s) =
[

1 0
]

[

s −1
−1 s

]−1 [

0
1

]

+
[

0
]

=
1

s2 − 1
.

2. The L∞-norm of the transfer function corresponding to the inverted pendulum is

‖G‖L∞
= 1.

3. The transfer function corresponding to the inverted pendulum is not in H∞ as G(s) has
a pole at s = 1 and thus is not bounded in the right half plane.
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3 ANALYSIS OF LTI SYSTEMS

In this section we provide characterizations of the properties of LTI systems defined in the
introduction. Controllability and the related concepts can be checked using several algebraic
criteria.

Definitions:
A matrix A ∈ R

n×n is Hurwitz or (asymptotically) stable if all its eigenvalues have strictly
negative real part.

The controllability matrix corresponding to an LTI system is

C(A,B) = [B,AB,A2B, . . . , An−1B] ∈ R
n×n·m.

The observability matrix corresponding to an LTI system is

O(A,C) =















C

CA

CA2

...
CAn−1















∈ R
np×n.

The following transformations are state-space transformations

• Change of Basis:

x 7→ Px for P ∈ R
n×n nonsingular,

u 7→ Qu for Q ∈ R
m×m nonsingular,

y 7→ Ry for R ∈ R
p×p nonsingular.

• Linear state feedback: u 7→ Fx + v, F ∈ R
m×n, v : [t0, tf ] 7→ R

m.

• Linear output feedback: u 7→ Gy + v, G ∈ R
m+p, v : [t0, tf ] 7→ R

m.

The Kalman decomposition of (A,B) is

V T AV =

[

A1 A2

0 A3

]

, V T B =

[

B1

0

]

, V ∈ R
n×n orthogonal,

where (A1, B1) is controllable.

The observability Kalman decomposition of (A,C) is,

WT AW =

[

A1 0
A2 A3

]

, CW = [C1 0], W ∈ R
n×n orthogonal,

where (A1, C1) is observable.
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Facts:

1. An LTI system is asymptotically stable if and only if A is Hurwitz.

2. For a given LTI system, the following are equivalent.

a) The LTI system is controllable.

b) The controllability matrix corresponding to the LTI system has full (row) rank, i.e.,
rank C(A,B) = n.

c) (Hautus-Popov test) If p is a left eigenvector of A, then p∗B 6= 0.

d) rank([λI − A,B]) = n ∀λ ∈ C.

The essential part of the proof of the above characterizations (which is “d)⇒b)”) is an
application of the Cayley-Hamilton theorem.

3. For a given LTI system, the following are equivalent:

a) The LTI system is stabilizable, i.e., ∃F ∈ R
m×n such that A + BF is Hurwitz.

b) (Hautus-Popov test) If p 6= 0, p∗A = λp∗ and Re(λ) ≥ 0, then p∗B 6= 0.

c) rank([A − λI,B]) = n ∀λ ∈ C with Re(λ) ≥ 0.

d) In the Kalman decomposition of (A,B), A3 is Hurwitz.

4. Using the change of basis x̃ = V T x implied by the Kalman decomposition we obtain

˙̃x1 = A1x̃1 + A2x̃2 + B1u
˙̃x2 = A3x̃2.

Thus, x̃2 is not controllable. The eigenvalues of A3 are therefore called uncontrollable
modes.

5. For a given LTI system, the following are equivalent:

a) The LTI system is observable.

c) The observability matrix corresponding to the LTI system has full (column) rank,
i.e., rankO(A,C) = n.

d) (Hautus-Popov test) Ap = λp =⇒ CT p 6= 0.

e) rank

[

λI − A

C

]

= n ∀λ ∈ C.

6. For a given LTI system, the following are equivalent:

a) The LTI system is detectable.

b) The dual system ż = AT z + CT v is stabilizable.

c) (Hautus-Popov test) Ap = λp,Re(λ) ≥ 0 =⇒ CT p 6= 0.

d) rank

[

λI − A

C

]

= n ∀λ ∈ C with Re(λ) ≥ 0.
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e) In the observability Kalman decomposition of (A,C), A3 is Hurwitz.

7. Using the change of basis x̃ = WT x implied by the observability Kalman decomposition
we obtain

˙̃x1 = A1x̃1 + B1u,

x̃2 = A2x̃1 + A3x̃2 + B2u,

y = C1x̃1

Thus, x̃2 is not observable. The eigenvalues of A3 are therefore called unobservable
modes.

8. The characterizations of observability and detectability are proved using the duality prin-
ciple and the characterizations of controllability and stabilizability.

9. If an LTI system is controllable (observable, stabilizable, detectable), then the correspond-
ing LTI system resulting from a state-space transformation is controllable (observable,
stabilizable, detectable).

10. For A ∈ R
n×n, B ∈ R

n×m there exist P ∈ R
n×n, Q ∈ R

m×m orthogonal such that

PAPT =























A11 A1,s−1 A1,s

A21
. . .

...
...

0
. . .

. . .
...

...
...

. . .

0 · · · 0 As−1,s−2 As−1,s−1 As−1,s

0 · · · 0 0 0 Ass























n1

n2

ns−1

ns

,

n1 ns−2 ns−1 ns

PBQ =











B1 0
0 0
...

...
0 0











n1

n2

...
ns

,

n1 m − n1

where n1 ≥ n2 ≥ . . . ≥ ns−1 ≥ ns ≥ 0, ns−1 > 0, Ai,i−1 = [Σi,i−1 0] ∈ R
n1×ni−1 , Σi,i−1 ∈

R
ni×ni nonsingular for i = 1, . . . , s − 1, Σs−1,s−2 is diagonal, and B1 is nonsingular.

Moreover, this transformation to staircase form can be computed by a finite sequence
of singular value decompositions.

11. An LTI system is controllable if in the staircase form of (A,B), n = 0.

12. An LTI system is observable if ns = 0 in the staircase form of (AT , CT ).

13. An LTI system is stabilizable if in the staircase form of (A,B), Ass is Hurwitz.

14. An LTI system is detectable if in the staircase form of (AT , CT ), Ass is Hurwitz.
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15. In case m = 1, the staircase form of (A,B) is given by

PAPT =













a11 . . . . . . a1,n

a21

...
. . .

...
an,n−1 an,n













, PB =











b1

0
...
0











and is called the controllability Hessenberg form. The corresponding staircase from
of (AT , CT ) in case p = 1 is called the observability Hessenberg form.

Examples:

1. The LTI system corresponding to the inverted pendulum problem is not asymptotically
stable as A is not Hurwitz: σ(A) = {±1}.

2. The LTI system corresponding to the inverted pendulum problem is controllable as the
controllability matrix

C(A,B) =

[

0 1
1 0

]

has full rank. Thus, it is also stabilizable.

3. The LTI system corresponding to the inverted pendulum problem is observable as the
observability matrix

O(A,C) =

[

1 0
0 1

]

has full rank. Thus, it is also detectable

4 MATRIX EQUATIONS

A fundamental role in many tasks in control theory is played by matrix equations. We therefore
review their most important properties. More details can be found in [AKFIJ03, HJ91, LR95,
LT85].

Definitions:

A linear matrix equation of the form

AX + XB = W, A ∈ R
n×n, B ∈ R

m×m,W ∈ R
n×m,

is called Sylvester equation.

A linear matrix equation of the form

AX + XAT = W, A ∈ R
n×n,W = WT ∈ R

n×n,

is called Lyapunov equation.
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A quadratic matrix equation of the form

0 = Q + AT X + XA − XGX, A ∈ R
n×n, G = GT , Q = QT ∈ R

n×n,

is called algebraic Riccati equation (ARE).

Facts:

1. The Sylvester equation is equivalent to the linear system of equations

[

(Im ⊗ A) + (BT ⊗ In)
]

vec(X) = vec(W ),

where ⊗ and vec denote the Kronecker product and the vec-operator defined in §2.5.4.
Thus, the Sylvester equation has a unique solution if and only if σ(A) ∩ σ(−B) = ∅.

2. The Lyapunov equation is equivalent to the linear system of equations

[(Im ⊗ A) + (A ⊗ In)] vec(X) = vec(W ).

Thus, it has a unique solution if and only if σ(A)∩ σ(−AT ) = ∅. In particular, this holds
if A is Hurwitz.

3. If G and Q are positive semidefinite with (A,G) stabilizable and (A,Q) detectable, then
the ARE has a unique positive semidefinite solution X∗ with the property that σ(A−GX∗)
is Hurwitz.

4. If the assumptions given above are not satisfied, there may or may not exist a stabilizing
solution with the given properties. Besides, there may exist a continuum of solutions, a
finite number of solutions, or no solution at all. The solution theory for AREs is a vast
topic by itself; see the monographs [AKFIJ03, LR95] and [Ben99, Dat04, Meh91, Sim96]
for numerical algorithms to solve these equations.

Examples:

1. For

A =

[

1 2
0 1

]

, B =

[

2 −1
1 0

]

, W =

[

−1 0
0 −1

]

,

a solution of the Sylvester equation is

X =
1

4

[

−3 3
1 −3

]

.

Note that σ(A) = σ(B) = {1, 1} so that σ(A)∩σ(−B) = ∅. Thus, this Sylvester equation
has the unique solution X given above.
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2. For

A =

[

0 1
0 0

]

, G =

[

0 0
0 1

]

, Q =

[

1 0
0 2

]

,

the stabilizing solution of the associated ARE is

X∗ =

[

2 1
1 2

]

and the spectrum of the closed-loop matrix

A − GX∗ =

[

0 1

−1 −2

]

is {−1, −1}.
3. Consider the ARE

0 = CT C + AT X + XA − XBBT X

corresponding to an LTI system with

A =

[

−1 0

0 0

]

, B =

[

1
0

]

, C =
[ √

2 0
]

, D = 0.

For this ARE, X =

[

−1 +
√

3 0

0 ξ

]

is a solution for all ξ ∈ R. It is positive semidefinite

for all ξ ≥ 0, but this ARE does not have a stabilizing solution as the LTI system is
neither stabilizable nor detectable.

5 STATE ESTIMATION

In this section we present the two most famous approaches to state observation, that is, finding
a function x̂(t) that approximates the state x(t) of a given LTI system if only its inputs u(t)
and outputs y(t) are known. While the the first approach (the Luenberger observer) assumes
a deterministic system behaviour, the Kalman-Bucy filter allows for uncertainty in the system,
modelled by white-noise, zero-mean stochastic processes.

Definitions:
Given an LTI system with D = 0, a state observer is a function

x̂ : [0,∞) 7→ R
n

such that for some nonsingular matrix Z ∈ R
n×n and e(t) = x̂(t) − Zx(t), we have

lim
t→∞

e(t) = 0.

Given an LTI system with stochastic disturbances

ẋ(t) = Ax(t) + Bu(t) + B̃w(t),
y(t) = Cx(t) + v(t),
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where A,B,C are as before, B̃ ∈ R
n×m̃, and w(t),v(t) are white-noise, zero-mean stochastic

processes with corresponding covariance matrices W = WT ∈ R
m̃×m̃ (positive semidefinite),

V = V T ∈ R
p×p (positive definite), the problem to minimize the mean square error

E
[

‖x(t) − x̂(t)‖2
2

]

over all state observers is called the optimal estimation problem. (Here, E[r] is the ex-
pected value of r.)

Facts:

1. A state observer, called the Luenberger observer, is obtained as the solution of the
dynamical system

˙̂x(t) = Hx̂(t) + Fy(t) + Gu(t),

where H ∈ R
n×n and F ∈ R

n×p are chosen so that H is Hurwitz and the Sylvester
observer equation

HX − XA + FC = 0

has a nonsingular solution X. Then G = XB and the matrix Z in the definition of the
state observer equals the solution of X of the Sylvester observer equation.

2. Assuming that

• w and v are uncorrelated stochastic processes,

• the initial state x0 is a Gaussian zero-mean random variable, uncorrelated with w
and v,

• (A,B) is controllable and (A,C) is observable,

the solution to the optimal estimation problem is given by the Kalman-Bucy filter,
defined as the solution of the linear differential equation

˙̂x(t) = (A − Y∗C
T V −1C)x̂(t) + Bu(t) + Y∗C

T V −1y(t),

where Y∗ is the unique stabilizing solution of the filter ARE

0 = B̃WB̃T + AY + Y AT − Y CT V −1CY.

3. Under the same assumptions as above, the stabilizing solution of the filter ARE can be
shown to be symmetric positive definite.

Examples:

1. A Luenberger observer for the LTI system corresponding to the inverted pendulum prob-

lem can be constructed as follows: choose H = diag(−2,− 1
2 ) and F =

[

2 1
]T

. Then
the Sylvester observer equation has the unique solution

X =
1

3

[

4 −2
−2 4

]

.

Note that X is nonsingular. We thus get G = XB = 1
3

[

−2 4
]

.

13



2. Consider the inverted pendulum with disturbances v, w and B̃ =
[

1 1
]T

. Assume that
V = W = 1. The Kalman-Bucy filter is determined via the filter ARE, yielding

Y∗ = (1 +
√

2)

[

1 1
1 1

]

.

Thus, the state estimation obtained from the Kalman filter is given by the solution of

˙̂x(t) =

[

−1 −
√

2 1

−
√

2 0

]

x̂(t) +

[

0
1

]

u(t) + (1 +
√

2)

[

1
1

]

y(t).

6 CONTROL DESIGN FOR LTI SYSTEMS

This section provides the background for some of the most important control design methods.

Definitions:
A (feedback) controller for an LTI system is given by another LTI system

ṙ(t) = Er(t) + Fy(t),
u(t) = Hr(t) + Ky(t),

where E ∈ R
N×N , F ∈ R

N×p, H ∈ R
m×N , K ∈ R

m×p, and the “output” u(t) of the controller
serves as the input for the original LTI system.

If E,F,H are zero matrices, a controller is called static feedback, otherwise it is called a
dynamic compensator.

A static feedback control law is a state feedback if in the controller equations, the output
function y(t) is replaced by the state x(t), otherwise it is called output feedback.

The closed-loop system resulting from inserting the control law u(t) obtained from a dynamic
compensator into the LTI system is illustrated by the block diagram in Figure 3, where w is
as in the definition of LTI systems with stochastic disturbances and z will only be needed later
when defining the H∞ control problem.

The linear-quadratic optimization (optimal control) problem

min
u∈L2(0,∞;U)

J (u), where J (u) =
1

2

∞
∫

0

(

y(t)T Qy(t) + u(t)T Ru(t)
)

dt

subject to the dynamical constraint given by an LTI system is called the linear-quadratic
regulator (LQR) problem.

The linear-quadratic optimization (optimal control) problem

min
u∈L2(0,∞;U)

J (u), where J (u) = lim
tf→∞

1

2tf
E







tf
∫

−tf

(

y(t)T Qy(t) + u(t)T Ru(t)
)

dt







subject to the dynamical constraint given by an LTI system with stochastic disturbances is
called the linear-quadratic Gaussian (LQG) problem.
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u = H r + K y
r’ = E r + F y

y = C x + D u
x’ = A x + B u

+u

w

y

z

Figure 3: Closed-loop diagram of an LTI system and a dynamic compensator.

Consider an LTI system where inputs and outputs are split into two parts, so that instead of
Bu(t) we have

B1w(t) + B2u(t),

and instead of y(t) = Cx(t) + Du(t) we write

z(t) = C1x(t) + D11w(t) + D12u(t),
y(t) = C2x(t) + D21w(t) + D22u(t),

where u(t) ∈ R
m2 denotes the control input, w(t) ∈ R

m1 is an exogenous input that may
include noise, linearization errors and unmodeled dynamics, y(t) ∈ R

p2 contains measured
outputs, while z(t) ∈ R

p1 is the regulated output or an estimation error. Let G =
[

G11

G21

G12

G22

]

denote the corresponding transfer function such that

[

Z
Y

]

=

[

G11 G12

G21 G22

] [

W
U

]

,

where Y,Z,U,W denote the Laplace transforms of y, z,u,w.
The optimal H∞ control problem is then to determine a dynamic compensator

ṙ(t) = Er(t) + Fy(t),
u(t) = Hr(t) + Ky(t),

with E ∈ R
N×N , F ∈ R

N×p2 , H ∈ R
m2×N , K ∈ R

m2×p2 and transfer function M(s) =
H(sI − E)−1F + K such that the resulting closed-loop system

ẋ(t) = (A + B2KZ1C2)x(t) + (B2Z2H)r(t) + (B1 + B2KZ1D21)w(t),

ṙ(t) = FZ1C2x(t) + (E + FZ1D22H)r(t) + FZ1D21w(t),

z(t) = (C1 + D12Z2KC2)x(t) + D12Z2Hr(t) + (D11 + D12KZ1D21)w(t),
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with Z1 = (I − D22K)−1 and Z2 = (I − KD22)
−1,

• is internally stable, i.e., the solution of the system with w(t) ≡ 0 is asymptotically
stable, and

• the closed-loop transfer function Tzw(s) = G22(s)+G21(s)M(s)(I−G11(s)M(s))−1G12(s)
from w to z is minimized in the H∞-norm.

The suboptimal H∞ control problem is to find an internally stabilizing controller so that

‖Tzw‖H∞
< γ,

where γ > 0 is a robustness threshold.

Facts:

1. If D = 0 and the LTI system is both stabilizable and detectable, the weighting matrix Q

is positive semidefinite and R is positive definite, then the solution of the LQR problem
is given by the state feedback controller

u∗(t) = − R−1BT X∗x(t), t ≥ 0,

where X∗ is the unique stabilizing solution of the LQR ARE

0 = CT QC + AT X + XA − XBR−1BT X.

2. The LQR problem does not require an observer equation — inserting y(t) = Cx(t) into
the cost functional, we obtain a problem formulation depending only on states and inputs:

J (u) =
1

2

∞
∫

0

(

y(t)T Qy(t) + u(t)T Ru(t)
)

dt

=
1

2

∞
∫

0

(

x(t)T CT QCx(t) + u(t)T Ru(t)
)

dt.

3. Under the given assumptions, it can also be shown that X∗ is symmetric and the unique
positive semidefinite matrix among all solutions of the LQR ARE.

4. The assumptions for the feedback solution of the LQR problem can be weakened in several
aspects, see, e.g., [Gee89, SSC95].

5. Assuming that

• w and v are uncorrelated stochastic processes,

• the initial state x0 is a Gaussian zero-mean random variable, uncorrelated with w
and v,

• (A,B) is controllable and (A,C) is observable,
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the solution to the LQG problem is given by the feedback controller

u(t) = −R−1BT X∗x̂(t),

where X∗ is the solution of the LQR ARE and x̂ is the Kalman-Bucy filter

˙̂x(t) = (A − BR−1BT X∗ − Y∗C
T V −1C)x̂(t) + Y∗C

T V −1y(t),

corresponding to the closed-loop system resulting from the LQR solution with Y∗ being
the stabilizing solution of the corresponding filter ARE.

6. In principle, there is no restriction on the degree N of the H∞ controller, although, smaller
dimensions N are preferred for practical implementation and computation.

7. The state-space solution to the H∞ suboptimal control problem [DGKF89] relates H∞

control to AREs: under the assumptions that

• (A,Bk) is stabilizable and (A,Ck) is detectable for k = 1, 2,

• D11 = 0, D22 = 0, and

DT
12

[

C1 D12

]

=
[

0 I
]

,

[

B1

D21

]

DT
21 =

[

0
I

]

,

a suboptimal H∞ controller exists if and only if the AREs

0 = CT
1 C1 + AX + XAT + X(

1

γ2
B1B

T
1 − B2B

T
2 )X

0 = BT
1 B1 + AT Y + Y A + Y (

1

γ2
C1C

T
1 − C2C

T
2 )Y

both have positive semidefinite stabilizing solutions X∞ and Y∞, respectively, satisfying
the spectral radius condition

ρ(XY ) < γ2.

8. The solution of the optimal H∞ control problem can be obtained by a bisection method
(or any other root-finding method) minimizing γ based on the characterization of a H∞

suboptimal controller given in 7., starting from γ0 for which no suboptimal H∞ controller
exists and γ1 for which the above conditions are satisfied.

9. The assumptions made for the state-space solution of the H∞ control problem can mostly
be relaxed.

10. The robust numerical solution of the H∞ control problem is a topic of ongoing research—
the solution via AREs may suffer from several difficulties in the presence of roundoff errors
and should be avoided if possible. One way out is a reformulation of the problem using
structured generalized eigenvalue problems, see [BBMX99b, CS92, GL97].
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11. Once a (sub-)optimal γ is found, it remains to determine a realization of the H∞ controller.
One possibility is the central (minimum entropy) controller [ZDG96]:

E = A +
1

γ2
B1B

T
1 − B2B

T
2 X∞ − Z∞Y∞CT

2 C2,

F = Z∞Y∞CT
2 , K = − BT

2 X∞, H = 0,

where

Z∞ = (I − 1

γ2
Y∞X∞)−1.

Examples:

1. The cost functional in the LQR and LQG problems values the energy needed to reach the
desired state by the weighting matrix R on the inputs. Thus, usually

R = diag(ρ1, . . . , ρm).

The weighting on the states or outputs in the LQR or LQG problems is usually used to
penalize deviations from the desired state of the system and is often also given in diagonal
form. Common examples of weighting matrices are R = ρIm, Q = γIp for ρ, γ > 0.

2. The solution to the LQR problem for the inverted pendulum with Q = R = 1 is given via
the stabilizing solution of the LQR ARE which is

X∗ =

[

2
√

1 +
√

2 1 +
√

2

1 +
√

2
√

2
√

1 +
√

2

]

,

resulting in the state feedback law

u(t) = −
[

1 +
√

2
√

2
√

1 +
√

2
]

x(t).

The eigenvalues of the closed-loop system are (up to four digits) σ(A − BR−1BT X∗) =
{−1.0987 ± 0.4551i}.

3. The solution to the LQG problem for the inverted pendulum with Q,R as above and

uncertainties v,w with B̃ =
[

1 1
]T

is obtained by combining the LQR solution derived
above with the Kalman-Bucy filter obtained as in the examples part of the previous section.

Thus we get the LQG control law

u(t) = −
[

1 +
√

2
√

2
√

1 +
√

2
]

x̂(t),

where x̂ is the solution of

˙̂x(t) = −
[

1 +
√

2 −1

1 + 2
√

2
√

2
√

1 +
√

2

]

x(t) + (1 +
√

2)

[

1
1

]

y(t).
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[Kuc91] V. Kučera. Analysis and Design of Discrete Linear Control Systems. Academia,
Prague, Czech Republic, 1991.

[Lev96] W.S. Levine, editor. The Control Handbook. CRC Press, 1996.

[LR95] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University
Press, Oxford, 1995.

[LT85] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Or-
lando, 2nd edition, 1985.

[Meh91] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and

Numerical Solution. Number 163 in Lecture Notes in Control and Information Sci-
ences. Springer-Verlag, Heidelberg, July 1991.

[Mut99] A.G.O. Mutambara. Design and Analysis of Control Systems. CRC Press, Boca
Raton, FL, 1999.

[PUA00] I.R. Petersen, V.A. Ugrinovskii, and A.V.Savkin. Robust Control Design Using H∞

Methods. Springer-Verlag, London, UK, 2000.

[SSC95] A. Saberi, P. Sannuti, and B.M. Chen. H2 Optimal Control. Prentice-Hall, Hert-
fordshire, UK, 1995.

[Sim96] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and

Applied Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

[Son98] E.D. Sontag. Mathematical Control Theory. Springer-Verlag, New York, NY, 2nd
edition, 1998.

[ZDG96] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall,
Upper Saddle River, NJ, 1996.

20


