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Abstract. Model (order) reduction, MOR for short, is an ubiquitous tool in the analysis and simulation
of dynamical systems, control design, circuit simulation, structural dynamics, CFD, etc. In systems and
control, MOR methods based on balanced truncation (BT) and its relatives have been widely used. In
other areas, they have been less successful as it is common belief that their computational complexity
is too high to apply them to large-scale problems involving sparse matrices. We will review the recent
development of efficient algorithms for solving matrix equations that make balancing-related model
reduction methods competitive to other MOR approaches - these new implementations fall into the
same complexity class as the omnipresent Krylov subspace methods. As balancing-related methods
offer the advantage of computable error bounds that allow for an adaptive choice of the order of the
reduced model and moreover, they can be shown to preserve certain system properties like stability,
passivity, dissipativity, etc., these new BT implementations become attractive in various application
areas. These include

• nanoelectronics/VLSI design, where MOR is inevitable for circuit simulation,

• (optimal) control of physical processes described by partial differential equations (PDEs),

• inverse problems related to the identification of input signals, e.g., for tracking control.

We will discuss some particular aspects arising in these areas when applying BT-related MOR tech-
niques. The performance of several BT-related approaches will be demonstrated using examples from
a variety of application areas.

1 Introduction
We consider linear, time-invariant (LTI) systems of the form

Eẋ(t) = Ax(t)+Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t)+Du(t), t ≥ 0,

(1)

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x0 ∈ Rn is the initial state of the system. Here, n is the
order (or state-space dimension) of the system and x(t)∈Rn, y(t)∈Rp, u(t)∈Rm are the state, output and input of
the system, respectively. In some application areas like structural dynamics, only the differential equation in (1) is
used to describe the model dynamics while in other areas like control or circuit simulation, the system description
provided in (1) almost always contains the (algebraic) output equation. If the output equation is not present in
the mathematical model used to describe the investigated physical process, one might simply set y(t) = x(t), i.e.,
C = In, D = 0, if a method is to be used that needs the C and D matrices. But often it is also natural in these
applications to define specific variables that can serve as outputs as the complete state is seldom measurable in
practice.

Applying the Laplace transform to (1) under the assumption that x(0) = 0, we obtain a set of algebraic equations
from which an input-to-output mapping can be defined as follows:

Y (s) = (C(sE−A)−1B+D)U(s), (2)

where s is the Laplace variable and Y,U are the Laplace transforms of y and u, respectively. Usually, inputs and
outputs are assumed to be in L2([0,∞),Rq), q = m, p, respectively. The associated transfer function matrix (TFM)

G(s) = C(sE−A)−1B+D (3)

is a real-rational matrix-valued function. Note that any restricted system equivalence with T,Z ∈Rn×n nonsingular,
yielding a new system description via

(A,B,C,D,E) 7→ (TAZ,T B,CZ,D,T EZ)

leaves the dynamics of the system and its transfer function invariant as can be seen from

(CZ)(sT EZ−TAZ)−1(T B)+D = C(sE−A)−1B+D = G(s).



Therefore, there exist infinitely many matrix tuples (A,B,C,D,E) representing the same LTI system. Each element
of the associated equivalence class is called a realization of the LTI system. It is easy to see that there exist
realizations of (1) of arbitrarily high order, but there is a lower limit on the order n of the system. This number is
called the McMillan degree of the system and will be denoted here by n̂. A realization of (1) of order n = n̂ is called
a minimal realization. In the model reduction methods discussed here, we will use several specific realizations of
LTI systems.

The model reduction problem considered here consists of finding a reduced-order LTI system,

Ê ˙̂x(t) = Âx̂(t)+ B̂u(t), t > 0, x̂(0) = x̂0,
ŷ(t) = Ĉx̂(t)+ D̂u(t), t ≥ 0,

(4)

of order r, r� n, with the same number of inputs m, the same number of outputs p, and associated TFM

Ĝ(s) = Ĉ(sÊ− Â)−1B̂+ D̂,

so that for the same input function u ∈ L2([0,∞),Rm), we have y(t)≈ ŷ(t), or, in frequency domain, Y (s)≈ Ŷ (s).
Employing the Paley-Wiener theorem (Parseval’s identity) and the operator norm induced by the 2-norm in the
frequency domain L2, defined for real-rational TFMs by

‖G‖∞ := sup
ω∈R

σmax(G(ıω)) (ı :=
√
−1, σmax = maximum singular value), (5)

the approximation error can be quantified (at least for stable systems, i.e., the TFM G(s) of the system has all its
poles in the open left half plane C−) as

‖y− ŷ‖2 = ‖Y − Ŷ‖2 = ‖(G− Ĝ)U‖2 ≤ ‖G− Ĝ‖∞‖U‖2 = ‖G− Ĝ‖∞‖u‖2. (6)

Here, ‖ .‖ denotes the 2-norm either in the input and output spaces L2([0,∞),Rq) or the frequency domain L2.

Note that model reduction of discrete-time LTI systems (i.e., linear systems where the dynamics is driven by
difference equations) can be formulated in an analogous manner using the Z- instead of the Laplace transformation;
see, e.g., [33, 79].

Model (order) reduction is a common task within the simulation, control, and optimization of complex physical
processes. Often, large systems arise due to accuracy requirements on the spatial discretization of control problems
for fluids or structures described by PDEs, in the context of lumped-circuit approximations of distributed circuit el-
ements, such as the interconnect or package of VLSI chips. or in simulations of micro-electro-mechanical systems
(MEMS), which have both electrical and mechanical components, and many other areas. Dimension reduction is
generally required for purposes of computational feasibility and/or storage reduction.

Various reduction techniques have been devised, but many of these are described in terms that are discipline-
oriented or application-specific even though they share many common features and origins. See the recent mono-
graphs and surveys [6, 8, 13, 22, 28, 44, 79, 93] for the discussion of various methods. In case of linear systems, it
seems that three approaches play the most prominent role, these are

• modal truncation and the related techniques of substructuring and static condensation,
• Padé and Padé-type approximations, and
• balancing-related truncation techniques.

All three approaches rely on efficient numerical linear algebra techniques to be applicable to very large-scale
problems with state-space dimensions of order in the thousands or even in the millions. It is well-known that the
first two approaches listed above can be applied to very large-scale problems, see, e.g., [13, 38, 43, 44]. In contrast
to common belief, it is also possible to apply balanced truncation techniques for large-scale problems. It is often
stated that balanced truncation is not suitable for large-scale problems as it requires the solution of two Lyapunov
equations, followed by an SVD and that both steps require O(n2) storage and O(n3) flops. This is no longer
true due to several recent developments in numerical linear algebra, allowing to implement balanced truncation
at a cost essentially proportional to the number of nonzeros in A if it is a sparse matrix (see [20, 53, 69, 81]) or
in O(n log2(n)) (see [17]) if A is approximated by a hierarchical matrix [49]. Here, we will focus on these new
techniques.

The outline of the paper is as follows: in the next section, we will give a brief survey of the application of model
reduction techniques in the main fields listed in the title of this paper: simulation, control, and (certain) inverse
problems. This will motivate the study of variations of the basic balanced truncation technique in the sequel. In
Section 3, we provide the necessary background material on balanced truncation and its relatives. In order to apply
balanced truncation and relatives to large-scale systems, it is necessary to solve large scale matrix equations (Lya-
punov and algebraic Riccati equations). Recent numerical algorithms developed for this purpose will be discussed
in Section 4. The efficiency of the balancing-related model reduction techniques will be reported in Section 5 for
large-scale problems from benchmark collections in several application fields. We give some concluding remarks
in Section 6.



2 Applications of Model Reduction
2.1 Numerical Simulation of Dynamical Systems

Time domain simulation. In practically all application areas of dynamical systems, time domain simulation is a
frequently employed technique in order to study the behavior of the physical process described by the mathematical
model. In particular, studying the influence of varying initial conditions or forcing functions requires the repeated
solution of the underlying system of differential equations. A particular example is transient analysis of electronic
circuits, one of the major tasks in very large-scale integrated circuit (VLSI) design. VLSI design in one of the
major challenges in micro- and nanoelectronics and is inevitable when developing new electronic devices like
CPUs, GPUs, DRAMs, ASICs, and many more, see, e.g., [55] and references therein.

Despite the availability of the variation-of-constants formula for linear systems which yields

y(t) = C exp(At)x0 +
t∫

0

C exp(A(t− τ))Bu(τ)dτ = C exp(At)

x0 +
t∫

0

exp(−Aτ)Bu(τ)dτ


as the global, unique solution of (1) (under suitable conditions on u(t) — as we assume u ∈ L2([0,∞),Rm), these
are satisfied), time domain simulation for large-scale LTI systems (1) is usually done via numerical simulation, i.e.
via numerical integration techniques. For one, evaluating the exponential map itself is a numerically difficult task
[74], and moreover, solving the integral in general requires numerical integration itself.

As many applications leading to large-scale systems of differential equations exhibit a certain degree of stiffness,
implicit methods are usually required in order to compute a numerical solution of (1). As the most simple example
consider the backwards Euler method. When applied to (1) for a time discretization t0 = 0, tk+1 = tk + hk, k =
0,1, . . . with mesh sizes hk > 0, this leads to

yh(tk+1) = C(E−hkA)−1 (Exh(tk)+hkBu(tk+1))+Du(tk+1), (7)

where xh(t),yh(t) denote the numerical approximations to x(t),y(t), respectively. Thus, the time consuming part
in solving (1) numerically is the solution of a linear system of equations with the coefficient matrix Ak := E−hkA.
Depending on the structure and the size of the problem, this may be a formidable task when the simulation has to
be repeated many times for varying x0, different u(t), and possibly a long integration horizon with small step sizes
hk. For higher-order implicit methods, the cost will be higher, but still will be mainly proportional to the cost of
solving a linear system of equations with Ak as coefficient matrix. Although there exists a variety of methods to
solve large-scale linear systems efficiently, the computation time may be significantly reduced if a reduced-order
model is used to replace (7) by

ŷh(tk+1) = Ĉ(Ê−hkÂ)−1 (Êxh(tk)+hkB̂u(tk+1)
)
+ D̂u(tk+1). (8)

This is efficient whenever the solution of a linear system with Ê − hkÂ as coefficient matrix is faster than when
working with Ak in Rn. If the approximation error for the reduced-order model can be guaranteed to be negligible
compared to the discretization error induced by the numerical integration scheme, then the output function ŷh from
(8) can safely replace yh as an approximation to the desired function y.

It should be noted, though, that reduced-order models are often computed such that they are basically independent
of the choice of u ∈ L2([0,∞),Rm). The same cannot be claimed for varying x0 although numerical simulation
with reduced-order models often yields satisfactory results in this situation, too. As most methods are based on the
assumption that (2) and (6) are valid, the implicit assumption x0 = 0 is made. To the best of our knowledge, there
is no detailed analysis about the quality of reduced-order models for time domain simulation with varying x0 6= 0.
Some ideas are discussed in [18], but in general this appears to be an open issue.

Frequency domain analysis In systems and control theory, an often used tool for analyzing LTI systems as in (1)
is the frequency response. This is required, e.g., when diagnosing an LTI system using Bode, Nyquist or Nichols
plots, see, e.g., [67, 77]. For a system with transfer function G(s) as in (3), frequency response analysis requires
the evaluation of

G(ıωk) = C(ıωkE−A)−1B+D, k = 1, . . . ,N f , (9)

where the ωk ≥ 0 define a mesh of frequencies on [0,∞). For large-scale systems, model reduction can reduce the
computation time needed for (9) if solving a system of linear equations with ıωkÊ− Â is cheaper than working in
Cn (note that (9) requires complex arithmetic even if A,E are real!) with ıωkE−A as coefficient matrix. It should
be noted that MOR methods mostly lead to dense matrices Â, Ê even if A,E are sparse. Thus, it is not clear per se
that evaluating the transfer function for a reduced-order model is cheaper than using the original model.

A very simple trick can be used to make the evaluation of Ĝ(ıωk), k = 1, . . . ,N f , significantly faster so that usually,
frequency response analysis using a reduced-order model becomes much faster: compute orthogonal U,V ∈ Rr×r



such that UÂV =: ÂH is upper Hessenberg and UÊV =: ÊH is upper triangular. This Hessenberg-triangular reduc-
tion always exists and can be computed with 15r3 operations, see [47, Algorithm 7.7.1]. Next, we set B̂H := UB̂,
ĈH := ĈV , and D̂H := D̂. Then the coefficient matrices of all linear systems of equations required in the evaluation
of

Ĝ(ıωk) = Ĉ(ıωkÊ− Â)−1B̂+ D̂ = ĈH(ıωkÊH − ÂH)−1B̂H + D̂H , k = 1, . . . ,N f ,

are upper Hessenberg and can thus be solved in O(r2) operations only, employing r−1 Gaussian eliminations or
Givens rotations. Using the Hessenberg-triangular reduction of course only becomes efficient when the number
of frequencies N f is large enough so that the savings in evaluating Ĝ(ıωk) compensate for the computational
overhead needed for transforming the reduced-order model to this form. This procedure was first suggested for
standard state-space systems in [64] and is implemented, e.g., in the MATLAB function freqresp [70] and the
SLICOT1 function TB05AD [27] for systems with E = In.

Also note that the same trick can be used to accelerate time-domain analysis based on implicit integration schemes
applied to a reduced-order model (this pays off at least in case varying step sizes hk are used in (8) or the corre-
sponding formulae for other integration techniques).

2.2 Feedback Control Design

The main objective in automatic control is to find a feedback control law such that the resulting input function u(t)
steers the system to a desired state. A central task is stabilization, i.e., the solution trajectory x(t) := x(t;x0,u)
of (1) obtained for the specified control law satisfies limt→∞ x(t) = 0. More generally, control problems are often
formulated so that the aim is that the output y(t) of (1) tracks a desired reference output trajectory yre f (t). These
and many other problems are solved by feedback control: derive a controller (dynamic compensator) of the form

Ẽ ˙̃x(t) = Ãx̃(t)+ B̃y(t),
u(t) = C̃x̃(t)+ D̃y(t), (10)

where Ã, Ẽ ∈ RN×N , B̃ ∈ RN×p, C̃ ∈ Rm×N , and D̃ ∈ Rm×p, such that for the input y(t) equal to the output of (1),
an output u(t) is produced which serves as input to (1) and defines a control law with the desired properties. (If
Ã, Ẽ, B̃,C̃ are all zero, a static output feedback controller is defined by (10) and if additionally, C = In and D = 0,
then this yields a state feedback control law.)

There exist various approaches to derive the controller (10), see any textbook on control theory, e.g., [4, 67, 77,
89, 104]. Most modern methods like LQR/LQG design, H2 or H∞ control lead to controllers with N ≥ n. If n
is large, then this leads to impractical controllers as real-time constraints as well as fragility considerations pose
restrictions on the allowable N. Usually, in control engineering, N ≤ 10 or at most N = O(10) is desired. Thus, in
order to compute a controller of acceptable order, either the plant model (1) or the controller (10) has to be reduced.
The latter approach is often called controller reduction [79]. A prefered alternative would be to go directly from
the high-order plant to a low-order controller. Although there exist approaches in this direction, none of the ones
known to the author extend to the large-scale problems (at least n > 1000) that we are interested in here — see
[79, Section 3.1] for a detailed discussion of this issue. Hence, we will focus on methods that can be used for plant
and controller reduction in the context of feedback control design and that are applicable to large-scale problems
arising, e.g., in the context of plant models given by spatially discretized instationary PDEs.

2.3 Inverse Problems

Assuming m = p, i.e., the number of inputs in (1) equals the number of outputs, so that the transfer function G(s)
in (3) is square, and that D ∈ Rm×m is invertible, the inverse of the transfer function exists and can be realized as
(see, e.g., [97] and references therein)

G−1(s) =−D−1C(sE− (A−BD−1C))−1BD−1 +D−1. (11)

This may be used for certain inverse problems where it is desired to reconstruct the input function from measured
outputs: given Y (s), the Laplace transform of y(t), we can then compute

U(s) = G−1(s)Y (s). (12)

If u(t) is desired in time domain, this can then be computed using the inverse Laplace transformation. An example
of the application of system inversion is reported in [71], where heat flux fluctuations at the surface are to be
determined in a pool boiling process.

System inversion can also be used to define a control input function u(t): if a desired reference output trajectory
yre f (t) is given, the corresponding control function can be computed from (12). It should be noted, though, that
this may be an ill-conditioned procedure and using u(t) as feedforward control requires a feedback controller in
the control loop in order to compensate possible deviations from the nominal reference trajectory.

1See www.slicot.org



When using a reduced-order model to compute U(s) in (12), one should be careful due to the possible ill-
conditioning of the inverse problem. Often, D is chosen as regularization parameter by setting D = εIm (if D = 0).
This is to be balanced versus the accuracy required for the reduced-order model which makes an error bound for
G−1− Ĝ−1 necessary. Fortunately, such bounds can be obtained for some of the MOR methods discussed in the
next section.

3 Balanced Truncation and Family
In the following, we will provide the necessary background material for MOR methods based on balancing. For this
purpose we assume E = In in the following as this simplifies the presentation. For invertible E, this representation
of the system can be obtained by simply multiplying the differential part of (1) by E−1 from the left, leading to a
new realization of the LTI system

ẋ(t) = Ax(t)+Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t)+Du(t), t ≥ 0,

(13)

where A← E−1A, B← E−1B. Note that in practical computations, of course we never compute E−1 or form
E−1A,E−1B. It will turn out that the numerical algorithms described in Section 4 can be implemented based on
the formulation (13), where E−1A,E−1B are used just as operators, details will be given below.

Extensions of balancing-related methods to descriptor systems, i.e., systems in the form (1) where E is singular,
are possible, see [23, 35, 73, 91, 85].

3.1 The Basic Principle

Inspired by the error bound (6), many system-theoretic model reduction methods for control systems design aim
at minimizing ‖G− Ĝ‖∞, although for a given r, finding Ĝ that minimizes ‖G− Ĝ‖∞ is an open problem even in
the scalar case [7]. We focus here on model reduction based on balanced truncation and related methods and how
these method can be applied to large-scale problems. Even though they usually do not lead to a best approximation,
fairly tight computable error bounds are available.

The basic principle of all MOR methods based on balancing is to diagonalize two positive definite matrices P,Q ∈
Rn×n via a so-called contragredient transformation, i.e., P is balanced vs. Q. This is achieved using a nonsingular
matrix T ∈ Rn×n chosen such that

T PT T = T−T QT−1 = diag(σ1, . . . ,σn),

where σ1 ≥ . . .≥ σn > 0. Note that the σ j’s are the square roots of the eigenvalues of PQ as

T PQT−1 = diag(σ2
1 , . . . ,σ2

n ). (14)

(Generalizations to positive semidefinite matrices exist, leading to only partially balanced T PT T ,T−T QT−1 [92].)
Using T as state-space transformation x 7→ T x yields a new realization

(A,B,C,D) 7→ (TAT−1,T B,CT−1,D) =
([

A11 A12
A21 A22

]
,

[
B1
B2

]
,
[

C1 C2
]
,D
)

(15)

of (13), where A11 ∈ Rr×r, and T B and CT−1 are partitioned conformably. With T =
[
T T

l ,LT
l

]T ∈ Rn×n and
T−1 = [Tr,Lr], Tl ∈ Rr×n, Tr ∈ Rn×r, the reduced-order model is given by the projections

Â := TlATr = A11, B̂ := TlB = B1, Ĉ := CTr = C1, D̂ := D. (16)

For given r, the problem now is to find Tl ,Tr such that ‖G− Ĝ‖∞ is small. For this purpose, several suitable
choices of P,Q are suggested in the literature, the most prominent one, called balanced truncation (BT), uses the
controllability and observability Gramians of (13) [75]. We will describe several of these techniques, including
BT, in the following subsections.

As P,Q are assumed to be positive (semi-)definite, they can be factored as P = ST S, Q = RT R, e.g., using Cholesky
factorizations. From a numerical point of view, the observation that (16) can be computed using the product SRT

instead of the product PQ as in (14), is a key ingredient of a reliable and efficient implementation of MOR methods
based on balancing. The resulting square-root (SR) algorithm [65, 92] avoids working with PQ since the condition
number of this product is the square of the condition number of the product of the Cholesky factors. Given the
Cholesky factors, the singular value decomposition (SVD)

SRT = [U1 U2]
[

Σ1 0
0 Σ2

][
V T

1
V T

2

]
,

Σ1 = diag(σ1, . . . ,σr),
Σ2 = diag(σr+1, . . . ,σn)

(17)



is computed, where
σ1 ≥ σ2 ≥ . . .≥ σr > σr+1 ≥ σr+2 ≥ . . .≥ σn ≥ 0. (18)

For a successful model reduction, r should be chosen to give a natural separation of the states, i.e., one should
search for a large gap σr � σr+1. Finally, the matrices Tl and Tr yielding the reduced-order model (16) for the
balancing state-space transformation are determined by

Tl = Σ
−1/2
1 V T

1 R and Tr = STU1Σ
−1/2
1 . (19)

The possibly ill-conditioned balancing step can be avoided using so-called balancing-free SR (BFSR) methods
[94]. We refrain here from providing further details on this but note that all methods that we present, also in
the large-scale settings, can be implemented using the BFSR approach. Detailed discussions of balancing-related
MOR methods and the square-root methods for implementing them can be found in [6, 98]. The implementations
described in [98] are contained in SLICOT [27] and the associated SLICOT Model and Controller Reduction
Toolbox for MATLAB2.

Unfortunately, using Cholesky factors of P,Q, the SVD in (17) requires O(n3) flops and O(n2) workspace. This
will be way too expensive for systems of order n� 1000. So for the moment, we will focus on reducing the
required resources for this computational step by employing low-rank factorizations. This approach will turn out
to be the key to the success of the sparse MOR algorithms. The basic idea is to replace the Cholesky factors of the
Gramians with low-rank factors, resulting in a smaller arithmetic cost and workspace requirement. So far, we have
assumed that the Cholesky factors S and R of the Gramians are square n×n matrices. For non-minimal systems,
we have rank(S) < n and/or rank(R) < n. Hence, rather than working with the singular Cholesky factors, we may
use full-rank factors of P,Q. Since P,Q are positive semidefinite, there exist matrices Ŝ ∈ Rnc×n, R̂ ∈ Rno×n, such
that P = ŜT Ŝ, Q = R̂T R̂, and

nc := rank(Ŝ) = rank(S) = rank(P), no := rank(R̂) = rank(R) = rank(Q).

Although the full-rank factors Ŝ, R̂ can in principle be obtained from S and R, it is more efficient to compute Ŝ
and R̂ directly. The matrices U1,V1,Σ1 in (17) that are needed to compute the reduced-order model can then be
obtained directly from the SVD of ŜR̂T . This technique yields a significant savings in workspace and computational
cost. Using complexity estimates from [47], (17) requires 22n3 flops and workspace for 2n2 real numbers if U , V
are formed explicitly, whereas the SVD of ŜR̂T requires only 14ncn2

o + 8n3
o flops and workspace for n2

c + n2
o real

numbers. In practice, for large-scale dynamical systems, the numerical rank of P,Q and Ŝ, R̂ in balancing-related
methods is often much smaller than n; see [9, 32, 48, 82]. This forms the basis for the balancing-related model
reduction methods for large-scale problems discussed here.

3.2 Balanced Truncation

Here, we will assume that A from (13) is a stable matrix, i.e., the spectrum of A is contained in the open left half
plane. This implies that the system (13) is stable, that is, all the poles of the associated transfer function G(s) have
strictly negative real parts. Hence, the model reduction procedure should also yield a stable matrix Â and stable
transfer function Ĝ(s). Note that not all model reduction techniques automatically lead to a stable reduced-order
model. In particular, this is an issue for the abovementioned Padé and Padé-type approximations based on Krylov
subspace methods.

The most common approach to truncation-based model reduction involves balancing the controllability Gramian
PBT and the observability Gramian QBT of the system (13) given as the solutions of the Lyapunov equations

AP+PAT +BBT = 0, AT Q+QA+CTC = 0. (20)

Using PBT,QBT in place of P,Q in the balancing and truncation procedure described above yields balanced trunca-
tion (BT) [75]. BT does not generally yield the best rth order approximant of G in the H∞ norm, but the following
error bound is proven in [45]:

σ
BT
r+1 ≤ ‖G− Ĝ‖∞ ≤ 2

n

∑
k=r+1

σ
BT
k , (21)

where the σBT
j ’s are square roots of PBTQBT and are the Hankel singular values of (13). This a priori error

bound makes BT attractive since it allows an adaptive choice of the order r of Ĝ. Because of this error bound
and its ability to preserve important system properties like stability, it is desirable to apply BT to large-scale
models. However, Schur vector methods like the Bartels-Stewart algorithm [15] or Hammarling’s method [56]
for the solution of the Lyapunov equations in (20) require O(n3) flops and O(n2) workspace. Thus, the key
ingredient to a successful application of BT to large-scale systems is a numerical algorithm for solving Lyapunov
equations that can be implemented at a computational cost proportional to the cost of solving linear systems

2See http://www.slicot.org for further details.



of equations with coefficient matrix A. That is, if A is sparse with nz nonzero entries, the complexity should
be O(nz). Moreover, such an algorithm needs to compute low-rank approximate factors ŜBT, R̂BT without ever
forming PBT,QBT. This is achieved by the method described in Section 4.1. For further information on efficient
BT methods see [10, 17, 20, 30, 53, 68, 84].

3.3 Balancing-Related Methods

There is a large-variety of balancing-related model reduction techniques, see, e.g., [6, 52, 79]. The main idea of
all balancing-related methods is to replace the Gramians PBT,QBT defined in (20) by other symmetric, positive
semidefinite matrices P,Q. Usually, P,Q define controllability and observability Gramians of LTI systems in some
way related to (13). For detailed discussions of choices of various Gramians see, e.g., [79, 90]. Here, we will focus
only on three approaches that are useful for the main application fields considered here and for which we have
developed variants that can be applied to large-scale systems with sparse state matrices A.

3.3.1 LQG Balanced Truncation

If it comes to unstable systems, BT can no longer be applied in the form described in the previous subsection. There
are extensions to unstable systems based on additive decomposition of the transfer function or frequency domain
definitions of the Gramians, see, e.g., [14, 96, 105]. Unfortunately, none of them extends easily to large-scale
systems as they require dense matrix algebra. New approaches that can deal with sparsity or sparse representations
of A are under current investigation (a version employing formatted arithmetic for hierarchical matrices can be
based on [16]), but here we will limit ourselves to a different balancing approach that can be employed in case
of unstable systems. Moreover, the approach can also be efficiently be used to obtain a reduced-order controller.
Despite the fact that such a low-order controller can also be computed based on a BT reduced-order model (if
G(s) is stable), there is a subtle problem with this approach, in particular in the context of infinite-dimensional
systems such as control of parabolic PDEs: controllers based on the BT reduced-order model may not be robust
when applied to the original infinite-dimensional problem. Therefore, in [40] it is suggested to use instead of
BT a technique called LQG balancing [59]. It is then proven in [40] that a robust controller can be based on
the reduced-order model computed by the truncated LQG balanced system. The basic idea of LQG balanced
truncation (LQGBT) is to replace the Gramians PBT and QBT from (20) by the stabilizing solutions of the dual
algebraic Riccati equations (AREs)

0 = AP+PAT −PCTCP+BBT ,

0 = AT Q+QA−QBBT Q+CTC,
(22)

related to the regulator and filter AREs used in linear-quadratic Gaussian (LQG) control design. By stabilizing
solutions we mean that A−PCTC and A−BBT Q have all their eigenvalues in the open left half plane C−. It is
well-known (see [62] and references therein) that PLQG and QLQG are positive semidefinite. Like the solutions of
(20), often they can be approximated by low-rank factorizations ŜT

LQGŜLQG and R̂T
LQGR̂LQG. In order to use this

approach for model reduction of large-scale systems, we thus need numerical algorithms for large-scale AREs that
compute ŜLQG, R̂LQG directly without ever forming PLQG,QLQG. As we will see in Section 4, such a method can be
based on Newton’s method for AREs if a corresponding solver for the Lyapunov equations (20) is available. With
such an ARE solver we arrive at implementations of LQGBT that can be applied to the very large-scale systems
we are interested in.

Like BT, LQGBT comes with a computable error bound that becomes available once PLQG,QLQG or its factors are
known. As the original and reduced-order systems are in general not stable, the H∞-norms of G, Ĝ and G− Ĝ are
usually not defined, thus the error bound is derived in a slightly different way than for standard BT. First note that
if the considered LTI system is stabilizable and detectable without uncontrollable poles on the imaginary axis, its
transfer function can be factored as G = M−1N where M,N are stable, rational transfer functions with M ∈Rp×p[s]
and N ∈Rp×m[s]. (This is called a left coprime factorization.) The augmented transfer function [N, M]∈Rp×m+p[s]
is stable and thus can be measured in the H∞-norm. With this, the following error bound is obtained in [59]:

‖
[

N M
]
−
[

N̂ M̂
]
‖∞ ≤ 2

n

∑
j=r+1

σ
LQG
j√

1+(σLQG
j )2

, (23)

where G = M−1N, Ĝ = M̂−1N̂ are left coprime factorizations of G, Ĝ and σ
LQG
j are the singular values obtained

in (17) if S,R are replaced by the corresponding factors of the stabilizing solutions PLQG,QLQG of (22).

Summarizing, LQGBT is useful in simulation of unstable systems and in control design. Note that the stabilizing
solutions of the LQG AREs corresponding to the obtained reduced-order model and thus the LQG controller for the
reduced-order model are readily available as by-product of the computation of the LQGBT reduced-order model.
Furthermore, it can be shown that this controller exponentially stabilizes even infinite-dimensional plant models
under certain assumptions on the spatial discretization [76]. Nevertheless, this controller may not be robust which
partially motivates the work in [40] mentioned above.



3.3.2 Positive-Real Balanced Truncation

Positive-real balanced truncation (PRBT) is mostly known as a method that preserves passivity in the reduced-order
model. An LTI system is passive if ∫ t

−∞

u(τ)T y(τ)dτ ≥ 0

for all t ∈ R and all u ∈ L2(R,Rm). In practice this means that the system cannot generate energy. It is a classical
result of network theory [5] that a system is passive if and only if its transfer function G(s) is positive real, that is,

1. G is analytic in C+ := {s ∈ C | Re(s) > 0},
2. G(s)+GT (s̄)≥ 0 for all s ∈ C+.

This shows that in order to retain passivity in the reduced-order model, we need its transfer function Ĝ to be positive
real. This can be achieved by truncating a positive real balanced realization of the system. Such a realization is
obtained if the two positive-real Gramians PPR,QPR, defined as the minimal positive (semi-)definite solutions of
the AREs

0 = (A−BR−1C)P+P(A−BR−1C)T +PCT R−1CP+BR−1BT ,
0 = (A−BR−1C)T Q+Q(A−BR−1C)+QBR−1BT Q+CT R−1C,

(24)

where R := D + DT , are diagonal and equal. A PRBT reduced-order model is then computed analogously to
classical BT, just the Gramians (or their factors) are replaced by PPR,QPR (or their factors) from (24). It can then
be shown [78] that the resulting reduced-order model is stable and passive.

Thus, the core computation of PRBT is the solution of the two coupled AREs in (24) similarly to LQGBT. A slight
difference arises from the opposite signs of the quadratic terms in (22) and (24) which makes the solution of (24)
with the method described in Section 4 slightly more expensive. Still, we will see that we are able to compute
(approximate) low-rank factors of PPR,QPR without ever forming them explicitly.

The diagonal entries σPR
1 ≥ σPR

2 ≥ . . . ≥ σPR
n ≥ 0 of the balanced positive real Gramians are called the positive

real Hankel singular values and can be used to derive error bounds for the approximation error. Using the error
bound (where ‖ .‖ denotes the spectral norm for matrices)

‖G−1
D − Ĝ−1

D ‖∞ ≤ 2‖R‖2
n

∑
k=r+1

σ
PR
k (25)

for GD(s) := G(s)+DT , ĜD(s) := Ĝ(s)+DT given in [52], the following error bound is obtained in [21]:

‖G−Gr‖∞ ≤ 2‖R‖2‖ĜD‖∞‖GD‖∞

n

∑
k=r+1

σ
PR
k . (26)

Note that in [52], PRBT is also slightly modified so that an error bound without the ‖ĜD‖∞‖GD‖∞ term on the
right-hand side can be derived. The resulting method is not applicable to all positive real systems, though, for
details see [6, 52].

The error bound (26), though sometimes quite pessimistic, distinguishes PRBT from all passivity-preserving model
reduction methods based on Padé and Padé- type approximation like PRIMA or SyPVL (see [44] and the references
therein). It also has the advantage to be applicable to general passive systems while the aforementioned methods
require additional structure arising in RLC circuits. On the other hand, PRBT is only applicable if D + DT is
positive definite. This condition can be relaxed by considering the Lur’e (positive real) equations [85], but so far
no numerical method for large-scale problems is known for this. On the other hand, computational experience
shows that for systems with D = 0, PRBT usually yields satisfactory results if applied to a regularized system with
D = εI, where the regularization term is then again set to zero in the reduced-order model.

Thus, PRBT is a useful method for simulation of passive LTI systems and therefore particularly interesting in VLSI
design, circuit simulation, and other areas of microelectronics and microwave theory.

PRBT is also interesting for the inverse problems described in Section 2.3 due to the error bound (25) if ‖D‖ is
small.

3.3.3 Balanced Stochastic Truncation

Often it is desirable that the reduced-order system has uniform approximation properties over the whole frequency
range 0≤ω ≤∞ or gives a particularly good approximation at prescribed frequencies. For example, this is the case
if the LTI system describes a high-order controller that should perform well at practically relevant frequencies. This
requirement can be satisfied by relative error methods. They attempt to minimize the relative error ‖∆̂‖∞, defined
implicitly by G− Ĝ = G∆̂. Among these, balanced stochastic truncation (BST) [42, 50, 99] is particularly popular.



BST is a model reduction method based on truncating a balanced stochastic realization of (13). Such a realization
can be achieved if we assume that 0 < p≤m and rank(D) = p which implies that G(s) must not be strictly proper.
For strictly proper systems, the method can be applied when introducing an ε-regularization by adding an artificial
matrix D =

[
εIp 0

]
[46]. We also need to assume that G(s) has no zeros on the imaginary axis.

A balanced stochastic realization is obtained as follows. Define the power spectrum Φ(s) = G(s)GT (−s) of G(s),
and let W be a square minimum phase right spectral factor of Φ, satisfying Φ(s) = W T (−s)W (s). As D has full
row rank, DDT is positive definite and a minimal state-space realization (AW ,BW ,CW ,DW ) of W is given by (see
[2, 3])

AW = A, BW = BDT +PBSTCT , CW = (DDT )−
1
2 (C−BT

W QBST), DW = (DDT )
1
2 .

Here, PBST is the controllability Gramian of G(s) given by the solution of the first Lyapunov equation in (20), while
QBST is the observability Gramian of W (s) obtained as the stabilizing solution of the ARE

(A−BW (DDT )−1C)T Q+Q(A−BW (DDT )−1C)+QBW (DDT )−1BT
W Q+CT (DDT )−1C = 0. (27)

In the balancing and truncation procedures described above, we now use P = PBST, Q = QBST. Again, for practical
purposes, in particular large-scale settings, we compute (approximate) low-rank factors of PBST,QBST directly and
use them in (17) as well as the subsequent computations instead of S,R.

If (13) is stable and minimal, then the reduced-order model computed by BST is stable and has the following
properties [51, 79]:

Proposition 1 If G(s) is square, minimal and stable, Ĝ(s) computed by BST satisfies the relative error bound

σ
BST
k+1 ≤ ‖∆̂‖∞ = ‖G−1(G− Ĝ)‖∞ ≤

n

∏
j=r+1

1+σBST
j

1−σBST
j
−1, (28)

where the σBST
j denote the square roots of the eigenvalues of PBSTQBST.

This error bound can be extended to nonsquare systems using certain modifications [79, 99]. It should be noted that
the stochastic Hankel singular values σBST

j satisfy |σBST
j | ≤ 1. Moreover, the number of σBST

j ’s with |σBST
j | = 1

equals the number of zeros of G(s) in C+. (Hence, r needs to be at least as large as this number!) Thus, for
minimum-phase systems, |σBST

j | < 1 for all j = 1, . . . ,n. Due to its nature as relative error bound, (28) implies
that as desired, BST reduced-order models tend to have an evenly distributed approximation error in contrast to
BT where the approximation at high frequencies is often significantly better than for low frequencies. Another
advantage over BT is that there also exists a bound for the phase error [103].

The uniform approximation properties make BST a preferable MOR method for simulation if good approximation
qualities over the whole frequency range or long time intervals are desired. As is pointed out in the literature,
relative-error methods are also useful for controller reduction, see, e.g., [79]. Also, BST possesses a certain robust
stability property: certain controllers for the BST reduced-order plant model can be proven to stabilize the full-
order plant [86].

Thus, the method is interesting in two out of the three main application areas of MOR discussed in Section 2. But it
turns out that BST also possesses interesting properties regarding the third area, namely inverse problems: starting
out from the definition of the relative error,

∆̂(s) = G−1(s)(G(s)− Ĝ(s)),

simple algebra (assuming Ĝ−1 exists) leads to

G−1(s)− Ĝ−1(s) = ∆̂(s)Ĝ−1(s).

This yields an H∞ error bound if Ĝ−1 is stable. The latter property can be guaranteed for minimum-phase systems,
i.e., systems that have no zeros in C+ due to the following property of BST [50, 79]:

Proposition 2 Zeros of G(s) are preserved in Ĝ(s), i.e., if G(ŝ) is rank-deficient, so is Ĝ(ŝ). Moreover, if G(s) is
minimum-phase, then Ĝ(s) is minimum-phase, too.

As the zeros of a transfer function become the poles of its inverse and due to minimality, we have no pole-zero
cancellations, Ĝ−1 computed using the BST reduced-order model is stable if G is minimum-phase. Thus, we have
the following result:

Theorem 3.1 If G(s) is square, minimal, stable, minimum-phase, and nonsingular on the imaginary axis, then for
Ĝ(s) computed by BST, Ĝ−1 exists and is stable. Moreover, we have the following error bound:

‖G−1− Ĝ−1‖∞ ≤

(
n

∏
j=r+1

1+σBST
j

1−σBST
j
−1

)
‖Ĝ−1‖∞. (29)



Note that the evaluation of ‖Ĝ−1‖∞ is fairly cheap for a reduced-order model, so that (29) is a useful error bound
that can be used in practical computations employing system inversion.

There is another beneficial property of minimum-phase systems: the solution of the ARE (27) can be avoided as it
is shown in [79] that with RBST solving the Lyapunov equation

(A−BD−1C)T R+R(A−BD−1C)+CT (DDT )−1C = 0,

the BST reduced-order model is obtained by balancing PBST versus RBST instead of QBST. The stochastic Hankel
singular values are then

σ
BST
j =

α j√
1+α2

j

,

where the α j’s are the square roots of the eigenvalues of PBSTRBST. This makes the computation of the BST
reduced-order model essentially as efficient as computing the BT reduced-order model.

4 Numerical Algorithms for Large-Scale Matrix Equations
We will focus on methods for solving the Lyapunov equations (20) and AREs (22), (24), (27) that compute approx-
imate low-rank factors Ŝ, R̂ of the solutions directly. Furthermore, we will only treat one type of methods which is
based on the ADI iteration [100] for Lyapunov equations and the Newton-Kleinman iteration [60] for AREs. The
methods are derived and discussed in detail in [19, 20, 25, 69, 81]. There are several new ideas [26, 58, 88] that can
improve the performance of the methods, but due to space limitations we skip a discussion of all these approaches.

4.1 Low-Rank ADI for Lyapunov Equations

In this section we consider the Lyapunov equation

FX +XFT +WW T = 0, A ∈ Rn×n, W ∈ Rn×w, (30)

where A is stable. The latter assumption is equivalent to (30) having a unique solution [63]. Let X ∈ Rn×n be this
unique solution. When applied to (20), F ∈ {A,AT} and W ∈ {B,CT}.

The ADI iteration for solving Lyapunov equations (30) can be written as follows [100]:

(F + µ jI)X( j−1)/2 = −W −X j−1(FT −µ jI),

X j(FT + µ jI) = −W − (F−µ jI)X( j−1)/2.

If the shift parameters µ j are chosen appropriately, then lim j→∞ X j = X with X0 = 0. Note that each iteration step
requires the solution of a system of linear equations with a shifted version of F as coefficient matrix. Thus, this
can be implemented efficiently if F is sparse. Still, in the formulation above, the full solution X is computed after
convergence and in each iteration, the number of right-hand sides in the systems of linear equations is n. Thus, even
if F is sparse, the ADI iteration would be computationally too expensive if applied in this form. In the following,
we will therefore describe how the ADI iteration can be modified to yield an (approximate) low-rank solution factor
directly. First of all, this is desired for the balancing-related MOR methods as discussed in Section 3. Second, it
will turn out that the number of right-hand sides in the systems of linear equations comes down to m, p, or m+ p,
depending on the MOR method chosen.

Starting the ADI iteration with X0 = 0 and observing that for stable F , X is positive semidefinite, we can assume
that X j = YjY T

j for some Yj ∈ Rn×r j . Inserting this into the above iteration, re-arranging terms and combining two
iteration steps, we obtain the following factored ADI iteration:

V1←
√
−2Re(µ1)(FT + µ1I)−1W, Y1←V1

FOR j = 2,3, . . .

Vj←
√

Re(µ j)√
Re(µ j−1)

(
Vj−1− (µ j + µ j−1)(FT + µ jI)−1Vj−1

)
,

Yj←
[

Yj−1 Vj
]
.

END FOR

It should be noted that all Vj’s have the same number of columns as W ∈ Rn×w, i.e., at each iteration j, we have
to solve w linear systems of equations with the same coefficient matrix FT + µ jI. Hence, if convergence with
respect to a suitable stopping criterion is achieved after jmax steps, Yjmax =

[
V1 . . . Vjmax

]
∈ Rn× jmaxw. For

large n and small w we can therefore expect that r j := jmaxw� n. In that case, we have computed a low-rank
approximation Yjmax to a factor Y of the solution, i.e., X = YY T ≈YjmaxY

T
jmax

. In case w · j becomes too large during
the iteration, we apply a column compression technique to Yj based on a rank-revealing QR factorization (RRQR)
[47] as suggested first in [31] for a sign function-based Lyapunov solver. Usually, the number of columns of Yjmax



is then reduced significantly without adding a significant error. A different column compression technique based
on a computationally more involved SVD is suggested in [54].

If FT +µ jIn is a banded matrix or can be re-ordered to become banded, then a sparse direct solver can be employed.
If workspace permits, it is then desirable to compute a factorization of FT + µ jIn for each different shift parameter
beforehand (usually, very few parameters are used). These factorizations can then be used in each iteration step of
the ADI iteration. In particular, if F is symmetric positive definite as will be the case in many applications from
PDE constraint optimal control problems, and can be re-ordered to a (narrow) band matrix, then each factorization
is O(n) and the total cost O(kmax max( jmax)n) scales with n as desired. The same is also true for other than band
patterns such as arrowhead matrices. If iterative solvers are employed for the linear systems, it should be noted that
due to shift-invariance properties, only one Krylov space needs to be computed (see [69] for details) and hence we
obtain again an efficient implementation of the factored ADI iteration.

For an implementation of the factored ADI method, we need a strategy to select the shift parameters. We will not
treat this issue here in depth; see [29, 101, 102] for a detailed discussion. We only note that usually, a finite number
of shifts is computed in advance and applied cyclically if the ADI method needs more iterations than the number
of available shifts. For complex shifts, a real version of the factored ADI iteration is derived in [25]. Another
approach in this case is to use only the real parts of the shifts obtained by the heuristic shift selection strategy
proposed in [80], see [29] for further discussion of this issue. The convergence of the method, in particular in the
case of badly chosen shifts, can significantly be improved when combined with the Galerkin projection approach
suggested in [57]; see [26] for details.

One important issue in the implementation of the factored ADI iteration arises in the application to problems
resulting from an LTI system (1) with E 6= In. Typically, this situation is encountered when (1) is obtained from
a spatial finite element discretization of an instationary PDE. If we then re-write the system as in (13), we obtain
F = E−1A and W = E−1B. Considering (30) in this situation, we need to avoid forming F explicitly as A will
usually be a dense matrix even if A,E are sparse. There are several approaches that can be used to treat this
problem. For instance, if we want to solve a linear system of the form (F + pI)v = b during the ADI iteration, the
coefficient matrix has the form E−1A+ pIn = E−1(A+ pE). Thus, at the additional cost of a sparse matrix-vector
multiply, we get the solution v from the linear system of equations (A + pE)v = Eb [20]. Further details of the
corresponding implementation of the factored ADI iteration can be found in [37].

Note that with the described approach for solving Lyapunov equations, we can implement an efficient version of
BT using ŜBT = Y T

jmax
obtained from applying the factored ADI iteration to F = A, W = B, R̂BT = Y T

jmax
obtained

with F = AT , W = CT , and the small-size SVD of ŜBTR̂T
BT as described in Section 3.1. Some advantage can be

taken from the fact that all the coefficient matrices in both iterations (for ŜBT, R̂BT) only differ by the choice of
shifts and are transposes of each other.

The factored ADI iteration is also used for solving the Lyapunov equation(s) encountered in BST and during the
iteration steps when solving the AREs needed for LQGBT, PRBT, BST with Newton’s method as described in the
following subsection.

4.2 Low-Rank Newton-ADI for Algebraic Riccati Equations

In this section we consider the ARE

0 = R(Z) := CTC +AT Z +ZA−ZBBT Z, (31)

where A,B,C can denote A,B,C as in (13), but may also represent the coefficient matrices in the AREs (22),
(24), or (27). In all situations encountered here, we are interested in computing the stabilizing solution Z∗ of (31)
i.e., all eigenvalues of A−BBT Z∗ are in the open left half plane. Under the assumptions required for any of the
balancing-related MOR methods considered here, Z∗ is positive semidefinite.

The ARE (31) is a nonlinear system of equations. Hence, it is quite natural to apply Newton’s method to find its
solutions. This approach has been investigated, e.g., in [60, 72, 62, 87]. With the Frechét derivative of R(Z) at Z,

R
′
Z : N→ (A−BBT Z)T N +N(A−BBT Z)

and the Newton-Kantorovich method for operator-valued functions, Zk+1 = Zk−
(
R
′
Zk

)−1
R(Zk), k = 0,1,2, . . .,

we obtain Newton’s method for AREs for a given starting matrix Z0:

FOR k = 0, 1, 2, . . .
1. Ak← A−BBT Zk.

2. Solve the Lyapunov equation AT
k Nk +NkAk =−R(Zk).

3. Zk+1← Zk +Nk.
END FOR k



Assume that A0 is stable, i.e., a stabilizing Z0 is given. Then all Ak are stable and limk→∞ Zk = Z∗ quadratically.

In order to make the Newton iteration work for large-scale problems, we need a Lyapunov equation solver which
employs the structure of Ak as “sparse + low-rank perturbation” by avoiding to form Ak explicitly and which
computes a low-rank approximation to the solution of the Lyapunov equation. A method that can be employed
here is derived in detail in [80, 25] and will be described in short in the following.

As suggested originally in [60], we can re-write Newton’s method for AREs to the Newton-Kleinman form such
that the next iterate is computed directly from the Lyapunov equation in Step 2,

AT
k Zk+1 +Zk+1Ak =−CTC−ZkBBT Zk =:−WkW T

k . (32)

If we assume that Zk = YkY T
k for rank(Yk)� n and observe that rank(Wk) ≤ m + p� n, we see that all we need

is a numerical method to solve Lyapunov equations having a low-rank right hand side which returns a low-rank
approximation to the (Cholesky) factor of its solution. As Ak is stable for all k we can apply the factored ADI
iteration described in Section 4.1 to (32). Note that then, W =

[
CT Yk(Y T

k B)
]

and hence, w = m + p, so that
usually, w� n. If the factored ADI iteration is applied to F = AT

k from (32), we have to deal with the situation that
Ak is a shifted sparse matrix plus a low-rank perturbation. If we can solve for the shifted linear system efficiently,
the low-rank perturbation can be dealt with using the Sherman-Morrison-Woodbury formula [47] in the following
way: let k be the index of the Newton iterates and let j be the index of the ADI iteration used to solve the kth
Lyapunov equation, respectively, and set Kk := (BTYk)Y T

k , then(
FT + µ

(k)
j In

)−1
=
(

A+ µ
(k)
j In−BKk

)−1
=
(
In +Lk(Im−KkLk)−1Kk

)
(A+ µ

(k)
j In)−1,

where Lk := (A + µ
(k)
j In)−1B. Hence, all linear systems of equations to be solved in one iteration step have the

same coefficient matrix A+ µ
(k)
j In.

The factored Newton-ADI method can be applied to the LQG AREs (22) directly. For the AREs (24) and (27)
encountered in PRBT and BST, we need a slight modification due to the fact that the quadratic term there is
positive semidefinite rather than negative definite as in (31). As a consequence, the right-hand side in (32) will in
general not be semidefinite and can thus not be written as−WkW T

k . For instance, consider the second ARE in (24).
If we denote the Newton iterates in this case by Q j, the right-hand side in the Lyapunov equation in the jth Newton
step becomes

−CT R−1C +Q jBR−1BT Q j =:−W̃jW̃ T
j +ŴjŴ T

j .

(Note that R is positive definite and thus a Cholesky factorization of R−1 can be used to obtain this representation
of the right-hand side.) As the Lyapunov equation

AT
j Q j+1 +Q j+1A j =−W̃ T

j W̃j +Ŵ T
j Ŵj

is a nonsingular linear system of equations, its unique symmetric solution can be written as the difference of two
positive semidefinite matrices:

AT
j (Q̃ j+1− Q̂ j+1)+(Q̃ j+1− Q̂ j+1)A j =−W̃jW̃ T

j −
(
−ŴjŴ T

j
)
,

where Q̃ j+1, Q̂ j+1 are the unique positive semidefinite solutions of the Lyapunov equations

AT
j Q̃ j+1 + Q̃ j+1A j =−W̃jW̃ T

j , AT
j Q̂ j+1 + Q̂ j+1A j =−ŴjŴ T

j .

Hence, we can apply the factored ADI iteration to both Lyapunov equations in parallel, exploiting that the linear
systems of equations to be solved in each ADI iteration step share the same coefficient matrix. The additional
expense comes from the fact that now, we need to save two sequences of low-rank factors Ỹj, Ŷj. But if the same
(sparse) factorization is used for both linear systems of equations in each ADI iteration, the computational cost is
the same as for the LQG case as the number of right-hand sides is the same.

At convergence of the Newton iteration, we obtain

QPR := Q̃kmax − Q̂kmax = Ỹkmax, jmax,Ỹ T
kmax, jmax

− Ŷkmax, jmaxŶ T
kmax, jmax

,

where Ỹkmax, jmax ,Ŷkmax, jmax are the two low-rank factors obtained by the two parallel factored ( jmax) ADI iterations
in the last (kmax) Newton step. As we know that QPR is positive semidefinite, we can obtain a factorization
QPR = YkmaxY

T
kmax

similar as in [95, 99] as the full-rank factor of the solution of the Lyapunov equation

AT (YY T )+(YY T )A+W TW = 0



where

W = R−
1
2 C−R−

1
2 B
[
Ỹkmax, jmax ,Ŷkmax, jmax

][ Ỹ T
kmax, jmax

−Ŷ T
kmax, jmax

]
.

This Lyapunov equation can again be solved using the factored ADI iteration.

Similar considerations lead to factored Newton ADI iterations for solving the first ARE in (24) and the BST ARE
(27).

In summary, we have described iterative methods to solve the large-scale Lyapunov and Riccati equations arising
in balancing-related MOR methods with a cost mainly proportional to solving linear systems of equations with
coefficient matrix A. Although the details of these algorithms are quite involved and their execution is certainly
more expensive than just forming Krylov subspaces as in Padé(-type) MOR methods, they can be applied to
systems of similar size as all other MOR methods. We provide some numerical evidence for this claim in the
following section, see also [20, 22, 37] for further experiments.

5 Numerical Results
The results reported in this section are obtained using either Lyapack3 [83] or the Sparse model Reduction sub-
routine library SpaRed4 [10, 11]. Lyapack is a collection of MATLAB functions for solving Lyapunov equations
and AREs using variants of the factored ADI and Newton-ADI iterations as described in Section 4. LQGBT,
PRBT and BST implementations can be derived based on the available subroutines while BT is even contained in
the package. Note that the implementations in Lyapack are not strictly following the descriptions in Section 4 as
we have described some variations of the ADI methods that were not available when Lyapack was implemented.
SpaRed uses parallel algorithms based on message-passing that can run on any computing platform that provides
PBLAS and ScaLAPACK [39]. Sparse linear systems of equations in the ADI iterations can be solved using band
matrix solvers provided by ScaLAPACK or sparse direct solvers like SuperLU [41] or MUMPS [1].

Further experiments based on MESS5 (Matrix Equations Sparse Solver package) can be found in [37] and will
be contained in upcoming publications. MESS can be considered as a successor to Lyapack. Besides many other
new features of MESS like simplified argument lists that make the provided MATLAB functions easier to use than
the ones in Lyapack, it also implements the ADI iteration for generalized state-space systems (1) with E 6= In as
described in Section 4, employs column compression based on the RRQR as in [31], and has improved stopping
and ADI parameter selection criteria. Altogether, we expect all balancing-related MOR methods to benefit from
the improved efficiency of the matrix equation solvers in MESS.

We have discussed BT for large and sparse problems in several publications and provided numerical evidence of
the efficiency of these BT implementations there. We will briefly summarize these results here, but will not provide
details and in the following, we will show a few examples that have not been reported elsewhere. ADI-based BT
using Lyapack in MATLAB for sparse problems is compared to modal truncation and Padé-via-Lanczos methods in
[22] where we use two examples from the Oberwolfach benchmark collection6 [61]. The numerical results show
superiority of BT for a microthruster model using different discretizations (orders of the resulting LTI systems:
n = 4,257 and n = 11,445, leading to reduced-order models of order r = 21 and r = 28, both with absolute H∞

error of the transfer function approximation less than 10−3). The same conclusions can be drawn for an optimal
cooling problem from [36]. In [22] we report on experiments with BT applied to a finite element discretized model,
leading to an LTI system of order n = 20,209, m = 7, p = 6, in the form (13) with E being equal to the mass matrix
of the finite element basis. The reduced-order model of order r = 8 used there is computed by prescribing a
tolerance of 10−4 in (21). A finer discretization of the same optimal cooling problem leads to an LTI system with
n = 79,841. Results computed by the BT implementation in SpaRed applied to this model are discussed in [12],
other results obtained with SpaRed can also be found in [10, 11].

In the following, we will report first on the efficiency of the matrix equation solvers which form the bottleneck
in all implementations of balancing-related MOR methods. We will also discuss the usage of BT reduced-order
models in control design, as well as results obtained with LQGBT. Some experiments with PRBT can be found in
[24, 34]. Note that in the figures, often Gr is used instead of Ĝ for denoting the TFM of the reduced-order system.

Example 1 In our first example, we show the efficiency of the matrix equation solvers discussed in Section 4. For
this purpose, we have discretized the linear 2D heat equation with homogeneous Dirichlet boundary conditions and
unit heat conductivity on [0,1]× [0,1]. The input function u(t) corresponds to a constant heat source in the domain
Ωu = [0.2,0.6]× [0.2,0.25] and the output is defined by the averaged temperature in Ωy,1 = [0.2,0.25]× [0.2,0.25].
We employ a finite differences discretization on a uniform 150× 150 grid as provided in the Lyapack testing

3Available from http://www.slicot.org.
4Available from http://www.pscom.uji.es/modred/SpaRedW3/SpaRed.html.
5Available from http://www.tu-chemnitz.de/mathematik/industrie_technik/software/mess.php.
6Available from http://www.imtek.de/simulation/benchmark.



environment. The resulting LTI system is of the form (13) with D = 0, n = 22.500 and m = p = 1. For any ADI
iteration, we select 10 shifts using the heuristic provided in Lyapack.

Convergence curves for the factored Newton-ADI iteration applied to the second ARE from (22) are shown in
Figure 1 together with a histogram displaying the number of required ADI iterations for each Lyapunov equation
solved during the Newton steps. Convergence of the Newton-ADI iteration is measured by relative changes in the
feedback gain Fk := (BTYk)Y T

k , where Yk is the low-rank factor of the current Newton approximate to the ARE
solution.
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Figure 1: Convergence history of factored Newton-ADI (left) and number of factored ADI iterations needed to solve
the Lyapunov equations in the Newton steps (right). The Newton-ADI iteration is applied to the second ARE in (22) cor-
responding to a control problem of order n = 22,500 for a semi-discretized 2D heat equation as described in Example 1.

The discretization of the heat equation with Dirichlet boundary conditions leads to a symmetric negative definite
matrix A. In order to show that we can also achieve useful results for nonsymmetric A, we have applied the
factored Newton-ADI iteration again to the second ARE from (22) for an LTI system corresponding to the finite
differences discretization of a convection-diffusion equation. That is, we have added convection in x2-direction
to the heat equation used above, i.e., the discretized spatial differential operator becomes ∆ + ∂

∂x2
. The input is

chosen as above, as a second output we add the averaged temperature in Ωy,2 = [0.8,0.85]× [0.2,0.85]. In Table 1,
we show the number of Newton iterations needed for varying meshsizes (uniform grids with 2k× 2k grid points,
k = 3, . . . ,7). The number of unknowns in the full ARE solution matrix QLQG (exploiting symmetry) is shown in
the second column of the table. We terminate the Newton iteration if the residual of the ARE has been reduced to
≈ 1/n relative to the initial residual (obtained for Q0 = 0), where n is the number of inner grid points. The obtained
normalized residuals are shown together with the number of Newton steps (and maximum number of ADI steps)
needed to achieve this in the third and fourth columns of Table 1, while the last column shows the required CPU
time for solving the ARE using MATLAB R14SP2 on a Windows XP notebook with Intel Pentium M CPU at 1.1
GHz and 1.25 GB RAM. Obviously, the two largest of the problems considered in the table were not solvable in
this computing environment if Q j were to be formed explicitly. On the other hand, using the factored Newton-ADI
iteration makes the solution of such a large task easily accessible using standard hard- and software.

grid no. of unknowns
‖R(Q)‖F

‖Q‖F
it. (ADI it.) CPU time (sec.)

8×8 2,080 4.7e-7 2 (8) 0.47
16×16 32,896 1.6e-6 2 (10) 0.49
32×32 524,800 1.8e-5 2 (11) 0.91
64×64 8,390,656 1.8e-5 3 (14) 7.98

128×128 134,225,920 3.7e-6 3 (19) 79.46

Table 1: Performance results of the factored Newton-ADI iteration applied to the second ARE in (22) corresponding to
a control problem for a semi-discretized 2D convection-diffusion equation with varying meshsizes. The largest problem
solved is of order n = 16,384.

Example 2 We now test BT for use in control. For this purpose, we employ the same discretized control problem
for a 2D heat equation as described in the previous example. Applying the factored ADI iteration to the Lya-
punov equations from (20), we obtain low-rank factors ŜBT, R̂BT with 31 and 26 rows, respectively. The computed
reduced-order model has order r = 6 with σBT

7 = 5.8 ·10−4, and BT error bound δ = 1.7 ·10−3 (right-hand side of
(21)). The frequency responses of the transfer functions G and Ĝ as well as the pointwise absolute approximation
error (Bode magnitude plot) are displayed in Figure 2

In order to show the performance of the reduced-order model for control, we solve the linear-quadratic regulator
(LQR) problem (see, e.g., [4]) for the original and reduced-order problems. The solution using the full-order
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Figure 2: Transfer functions of original and reduced-order models (left) as well as absolute error |G(ıω)−Ĝ(ıω)| (right)
for the discretized 2D heat problem from Example 2. Here n = 22,500, m = p = 1.

system is the state feedback control law

u(t) = Fx(t), F =−BT QLQG (33)

(compare Section 2.2 for definition of controllers), while the reduced-order model yields the following control law:

û(t) = F̂ x̂(t), F̂ =−B̂T Q̂LQG. (34)

Here, QLQG, Q̂LQG are the stabilizing solutions to the second ARE in (22) for the original and reduced-order
systems, respectively. Note that the full-order LQR problem can be solved with the help of the factored Newton-
ADI iteration as well; see, e.g., [20] for details.

We observe in Figure 3 that there is no visible difference between the original control and the one computed based
on the BT reduced-order model and between the resulting outputs. (For the numerical time domain simulation we
use the backwards Euler method.)
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Figure 3: Controls (33), (34) (left) and outputs obtained by these controls (right) when applied to the discretized 2D
heat problem from Example 2 and the corresponding BT reduced-order model.

Thus, the control computed from the reduced-order model can be applied without sacrificing the closed-loop
performance of the system. The error in the computed controls and outputs is illustrated in Figure 4. Note that the
larger errors towards the end of the interval are due to the fact that there, the states and thus outputs and controls
are already very close to zero and the backwards Euler discretization on a uniform time grid does not lead to
sufficiently small absolute errors to compensate for this.

Example 3 Next, we compare BT and LQGBT for Example HF2D3 from the COnstraint Matrix-optimization
Problem library COMPleib7 [66]. The LTI model of the form (13) with order n = 4,496 is obtained from a finite
differences discretization of a boundary control problem for 2D heat flow in copper on a rectangular domain. The
control acts on two sides via Robins boundary conditions and is constant on either side so that m = 2. The heat is
measured by sensors at 4 locations, hence p = 4.

7Available from www.compleib.de.
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Figure 4: Error in controls (left) and outputs (right) computed by applying the full-order and reduced-order control laws
(33) and (34) to the discretized 2D heat problem from Example 2.

We compute the low-rank approximate solution factors of the Lyapunov equation (20) using the factored ADI
iteration from Section 4.1 and the corresponding low-rank solution factors of the LQG AREs (22) with the fac-
tored Newton-ADI iteration from Section 4.2. The factors ŜBT, R̂BT have 68 and 124 rows, respectively, while
ŜLQG, R̂LQG have 210 rows each. In order to compare BT and LQGBT, we compute reduced-order models with
r = 10 using both approaches.

The frequency responses of the original and reduced-order transfer functions as well as the pointwise absolute
approximation errors (Bode magnitude plots) for both reduced-order models are displayed in Figure 5, where the
computed error bounds (21) and (23) are shown as straight lines. The error curves are slightly different, but both
are below the error bound as expected. This shows that for the example considered, the additional functionality
of LQGBT is not traded for worse approximation quality. This observation is valid for a series of other examples
tested.

Figure 5: Transfer functions of original and reduced-order models (left) as well as absolute errors (right) for BT and
LQGBT applied to the discretized boundary control problem described in Example 3.

6 Conclusions
We have presented model reduction methods based on balancing that can be used in simulation and control of
large-scale dynamical systems, as well as for certain inverse problems. The advantage of these methods over
other model reduction approaches is that they preserve important system properties like stability, passivity, and
minimum phase (depending on the chosen method). Moreover, there are computable error bounds that allow an
adaptive choice of the order of the reduced model with respect to a given accuracy tolerance. The methods rely
on the availability of efficient methods to solve large-scale matrix equations. Such methods have been developed
in the last decade. We have described approaches based on the factored ADI iteration for Lyapunov equations and
on the factored Newton-ADI iteration for algebraic Riccati equations. These methods are available in software
packages like Lyapack [83] and its successor MESS (Matrix Equations Sparse Solver). Numerical experiments
demonstrate the efficiency of the resulting MOR methods. More numerical tests based on MESS, in particular for
BST and its application to inverse problems, as well as for other balancing-related BT methods are planned for the
near future. Recently, also other methods for large-scale Lyapunov equations have been suggested [26, 58, 88] that
may further improve the efficiency of implementations of balancing-related MOR methods. These new methods
need further study and will be the focus of future research.



Acknowledgments The work reported in this paper was supported by the German Federal Ministry of Education
and Research (BMBF), grant no. 03BEPAE1, the EU project O-MOORE-NICE! funded with the Marie Curie
Host Fellowships for the Transfer of Knowledge (ToK) Industry-Academia Partnership Scheme, and Deutsche
Forschungsgemeinschaft, grants BE 2174/7-1, BE 2174/9-1. Responsibility for the contents of this publication
rests with the author.

7 References
[1] P.R. Amestoy, I.S. Duff, J. Koster, and J.-Y. L’Excellent. MUMPS: a general purpose distributed memory

sparse solver. In Proc. PARA2000, 5th International Workshop on Applied Parallel Computing, pages
122–131, 2000.

[2] B.D.O. ANDERSON. An algebraic solution to the spectral factorization problem. IEEE TRANS. AU-
TOMAT. CONTROL, AC-12:410–414, 1967.

[3] B.D.O. ANDERSON. A system theory criterion for positive real matrices. SIAM J. CONT., 5:171–182,
1967.

[4] B.D.O. Anderson and J.B. Moore. Optimal Control – Linear Quadratic Methods. PRENTICE-HALL,
Englewood Cliffs, NJ, 1990.

[5] B.D.O. Anderson and B. Vongpanitlerd. Network Analysis and Synthesis. A Modern Systems Approach.
PRENTICE-HALL, Englewood Cliffs, NJ, 1972.

[6] A.C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM PUBLICATIONS, Philadelphia,
PA, 2005.

[7] A.C. Antoulas and A. Astolfi. H∞-norm approximation. In V.D. Blondel and A. Megretski, editors, 2002
MTNS Problem Book, Open Problems on the Mathematical Theory of Networks and Systems, pages 73–76.
2002. Available online from http://www.nd.edu/˜mtns/OPMTNS.pdf.

[8] A.C. Antoulas, D.C. Sorensen, and S. Gugercin. A survey of model reduction methods for large-scale
systems. CONTEMP. MATH., 280:193–219, 2001.

[9] A.C. Antoulas, D.C. Sorensen, and Y. Zhou. On the decay rate of Hankel singular values and related issues.
SYS. CONTROL LETT., 46(5):323–342, 2002.

[10] R.M. Badía, P. Benner, R. Mayo, and E.S. Quintana-Ortí. Parallel algorithms for balanced truncation model
reduction of sparse systems. In J.J. Dongarra, K. Madsen, and J. Wasniewski, editors, Applied Parallel
Computing: 7th International Conference, PARA 2004, Lyngby, Denmark, June 20-23, 2004, number 3732
in Lecture Notes in Computer Science, pages 267–275. Springer-Verlag, Berlin, Heidelberg, New York,
2006.

[11] R.M. Badía, P. Benner, R. Mayo, E.S. Quintana-Ortí, G. Quintana-Ortí, and A. Remón. Balanced trun-
cation model reduction of large and sparse generalized linear systems. Chemnitz Scientific Computing
Preprints 06-04, TU Chemnitz, Fakultät für Mathematik, http://www.tu-chemnitz.de/mathematik/
csc/2006/csc06-04.pdf, November 2006.

[12] R.M. Badía, P. Benner, R. Mayo, E.S. Quintana-Ortí, G. Quintana-Ortí, and J. Saak. Parallel order reduction
via balanced truncation for optimal cooling of steel profiles. In J.C. Cunha and P.D. Medeiros, editors, Euro-
Par 2005 Parallel Processing: 11th Intl. Euro-Par Conf, Lisbon, Portugal, August 30 – September 2, 2005,
number 3648 in Lecture Notes in Computer Science, pages 857–866. Springer-Verlag, Berlin, Heidelberg,
New York, 2005.

[13] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl.
Numer. Math, 43(1–2):9–44, 2002.

[14] S. Barrachina, P. Benner, and E. Quintana-Ortí. Parallel algorithms for balanced truncation of large-scale
unstable systems. In Proc. 44rd IEEE Conf. Decision Contr. and European Contr. Conf. ECC2005, pages
2248–2253. Omnipress, Madison, WI, 2004. CD Rom.

[15] R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm 432. COMM.
ACM, 15:820–826, 1972.

[16] U. Baur and P. Benner. Efficient solution of algebraic Bernoulli equations using H-matrix arithmetic. In
K. Kunisch, G. Of, and O. Steinbach, editors, Numerical Mathematics and Advanced Applications (Proc.
ENUMATH 2007), pages 127–134, Heidelberg, 2008. SPRINGER-VERLAG.

[17] U. Baur and P. Benner. Gramian-based model reduction for data-sparse systems. SIAM J. SCI. COMPUT.,
31(1):776–798, 2008.

[18] U. Baur, P. Benner, and L. Feng. Mathematical aspects of model order reduction: Some new results and
open problems. In preparation.

[19] P. Benner. Efficient algorithms for large-scale quadratic matrix equations. Proc. Appl. Math. Mech.,
1(1):492–495, 2002.

[20] P. Benner. Solving large-scale control problems. IEEE Control Systems Magazine, 14(1):44–59, 2004.
[21] P. Benner. Passivitätserhaltende Modellreduktion mit Balancierungstechniken. In B. Lohmann, editor,

Tagungsband "Workshop am Bostalsee, 28.–30.9.2005", pages 152–168. GMA-Fachausschuss 1.30 "Mod-
ellbildung, Identifikation und Simulation in der Automatisierungstechnik", 2005. (In German).

[22] P. Benner. Numerical linear algebra for model reduction in control and simulation. GAMM Mitt.,



29(2):275–296, 2006.
[23] P. Benner. Advances in balancing-related model reduction for circuit simulation. In Scientific Computing

in Electrical Engineering – SCEE 2008, Mathematics in Industry. SPRINGER-VERLAG, 2009, to appear.
[24] P. Benner and H. Faßbender. Numerische Methoden zur passivitätserhaltenden Modellreduktion. at-Auto-

matisierungstechnik, 54(4):153–160, 2006. (In German).
[25] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large Lyapunov equations, Riccati equations, and

linear-quadratic control problems. NUMER. LIN. ALG. APPL., 15(9):755–777, 2008.
[26] P. Benner, R.-C.. Li, and N. Truhar. On the ADI method for Sylvester equations. Preprint, Fakultät für

Mathematik, TU Chemnitz, D-09107 Chemnitz, Germany, August 2008.
[27] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT - a subroutine library in systems

and control theory. In B.N. Datta, editor, Applied and Computational Control, Signals, and Circuits,
volume 1, chapter 10, pages 499–539. BIRKHÄUSER, Boston, MA, 1999.

[28] P. Benner, V. Mehrmann, and D. Sorensen, editors. Dimension Reduction of Large-Scale Systems, vol-
ume 45 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin/Heidelberg,
Germany, 2005.

[29] P. Benner, H. Mena, and J. Saak. On the parameter selection problem in the Newton-ADI iteration for
large-scale Riccati equations. ELECTR. TRANS. NUM. ANAL., 29:136–149, 2008.

[30] P. Benner and E.S. Quintana-Ortí. Model reduction based on spectral projection methods. Chapter 1 (pages
5–48) of [28].

[31] P. Benner and E.S. Quintana-Ortí. Solving stable generalized Lyapunov equations with the matrix sign
function. NUMER. ALGORITHMS, 20(1):75–100, 1999.

[32] P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. Balanced truncation model reduction of large-scale
dense systems on parallel computers. Math. Comput. Model. Dyn. Syst., 6(4):383–405, 2000.

[33] P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. Parallel algorithms for model reduction of discrete-
time systems. Int. J. Syst. Sci., 34(5):319–333, 2003.

[34] P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. Computing passive reduced-order models for circuit
simulation. In Proc. Intl. Conf. Parallel Comp. in Elec. Engrg. PARELEC 2004, pages 146–151. IEEE
Computer Society, Los Alamitos, CA, 2004.

[35] P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. Parallel model reduction of large-scale linear descrip-
tor systems via Balanced Truncation. In M. Daydé, J.J. Dongarra, V. Hernández, and J.M.L.M. Palma,
editors, High Performance Computing for Computational Science – VECPAR 2004, number 3402 in Lec-
ture Notes in Computer Science, pages 340–353, Berlin/Heidelberg, 2005. SPRINGER-VERLAG.

[36] P. Benner and J. Saak. A semi-discretized heat transfer model for optimal cooling of steel profiles. Chapter
19 (pages 353–356) of [28].

[37] P. Benner and J. Saak. Efficient balancing based MOR for second order systems arising in control of
machine tools. In I. Troch and F. Breitenecker, editors, Proc. MATHMOD 2009, Vienna (Austria), February
11–13, 2009, volume 35 of ARGESIM Reports, 2009.

[38] J.K. Bennighof and R.B. Lehoucq. An automated multilevel substructuring method for eigenspace compu-
tation in linear elastodynamics. SIAM J. SCI. COMPUT., 25(6):2084–2106, 2004.

[39] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users’ Guide. SIAM, Philadel-
phia, PA, 1997.

[40] R.F. Curtain. On model reduction for control design for distributed parameter systems. In R. Smith and
M. Demetriou, editors, Research Directions in Distributer Parameter Systems, pages 95–121, Philadelphia,
PA, 2003. SIAM PUBLICATIONS.

[41] J.W. Demmel, J.R. Gilbert, and X.S. Li. SuperLU Users’ Guide.
[42] U.B. Desai and D. Pal. A transformation approach to stochastic model reduction. IEEE TRANS. AUTOMAT.

CONTROL, AC–29:1097–1100, 1984.
[43] R. Freund. Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simula-

tion. In B.N. Datta, editor, Applied and Computational Control, Signals, and Circuits, volume 1, chapter 9,
pages 435–498. BIRKHÄUSER, Boston, MA, 1999.

[44] R. Freund. Model reduction methods based on Krylov subspaces. Acta Numerica, 12:267–319, 2003.
[45] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L∞ norms.

INTERNAT. J. CONTROL, 39:1115–1193, 1984.
[46] K. Glover. Multiplicative approximation of linear multivariable systems with L∞ error bounds. In Proc.

American Control Conf., pages 1705–1709, 1986.
[47] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, third

edition, 1996.
[48] L. Grasedyck. Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation.

NUMER. LIN. ALG. APPL., 11:371–389, 2004.
[49] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H -matrices. Computing, 70(4):295–

334, 2003.
[50] M. Green. Balanced stochastic realization. LINEAR ALGEBRA APPL., 98:211–247, 1988.



[51] M. Green. A relative error bound for balanced stochastic truncation. IEEE TRANS. AUTOMAT. CONTROL,
AC-33(10):961–965, 1988.

[52] S. Gugercin and A.C. Antoulas. A survey of model reduction by balanced truncation and some new results.
INTERNAT. J. CONTROL, 77(8):748–766, 2004.

[53] S. Gugercin and J.-R. Li. Smith-type methods for balanced truncation of large systems. Chapter 2 (pages
49–82) of [28].

[54] S. Gugercin, D.C. Sorensen, and A.C. Antoulas. A modified low-rank Smith method for large-scale Lya-
punov equations. Numer. Algorithms, 32(1):27–55, 2003.

[55] M. Günther, U. Feldmann, and E.J.W. ter Maten. Modelling and discretization of circuit problems. In
W.H.A. Schilders and E.J.W. ter Maten, editors, Numerical Methods in Electromagnetics, volume 15 of
Handbook of Numerical Analysis, pages 523–659. Elsevier, 2005.

[56] S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J.
NUMER. ANAL., 2:303–323, 1982.

[57] I.M. Jaimoukha and E.M. Kasenally. Krylov subspace methods for solving large Lyapunov equations.
SIAM J. NUMER. ANAL., 31:227–251, 1994.

[58] K. Jbilou. ADI preconditioned Krylov methods for large Lyapunov matrix equations. Preprint, L.M.P.A,
Université du Littoral, F-62228 Calais Cedex, France, November 2008.

[59] E.A. Jonckheere and L.M. Silverman. A new set of invariants for linear systems—application to reduced
order compensator. IEEE TRANS. AUTOMAT. CONTROL, AC-28:953–964, 1983.

[60] D.L. Kleinman. On an iterative technique for Riccati equation computations. IEEE TRANS. AUTOMAT.
CONTROL, AC-13:114–115, 1968.

[61] J.G. Korvink and E.B. Rudnyi. Oberwolfach benchmark collection. Chapter 11 (pages 311–315) of [28].
[62] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University Press, Oxford, 1995.
[63] P. Lancaster and M. Tismenetsky. The Theory of Matrices. ACADEMIC PRESS, Orlando, 2nd edition,

1985.
[64] A.J. Laub. Efficient multivariable frequency response computations. IEEE TRANS. AUTOMAT. CONTROL,

AC-26:407–408, 1981.
[65] A.J. Laub, M.T. Heath, C.C. Paige, and R.C. Ward. Computation of system balancing transformations

and other application of simultaneous diagonalization algorithms. IEEE TRANS. AUTOMAT. CONTROL,
34:115–122, 1987.

[66] F. Leibfritz. COMPleib: COnstraint Matrix-optimization Problem library – a collection of test exam-
ples for nonlinear semidefinite programs, control system design and related problems. http://www.
friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf, 2004.

[67] W.S. Levine, editor. The Control Handbook. CRC Press, 1996.
[68] J.-R. Li and J. White. Reduction of large circuit models via low rank approximate gramians. Int. J. Appl.

Math. Comp. Sci., 11(5):1151–1171, 2001.
[69] J.-R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. MATRIX ANAL. APPL.,

24(1):260–280, 2002.
[70] The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760, USA. The MATLAB Control System Toolbox,

Version 8.2, 2008.
[71] M.Buchholz, T. Lüttich, H. Auracher, and W. Marquardt. Pool boiling at high heat fluxes (part I): Local

temperature & heat flux fluctuations at the heater surface. In D. Gorenflo and A. Luke, editors, Proc. Int.
Refrig. Conf. Comm. B1, Paderborn, Germany, Oct. 3–5, 2001, 2001.

[72] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Num-
ber 163 in Lecture Notes in Control and Information Sciences. SPRINGER-VERLAG, Heidelberg, July
1991.

[73] V. Mehrmann and T. Stykel. Balanced truncation model reduction for large-scale systems in descripter
form. Chapter 3 (pages 83–115) of [28].

[74] G.B. Moler and C.F. Van Loan. 19 dubious ways to compute the exponential of a matrix. SIAM REV.,
29:801–837, 1978.

[75] B.C. Moore. Principal component analysis in linear systems: Controllability, observability, and model
reduction. IEEE TRANS. AUTOMAT. CONTROL, AC-26:17–32, 1981.

[76] K. Morris. Design of finite-dimensional controllers for infinite-dimensional systems by approximation. J.
Math. Syst., Estim., and Control, 4:1–30, 1994.

[77] A.G.O. Mutambara. Design and Analysis of Control Systems. CRC Press, Boca Raton, FL, 1999.
[78] R. Ober. Balanced parametrizations of classes of linear systems. SIAM J. CONT. OPTIM., 29:1251–1287,

1991.
[79] G. Obinata and B.D.O. Anderson. Model Reduction for Control System Design. Communications and

Control Engineering Series. SPRINGER-VERLAG, London, UK, 2001.
[80] T. Penzl. Numerische Lösung großer Lyapunov-Gleichungen. Logos–Verlag, Berlin, Germany, 1998.

Dissertation, Fakultät für Mathematik, TU Chemnitz, 1998.
[81] T. Penzl. A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J. SCI. COMPUT.,

21(4):1401–1418, 2000.



[82] T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. SYS. CON-
TROL LETT., 40:139–144, 2000.

[83] T. Penzl. LYAPACK Users Guide. Technical Report SFB393/00-33, Sonderforschungsbereich 393 Nu-
merische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, FRG, 2000. Avail-
able from http://www.tu-chemnitz.de/sfb393/sfb00pr.html.

[84] T. Penzl. Algorithms for model reduction of large dynamical systems. LINEAR ALGEBRA APPL., 415(2–
3):322–343, 2006. (Reprint of Technical Report SFB393/99-40, TU Chemnitz, 1999.).

[85] T. Reis and T. Stykel. Positive real and bounded real balancing for model reduction of descriptor systems.
Preprint 25-2008, Institute of Mathematics, Technische Universität Berlin, available online at http://
www.math.tu-berlin.de/preprints/abstracts/Report-25-2008.rdf.html, 2008.

[86] M.G. Safonov and R.Y. Chiang. Model reduction for robust control: A Schur relative error method. Int. J.
Adapt. Cont. and Sign. Proc., 2:259–272, 1988.

[87] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied Mathematics.
Marcel Dekker, Inc., New York, NY, 1996.

[88] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. CONT.
OPTIM., 29(3):1268–1288, 2007.

[89] E.D. Sontag. Mathematical Control Theory. SPRINGER-VERLAG, New York, NY, 2nd edition, 1998.
[90] D.C. Sorensen and A. C. Antoulas. Dimension reduction of large-scale systems. Chapter 4 (pages 117–130)

of [28].
[91] T. Stykel. Gramian-based model reduction for descriptor systems. MATH. CONTROL, SIGNALS, SYS.,

16(4):297–319, 2004.
[92] M.S. Tombs and I. Postlethwaite. Truncated balanced realization of a stable non-minimal state-space sys-

tem. INTERNAT. J. CONTROL, 46(4):1319–1330, 1987.
[93] I. Troch, P.C. Müller, and K.-H. Fasol. Modellreduktion für Simulation und Reglerentwurf. Automa-

tisierungstechnik, 40(2/3/4):45–53/93–99/132–141, 1992.
[94] A. Varga. Efficient minimal realization procedure based on balancing. In Prepr. of the IMACS Symp. on

Modelling and Control of Technological Systems, volume 2, pages 42–47, 1991.
[95] A. Varga. On computing high accuracy solutions of a class of Riccati equations. Control–Theory and

Advanced Technology, 10(4):2005–2016, 1995.
[96] A. Varga. Model reduction routines for SLICOT. NICONET Report 1999–8, The Working Group on

Software (WGS), June 1999. Available from www.slicot.org.
[97] A. Varga. Computing generalized inverse systems using matrix pencil methods. Int. J. Appl. Math. Comp.

Sci., 11(5):1055–1068, 2001.
[98] A. Varga. Model reduction software in the SLICOT library. In B.N. Datta, editor, Applied and Computa-

tional Control, Signals, and Circuits, volume 629 of The Kluwer International Series in Engineering and
Computer Science, pages 239–282. Kluwer Academic Publishers, Boston, MA, 2001.

[99] A. Varga and K. H. Fasol. A new square–root balancing–free stochastic truncation model reduction algo-
rithm. In Prepr. 12th IFAC World Congress, volume 7, pages 153–156, Sydney, Australia, 1993.

[100] E.L. Wachspress. Iterative solution of the Lyapunov matrix equation. Appl. Math. Letters, 107:87–90,
1988.

[101] E.L. Wachspress. The ADI model problem, 1995. Available from the author.
[102] E.L. Wachspress. ADI iteration parameters for the Sylvester equation, 2000. Available from the author.
[103] W. Wang and M.G. Safonov. A tighter relative-error bound for balanced stochastic truncation. SYS. CON-

TROL LETT., 14:307–314, 1990.
[104] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. PRENTICE-HALL, Upper Saddle River,

NJ, 1996.
[105] K. Zhou, G. Salomon, and E. Wu. Balanced realization and model reduction for unstable systems. Int. J.

Robust Nonlinear Control, 9(3):183–198, 1999.


