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At present, almost all model order reduction methods assume single-input
single-output (SISO) systems or systems with a small number of inputs and out-
puts. Few methods can deal with systems with a large number of inputs and
outputs. Multi-input multi-output (MIMO) systems appear for example in mod-
eling of integrated circuits. The number of inputs and outputs sometimes is very
large, even close to the number of state variables. In this paper we propose a novel
model reduction technique which can efficiently perform model reduction for linear
systems with a large number of inputs and outputs. Motivated by the superposition
property of linear systems, model order reduction is performed separately with re-
spect to each column of the input matrix. Then, the output response of the original
multi-input system is approximated by the summation of the output responses of
the reduced-order single-input systems corresponding to each column of the input
matrix. The proposed method applies to both multi-input single-output systems
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and multi-input multi-output systems. Theoretical analysis and numerical simu-
lations show the advantages of the proposed method over the conventional model
reduction method. A moment-matching property is proved to be satisfied by the
reduced-order model.

1 Introduction
During the past 20 years, much progress has been made in the area of model order
reduction for large-scale systems. Starting with [4, 5, 7, 8], model reduction for very
large scale systems became feasible; nowadays, also large-scale nonlinear systems
can be treated successfully, see, e.g., [6]. An even more recent development is the
availability of methods for the more complicated parametric systems, e.g., [1]. All
in all, the systems treatable by these methods have one common property, that
is, they are either single-input single-output (SISO) systems or multi-input multi-
output (MIMO) systems with a small number of inputs and outputs. If the numbers
of inputs and outputs are very large, then many model reduction methods become
inefficient.

Conventional moment-matching model reduction methods like PRIMA [8]
compute a projection matrix whose columns form an orthonormal basis of a suitable
Krylov subspace related to the moments of the system. The moments of the system
are the coefficients in a power (Laurent) series expansion of the transfer function
around some suitably chosen expansion points. Each of these coefficients in the se-
ries expansion is given as a matrix product with left-most factor equal to the input
matrix and right-most factor equal to the output matrix and thus is a matrix of size
l × r, where l is the number of the inputs, r is the number of the outputs. If the
number of independent columns in the input matrix is very large, then the number
of columns in the projection matrix V increases very quickly, which may result in a
model being not “reduced”, the order of the model could be as large as that of the
original system.

The recently proposed methods SVDMOR [2] and RecMOR [3] are designed
to treat systems with large numbers of inputs and outputs. However, one common
problem of both methods from [2] and [3] is that they may only be considered as
heuristic as the computed reduced-order models do not preserve moment-matching
properties which the conventional moment-matching method satisfies.

Regarding the drawbacks of the above mentioned methods, we propose an
alternative model reduction method SPRIMA based on the superposition property,
which is robust for linear systems with a large number of inputs and outputs. Fur-
thermore, we prove that the reduced-order model derived by SPRIMA has the same
moment-matching property as the conventional moment-matching method PRIMA
has. Therefore, we not only provide a theoretical background of the method, but
also expect a small local error of the reduced-order model. Finally, our method
is suitable for parallel computing, which will further enhance the efficiency of the
method.

In the following Section 2, we review the conventional moment-matching
method PRIMA and analyze its problem for systems with large numbers of in-
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puts and outputs. We propose the method SPRIMA based on the superposition
property of linear systems in the third section, where also the moment-matching
property of the method is stated. In Section 4, we provide a computational complex-
ity analysis of SPRIMA and compare this with the complexity of PRIMA. We show
with simulation results the advantages and robustness of our method in Section 5
and give conclusions in the end.

2 Conventional moment-matching model reduction
method

A linear time-invariant (LTI) system is defined by

Cẋ(t) +Gx(t) = Bu(t), y(t) = LT x(t), (1)

with constant matrices C,G ∈ Rn×n, B ∈ Rn×l, and L ∈ Rn×r. Here, x(t) ∈ Rn

denotes the state vector of the system, while u(t) and y(t) stand for l inputs and r
outputs, n is also called the order of the system.

In conventional moment-matching methods, like, e.g. PRIMA [8], the reduced-
order model of the system is constructed using an approximation of the state vector
x ≈ V z:

Ĉż(t) + Ĝz(t) = B̂u(t), ŷ(t) = L̂Tz(t), (2)

where Ĉ = V TCV, Ĝ = V TGV ∈ Rq×q, B̂ = V TB ∈ Rq×l, and L̂ = V TL ∈
Rq×r, q � n.

The basic steps are as follows. First, the transfer function of the above system
is expanded in a series around an expansion point s0 ∈ C ∪ {∞}. Let s = s0 + σ,
then for small σ, we have

H(s0 + σ) = LT[(s0 + σ)C +G]−1B
= LT[I + σ(s0C +G)−1C]−1(s0C +G)−1B
= LT[I − σ(s0C +G)−1C + σ2[(s0C +G)−1C]2 − ...](s0C +G)−1B

=
∞∑

i=0

LT[−(s0C +G)−1C]i(s0C +G)−1B︸ ︷︷ ︸
:=mi(s0)

σi,

where mi(s0) for i = 0, 1, 2, . . . are called the moments of the transfer function
about s0.

The transformation matrix V for model order reduction is computed from the
vectors which are associated with the moments, for example, using the expansion
point s0 = 0, we have

range{V } = span{G−1B, (G−1C)G−1B, . . . , (G−1C)qG−1B}, (3)

q � n. Once the matrix V is computed, the reduced-order model can be obtained
by (2).
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Moment-matching property

The goal of moment matching model reduction is the construction of a reduced-
order system where certain moments m̂i of the transfer function Ĥ of the reduced-
order model match corresponding moments mi of the original transfer function H:
m̂i = mi, i = 0, 1, 2, ..., k. It is known that by the above construction of V in (3),
the reduced-order model matches q+1 moments, i.e. m̂i(0) = mi(0), i = 0, 1, 2, ..., q
[8].

The problems of model reduction with the above moment-matching method
for MIMO systems include: first, if the number of independent columns in the
matrices B,L (i.e., the dimension of the subspace spanned by the columns of B,L)
is of medium size, for example 50, and if model reduction requires higher order
moments to get an accurate reduced-order model, then the size of the reduced-
order model is probably not small (for example, if the size of the original system
is n = 5000, the order of the reduced-order model matching 20 moments would be
q = 1000). Moreover, the system matrices of the reduced-order model are usually
dense, which makes the reduced-order system at least as expensive to simulate as
the original system, contradicting the purpose of model reduction.

Second, if the number of independent columns in the matrices B,L are very
large, for example 1000, then we cannot apply conventional model reduction at all,
because we get a reduced-order model with almost the same size as the original
system by just matching the first few moments. Therefore, we may derive a model
which is not only unreduced, but also the sparsity of the original system is destroyed.
An example in Section 5 shows this problem.

In the next section, we propose a model reduction method based on the su-
perposition property of linear systems, which can be successfully applied to systems
with a large number of inputs and outputs.

3 Model order reduction combined with
superposition property

The superposition property is special to linear physical systems, see, e.g., [10]. It
can be explained simply as follows: For a linear system (1), if u1(t) → y1(t) and
u2(t) → y2(t) then αu1(t) + βu2(t) → αy1(t) + βy2(t), where ui, i = 1, 2 are input
signals, yi, i = 1, 2 are corresponding output responses and α, β are two constant
scalars.

Notice that the first equation of system (1) can be re-written as

Cẋ(t) +Gx(t) = B

l∑
i=1

ũ(i)(t),

where
ũ(i)(t) = [0, . . . , ui(t), 0, . . . , 0]T ,

and
u(t) = [u1(t), u2(t), . . . , ul(t)]T .
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The superposition property of linear physical systems tells us: the output response
of the MIMO system (1) can be obtained by the sum of the output responses of the
following single-input systems:

Cẋ(t) +Gx(t) = Bũ(i) = biui(t),
yi(t) = LT x(t),

for i = 1, 2, . . . , l, (4)

i.e., y(t) = y1(t) + y2(t) + . . .+ yl(t), where bi is the ith column of the input matrix
B.

The transfer function of the original system can be obtained by the Laplace
transform of y(t) and its relation to the output response, that is,

H(s)U(s) = Y (s) = Y1(s) + . . .+ Yl(s)
= H1(s)U1(s) + . . .+Hl(s)Ul(s)
= [H1(s), . . . ,Hl(s)] · [U1(s), . . . , Ul(s)]T ,

(5)

where U(s) = [U1(s), U2(s), . . . , Ul(s)]T is the Laplace transform of the input u(t)
and Y (s) is the Laplace transform of the output response of the original system.
Y1(s), Y2(s), . . . , Yl(s) are the Laplace transforms of the output responses of the
single-input systems in (4), H1, H2, . . . ,Hl are the corresponding transfer functions,
and H is the transfer function of the original system. From the relations in (5), we
see that

H(s) = [H1(s), H2(s), . . . ,Hl(s)]. (6)

Next we propose to combine the superposition property with model reduction
such that the original MIMO system (1) can be efficiently evaluated. If we sepa-
rately apply a conventional model reduction method like PRIMA [8] to each single-
input system in (4), then we can get approximate output responses ŷ1, ŷ2, . . . , ŷl of
y1, y2, . . . , yl from the reduced-order models of the single-input systems:

Ĉż(t) + Ĝz(t) = b̂iu(t),
ŷi(t) = L̂T z(t),

for i = 1, 2, . . . , l. (7)

The output response of system (1) is thus approximated by y(t) ≈ ŷ1(t) + ŷ2(t) +
. . .+ ŷl(t). The transfer function of system (1) can also be approximately computed
by the transfer functions of the reduced-order systems:

H(s) ≈ Ĥ(s) = [Ĥ1(s), Ĥ2(s), . . . , Ĥl(s)]. (8)

We call the method proposed above SPRIMA, since it combines the super-
position property with PRIMA. In the following, we prove the moment-matching
property of SPRIMA. We show that SPRIMA preserves the moment-matching prop-
erty of the conventional model reduction method PRIMA.

Theorem 1. If the conventional moment-matching method PRIMA is applied to
each single-input system in (4), and qi moments of Hi are matched by the computed
reduced-order transfer functions Ĥi(s) in (8), i = 1, 2, . . . , l, then at least

q := min
i=1,...,l

qi
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moments of the original transfer function H(s) (6) are matched by the reduced-order
transfer function Ĥ(s) (8), i.e.

m0(s0) = m̂0(s0),m1(s0) = m̂1(s0), . . . ,mq−1(s0) = m̂q−1(s0).

Proof. Recall that the transfer function of the original MIMO system has the
following relation to the transfer functions of the single-input systems in (4):

H(s) = [H1(s), H2(s), · · · , Hl(s)]. (9)

SPRIMA obtains approximate transfer functions of Hi(s), i = 1, 2, · · · , l, by model
reduction of the single-input systems in (4). The approximate transfer function of
(1) is

Ĥ(s) = [Ĥ1(s), Ĥ2(s), · · · , Ĥl(s)]. (10)

Theorem 1 can be easily proved by series expansions ofHi(s) and Ĥi(s), respectively,
i = 1, 2, . . . , l, around the same expansion point and by using the moment-matching
properties of PRIMA applied to Hi, Ĥi.

4 Computational complexity comparison
In this section, we compare the complexity of the proposed method SPRIMA with
the conventional moment-matching method PRIMA. A rough analysis of the com-
putational complexity of PRIMA shows:

I. When p moments are used to compute the projection matrix V as in (3), the
Krylov subspace is composed of l · p vectors. The Arnoldi process is used
in PRIMA to compute V , which requires O(n2 · l · p) flops to compute an
orthogonal basis of the Krylov subspace: colspan{G−1B, (G−1G)G−1B, · · · ,
(G−1C)(p−1)G−1B}. If G and C are sparse, then the complexity reduces to
O(n ·l ·p). (In both cases we use a (sparse) LU decomposition of G to compute
G−1. In order not to complicate the complexity analysis further, we assume
the LU decomposition is computed prior to the Arnoldi process and is not
included in the complexity analysis. If G is sparse, we assume that applying
G or G−1 to a single vector requires O(n) flops. This might be too rough an
assumption in practice, but as this cost is the same for both approaches, it
does not favor one approach over the other.)

II. If the l ·p Krylov vectors are linearly independent, then the number of columns
in the projection matrix V is l ·p. After the projection matrix V is computed,
the computational complexity for deriving the reduced-order model is O(n2 ·
l · p) +O(n · l · p · (l + r)), where the first term reduces to O(n · l · p) if G, C
are sparse and we make the same assumptions as in I..

III. If the number of the columns in the projection matrix V is l ·p, then the order
of the reduced-order model is equal to l ·p. Therefore, evaluating the reduced-
order model in frequency domain analysis (or doing an implicit time step in
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a time domain simulation) requires O((l · p)3) flops if an LU decomposition is
employed. (Note that Ĝ will in general be dense.)

In the above analysis, we assume that the input matrix B has full column rank.
This is certainly justified in circuit analysis with a high number of terminals as the
resulting inputs are usually independent of each other.

The complexity of SPRIMA is analyzed as follows. In order to attain the same
accuracy (measured by the moment-matching property in Section 2) as PRIMA, the
same number of p moments is used to generate the matrices Vi, i = 1, 2, . . . , l for
each single-input system in (4).

a. There are l single-input systems in total, see (4). For each of them, a projec-
tion matrix Vi is computed using an orthonormal basis for the Krylov subspace
colspan{G−1bi, (G−1C)G−1bi, · · · , (G−1C)(p−1)G−1bi}. Assuming again that
the Arnoldi process is employed, the total complexity for computing all the
projection matrices Vi is l ·O(n2 ·p) as in I. If G and C are sparse, the complex-
ity reduces to l ·O(n · p). Note that the same ( sparse ) LU decomposition of
G can be used in the Arnoldi processes for all individual single-input systems
and thus needs to be computed only once in advance as in PRIMA.

b. If the p vectors G−1bi, (G−1C)G−1bi, · · · , (G−1C)(p−1)G−1bi are linearly in-
dependent, the number of the columns in each matrix Vi is p. After Vi is com-
puted, the computational complexity for deriving the l reduced-order models
is: l · (O(n2 · p) + O(n · p · (r + l))), where as in II., the first term becomes
l ·O(n · p) if G and C are sparse.

c. If the number of columns in each projection matrix Vi is p, then the order of
each reduced-order model is p. Therefore the complexity for frequency or time
domain simulation using the l reduced-order models is l ·O(p3) (per transfer
function evaluation or time step).

From the above analysis, we see that the cost of obtaining the reduced-order
models with either approach is similar (step I.,II. vs. step a.,b.). Therefore, the
difference of computational complexity between PRIMA and SPRIMA reduces to
the difference between step III. and step c., which is summarized in the following
proposition.

Proposition 2. If the number of the columns l in B is large, and the correla-
tion between the columns is weak, then the computational complexity of evaluating
the reduced-order model computed by PRIMA is O(l2) times higher than that of
SPRIMA when matching the same number of moments.

Let us consider an example: if there are l = 150 columns in B, and the
number of independent columns in B is l0 = 100, and if p = 10 moments are used
to construct the projection matrix V , the order of the reduced-order system with
PRIMA is q = l0 · p = 1000 while the order of each reduced-order single-input
system in (7) is q = p = 10.
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If one simulation step with the reduced-order model requires an LU decompo-
sition, then following III., this comes at a cost of O((l0p)3) = O((1000)3) = O(109)
flops. Based on c., the complexity using the reduced-order model obtained with
the superposition property is l · O(q3) = 150 · O(1000) = O(105). This shows that
SPRIMA is much more efficient than PRIMA for systems with a large number of
inputs.

5 Simulation results
In this section we show the efficiency of the proposed method SPRIMA with two
circuit examples. The systems of both examples are in the form of the system in (1),
with L = B. For the first example, the order of the original system is n = 2952, there
are l = 29 columns in the input matrix B. The system of the second example has l =
854 columns in B, the order of the system is n = 1726. Both examples are related to
industrial circuit models. The first one is provided by NEC Laboratories Europe in
Sankt Augustin (Germany) while the second was produced with the circuit simulator
TITAN developed by Qimonda AG, Neubiberg (Germany). Further details of the
examples can not be provided due to non-disclosure agreements.

We give simulation results in Table 1 and Table 2, where q(s) is the order of the
reduced-order models computed by SPRIMA, q(d) is the order of the reduced-order
model obtained with PRIMA. time is the simulation time (in seconds) for solving
the reduced-order models in the interested time intervals t ∈ [0, 10−9] in Table 1
and t ∈ [0, 10−7] in Table 2. (We only compare the time-domain simulation timings
because we have analyzed before that the computational complexity for obtaining
the reduced-order models is essentially equal for both approaches.) For the method
SPRIMA, time is the total CPU time for simulating all the single-input reduced-
order models. error is the error between the output response yr of the reduced-order
model and that of the original model y: error = ‖y − yr‖2/‖y‖2. To be simple,
we only show the output of the system corresponding to the first column of the
output matrix L, the results for the other outputs are similar. The system of the
first example is driven by ramp functions as inputs. The step functions are used as
inputs in the second example. All simulations were performed on an IBM notebook
with Intel CPU T2400, 1.83GHz, 1GB RAM.

The simulation results of the first example are listed in Table 1. The simulation
time of SPRIMA changes very slowly with the increasing accuracy of the reduced-
order system. Because the order of the reduced-order model increases fast with
the increasing accuracy, PRIMA is nevertheless very sensitive to the accuracy of
the reduced-order model. Note that when the accuracy of the reduced-order model
is not high, PRIMA cost even less simulation time than SPRIMA, which seems
to be not in accordance with the analysis in Section 4. This is due to the small
size of the reduced-order system and the fact that in this example, the system has
still relatively few inputs. However, when the accuracy increases, more moments
need to be used to compute the transformation matrix V , the order of the reduced-
order system by PRIMA increases quite fast, the corresponding simulation time of
PRIMA thereby becomes larger than that of SPRIMA. The advantage of SPRIMA
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Table 1. Simulation results of the first example.

Methods q(s) / q(d) error time ( seconds )
SPRIMA 4 0.0032 0.17
SPRIMA 5 1.70 ×10−4 0.19
SPRIMA 6 3.5 ×10−6 0.19
SPRIMA 7 1.76 ×10−7 0.25
SPRIMA 8 1.93 ×10−8 0.22
SPRIMA 9 3.78 ×10−10 0.23
SPRIMA 10 5.3 ×10−11 0.25
PRIMA 58 0.0056 0.078
PRIMA 114 2.40 ×10−6 0.22
PRIMA 139 5.17 ×10−9 0.29
PRIMA 186 1.91 ×10−9 0.57
PRIMA 232 1.17 ×10−9 0.95

Table 2. Simulation results of the second example.

Methods q(s) / q(d) error time ( seconds )
SPRIMA 10 0.45 54
SPRIMA 20 0.02 69.9
SPRIMA 30 3.4 ×10−4 110
PRIMA 854 0.99 360.8
PRIMA 1519 4.2 ×10−4 1899

Figure 1. Output response of the first example
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Figure 2. Transfer function of the first example

becomes obvious when the system has even more inputs, which can be seen from
the second example in Table 2.

From the data in Table 2, the simulation time of PRIMA is much larger than
that of SPRIMA. For the reduced-order models derived by PRIMA, if the error is
required to be O(10−4), then the order of the reduced-order model is 1519, which
is a little less than the order n = 1726 of the original system. In this example,
the system matrices Ĉ, Ĝ of the reduced-order model are dense matrices as usual.
However the original system matrices C,G are all sparse matrices. Therefore, as
has been analyzed in Section 2, not only the original system is unreduced, but also
the sparsity of the original system is destroyed. The system with dense matrices
usually costs much more time to be simulated than the original system.

Figure 1 shows the output response of the first example. Being compared
with the output response by simulating the original full system (1) (solid line),
SPRIMA computes an accurate output response of the original system by much
smaller reduced-order models. In contrast to the order of the original system n =
2952, the order of each reduced-order model is q(s) = 5.

Figure 2 plots the transfer function of the first example, which corresponds to a
particular single input port-single output port. The solid line is the transfer function
computed from the original system. The other two lines are the transfer function
computed by SPRIMA. The dotted line corresponds to the transfer function of a
reduced-order model with order q = 2. The other line of star-markers is the transfer
function of a reduced-order model with order q = 3. It catches the original transfer
function very well, the relative error is O(10−11).

6 Conclusions
We have proposed a simple, yet efficient model reduction method for linear systems
with a large number of inputs and outputs. The method is based on the super-
position property for linear systems. By using this property, the original MIMO
system is decoupled into separate single-input systems. Model reduction is then
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applied to each single-input system, the output response and the transfer function
of the original system are approximated by the sum of the outputs or the combined
transfer functions of the reduced-order single-input systems. The proposed model
reduction method SPRIMA overcomes the difficulties of the conventional model re-
duction method applied to systems with a large number of inputs and outputs. The
reduced-order model derived by SPRIMA satisfies the moment-matching property.
It is easy to see from Section 3 that every single-input system in (4) can be dealt
with independently, hence SPRIMA is suitable for parallel computing.

Future work will include efficient implementation of the SPRIMA method
when the order of the original system is very large. In particular, when computing
the separate Krylov subspaces for the single-input systems (4), only the starting
vectors change so that efficient techniques from numerical linear algebra can be
employed, like, e.g. recycling techniques [9].
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