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Abstract

We discuss solvers for Sylvester, Lyapunov, and Stein equa-
tions that are available in the SLICOT Library (Subroutine
Library In COntrol Theory). These solvers offer improved
efficiency, reliability, and functionality compared to corre-
sponding solvers in other computer-aided control system de-
sign packages. The performance of the SLICOT solvers is
compared with the corresponding MATLAB solvers.

1 Introduction

Systems and control algorithms are widely used to model, sim-
ulate, and/or optimize industrial, economical, and biological
processes. Systems analysis and design procedures often re-
quire the solution of general or special linear or quadratic ma-
trix equations. Many high-level algorithms are based on these
low-level kernels. There is a huge amount of theoretical re-
sults available both in systems and control, as well as in the
linear algebra literature devoted to matrix equations and re-
lated topics. There are also a lot of associated software im-
plementations, both commercial (e.g., in MATLAB1 [14, 13]),
copyrighted freeware (e.g., in the SLICOT Library [4, 18]), or
in the public domain (e.g., in Scilab [9]). The reliability, effi-
ciency, and functionality of various solvers differ significantly
from package to package.

This paper presents several solvers for linear matrix equa-
tions available in the SLICOT Library (Subroutine Library
In COntrol Theory), that provides Fortran 77 implementa-
tions of many numerical algorithms in systems and control the-
ory, as well as standardized interfaces (gateways) to MATLAB

and Scilab. Built around a nucleus of basic numerical linear
algebra subroutines from the state-of-the-art software pack-
ages LAPACK [1], BLAS [6, 7, 12], and their counterparts
for distributed memory computers, e.g., ScaLAPACK [5] and
PBLAS, this library enables the user to exploit the potential of
modern high-performance computer architectures.

The paper also presents some performance improvements
(concerning efficiency, reliability, and accuracy) offered by
the SLICOT tools, in comparison with equivalent computa-

1MATLAB is a registered trademark of The MathWorks, Inc.

tions performed by some MATLAB functions included in the
MATLAB nucleus or in the Control System Toolbox. The re-
sults show that, at comparable or better accuracy, SLICOT
computations are several times faster than MATLAB compu-
tations; moreover, the underlying problem structure is often
better exploited. Also note that SLICOT routines often offer a
higher functionality than corresponding MATLAB functions. In
particular, condition and forward error estimates can be com-
puted in many cases.

2 Sylvester and Lyapunov Equations

Sylvester and Lyapunov equations are linear matrix equations.
In a general setting, these equations can be defined as follows,
where the notation op(M) denotes either the matrix M , or its
transpose, MT , A, B, op(D) , E, and F , are n × n, m × m,
m × n, n × n, and m × m given matrices, respectively, C,
G, and H are given matrices of appropriate dimensions, X and
Y are unknown matrices of appropriate dimensions, and σ is a
scaling factor, usually equal to one, but possibly set less than
one, in order to prevent overflow in the solution matrix.

• Continuous-time and discrete-time Sylvester equations:

op(A)X ± X op(B) = σC ; (1)

op(A)X op(B) ± X = σC ; (2)

• Continuous-time and discrete-time2 Lyapunov equations:

op(A) T X + X op(A) = σC ; (3)

op(A) T X op(A) − X = σC ; (4)

• Stable non-negative definite continuous-time and discrete-
time Lyapunov equations:

op(A) T X + X op(A) = −σ2 op(D) T op(D) ; (5)

op(A) T X op(A) − X = −σ2 op(D) T op(D) ; (6)

• Generalized Sylvester equation:

AX − Y B = σG ,

EX − Y F = σH , (7)

or the “transposed” equation

AT X + ET Y = σG ,

XBT + Y FT = −σH ; (8)

2the discrete-time Lyapunov equation is also called Stein equation



• Generalized continuous-time and discrete-time Lyapunov
equations:

op(A) T X op(E) + op(E) T X op(A) = σC ; (9)

op(A) T X op(A) − op(E) T X op(E) = σC ; (10)

• Generalized stable continuous-time and discrete-time
Lyapunov equations, which have the same form as (9) and
(10), respectively, but with the right-hand side replaced by
−σ2 op(D) T op(D) .

Let E(D,U) = R be a shorthand notation for any of the above
equations, where E , D, U , and R denote the corresponding
equation formula, data, unknowns, and right hand side term,
respectively. For general matrices, the solution is obtained by a
transformation method (see, e.g., [16, page 144]). Specifically,
the data D are transformed to some simpler forms, D̃ (usually
corresponding to the real Schur form (RSF) of A, or general-
ized RSF of a matrix pair), the right hand side term is trans-
formed accordingly to R̃, the reduced equation, E(D̃, Ũ) = R̃,

is solved in Ũ , and finally, the solution of the original equation
is recovered from Ũ .

The methods implemented in SLICOT are basically the fol-
lowing: the Schur method (also known as Bartels–Stewart
method) [3] for Sylvester equations (for A, B general, or
in RSF), or Lyapunov equations (for A general, or in RSF),
with the variant from [2] for the discrete-time case; the
Hessenberg-Schur method in [8] for standard Sylvester equa-
tions, i.e., with op(M) = M (for A, B general, or at least one
of A or B in RSF, and the other one in Hessenberg or Schur
form, both either upper or lower); Hammarling’s variant [10] of
the Bartels–Stewart method for stable Lyapunov equations; and
extensions of the above methods for generalized Sylvester [11]
and Lyapunov equations [15].

The ability to work with the op(·) operator is important in
many control analysis and design problems. For instance, the
controllability Gramians can be defined as solutions of stable
Lyapunov equations with op(A) = AT , while observability
Gramians can be defined as solutions of stable Lyapunov equa-
tions with op(A) = A. When both controllability and observ-
ability Gramians are needed (e.g., in model reduction compu-
tations), then the same real Schur form of A can be used by
a solver able to cope with op(·) , and this would significantly
improve the efficiency.

The term “stable” means that all eigenvalues of the matrix A (or
of the matrix pencil A − λE, for generalized stable Lyapunov
equations) must have negative real parts, in the continuous-time
case, or moduli less than one, in the discrete-time case. The
solvers for stable Lyapunov equations compute the Cholesky
factor U of the solution matrix X , i.e., X = op(U) T op(U) ,
directly. Whenever feasible, the use of the stable solvers in-
stead of the general ones is to be preferred, for several reasons,
including the following:

• the matrix product op(D) T op(D) need not be computed;

• definiteness of X is guaranteed.

Moreover, often the Cholesky factors themselves are actually
needed, e.g., for model reduction or for computing the Hankel
singular values of the system.

When solving any matrix equation, it is useful to have estimates
of the problem conditioning and of the solution accuracy, e.g.,
error bounds. For instance, besides solving continuous-time
or discrete-time Lyapunov equations, it is advisable to com-
pute the separation of the matrices A and −AT , or of A and
AT , respectively. The separation measures the sensitivity of
the equation to perturbations in the data, and it is defined by

sep(AT ,−A) = min
Z 6=0

‖AT Z + ZA‖

‖Z‖
= σmin(P ) , (11)

sepd(AT , A) = min
Z 6=0

‖AT ZA − Z‖

‖Z‖
= σmin(P ) , (12)

in the continuous-time or discrete-time case, respectively,
where σmin(P ) is the minimal singular value of the matrix P ,
and

P = In ⊗ AT + AT ⊗ In , (13)

P = AT ⊗ AT − In2 , (14)

respectively; the symbol ⊗ stands for the Kronecker product of
two matrices, X ⊗ Y = (xijY ). Estimates of the separation
quantities can be computed very efficiently.

The corresponding sensitivity measure for Sylvester equations
is the separation of the matrices A and B, defined similarly as
above. For generalized Sylvester equations one can optionally
compute a Dif estimate, Dif[(A,E), (B,F )], which measures
the separation of the spectrum of the matrix pair (A,E) from
the spectrum of the matrix pair (B,F ) [11].

Such measures, as well as condition number estimates and
forward error bounds are returned by several routines of the
SLICOT Library [17]. This allows to judge the reliability of
the computed solution while the only way to obtain an error
measure in other control packages is to compute the residual
which can be misleading if the condition of the problem is big.
We consider this as a significant advantage in reliability and
functionality of the software available in SLICOT.

3 Sylvester and Lyapunov Equation Solvers

Solvers for Sylvester and Lyapunov equations are available in
all major control systems software packages. The specific high-
level interfaces of these solvers in MATLAB and SLICOT are
briefly described in the following paragraphs.

The MATLAB Control System Toolbox includes two solvers
for Lyapunov and Sylvester equations. Their use is shown
below, using MATLAB commands, and comments explaining
their function:

X = lyap(A, C); % solves AX + XAT = −C.
X = dlyap(A, C); % solves AXAT − X = −C.
X = lyap(A, B, C); % solves AX + XB = −C.



There is no discrete-time Sylvester solver.

The SLICOT Library contains 16 “user-callable” Fortran 77
routines for Sylvester and Lyapunov equations. There are rou-
tines computing estimates for condition numbers, and forward
error bounds for Lyapunov equations, which enable to assess
the accuracy of the results and the sensitivity of the equations to
perturbations in the data. The library also includes several ad-
ditional, “programmer-callable” routines. Detailed documen-
tation of all these routines is available as HTML files at the
SLICOT web site accessible via the SLICOT hyperlink on the
NICONET (Numerics in Control Network) homepage

http://www.win.tue.nl/niconet.

While the use of Fortran routines is more difficult, compared
with user-friendly environments, like MATLAB, it enables to
significantly increase the computational efficiency. In order
to enhance the user-friendliness of the efficient and reliable
SLICOT Fortran routines, MATLAB or Scilab interfaces are
provided for common control system analysis and design cal-
culations, as shown below for Sylvester and Lyapunov equa-
tions. Two MEX-file implementations have been designed,
linmeq, for standard linear matrix equations, and genleq,
for generalized linear matrix equations. These MEX-files call
all SLICOT routines needed to perform the required task. The
selection of the appropriate problem and solver is made using
option parameters. For users’ convenience, MATLAB functions
are provided for each problem class. These MATLAB func-
tions call the associated MEX-file. Executable MEX-files are
provided on the SLICOT ftp site for PC platforms under Win-
dows 95/98/00/ME/NT, or for Sun Solaris platforms (with For-
tran 95). Linux versions are under current development.

The following MATLAB functions for Sylvester and Lyapunov-
like equations are available:

slsylv Solve continuous-time Sylvester equations.
sldsyl Solve discrete-time Sylvester equations.
sllyap Solve Lyapunov equations.
slstei Solve Stein equations.
slstly Solve stable Lyapunov equations.
slstst Solve stable Stein equations.
slgesg Solve generalized linear matrix equation pairs.
slgely Solve generalized Lyapunov equations.
slgest Solve generalized Stein equations.
slgsly Solve stable generalized Lyapunov equations.
slgsst Solve stable generalized Stein equations.

Details on the use of these MATLAB functions are given in the
sequel. The commands

X = slsylv(A, B, C, flag, trans, Schur);
X = sldsyl(A, B, C, flag, trans, Schur);

compute the unique solution X of a continuous-time Sylvester
equation (1), or of a discrete-time Sylvester equation (2), re-
spectively. The optional input parameter flag is a vector of
length 2, which specifies the structure of A and/or B. The ele-
ments flag(1) and flag(2) refer to A and B, respectively.

An input matrix is assumed to be quasi-upper triangular (or
in real Schur form) if the corresponding element of flag is 1,
and an input matrix is assumed to be upper Hessenberg if the
corresponding element of flag is 2; otherwise, that matrix is a
general matrix (default). The optional parameter trans spec-
ifies the operator op(·) for the matrices A and B, as follows

trans = 0 : op(A) = A; op(B) = B (default);

trans = 1 : op(A) = AT ; op(B) = BT ;

trans = 2 : op(A) = AT ; op(B) = B;

trans = 3 : op(A) = A; op(B) = BT .

The optional parameter Schur specifies the method to be used
for the solution, as follows. If Schur = 1, the Hessenberg-
Schur method is used by the solver, that is, one matrix is re-
duced to Hessenberg form, and the other matrix is reduced to
Schur form (default); if Schur = 2, the Schur method is used,
that is, both matrices are reduced to their Schur forms. If one or
both matrices are already reduced to Schur/Hessenberg forms,
this can be specified by flag(1) and flag(2). For general
matrices, the Hessenberg-Schur method is significantly more
efficient than the Schur method.

The commands

[X, sep] = sllyap(A, C, flag, trans);
[X, sepd] = slstei(A, C, flag, trans);

compute the unique symmetric solution X of a continuous-time
Lyapunov equation (3) and of a discrete-time Lyapunov equa-
tion (4), respectively. If flag = 1, then A is assumed to be
quasi upper triangular (or in RSF); otherwise, A is a general
matrix (default). If trans = 0, then op(A) = A (default);
otherwise, op(A) = AT . The optional output parameter sep
or sepd returns an estimate of the separation of the matrices A
and −AT , defined by (11), or of the separation of the matrices
A and AT , defined by (12), respectively.

The following two commands compute the Cholesky factor
U of the unique symmetric positive semi-definite solution,
op(U) T op(U) , of a stable continuous-time Lyapunov equa-
tion (5), or a stable discrete-time Lyapunov equation (6), re-
spectively,

U = slstly(A, D, flag, trans);
U = slstst(A, D, flag, trans);

where flag and trans are the optional parameters defined
above for Lyapunov equations.

The command

[X, Y, dif] = slgesg(A, E, B, F, G, H,
flag, trans);

computes the unique solutions (X,Y ) of the generalized lin-
ear matrix equation pairs (7), if trans = 0 (default), or the
“transposed” equation pairs (8), if trans6= 0. The optional
input parameter flag is a vector with two elements, character-
izing the structure of the matrix pairs. Specifically, flag(1)
and flag(2) refer to the matrix pair (A,E) and (B,F ), re-



spectively. If flag(i) = 1, the matrix pair i is assumed
to be in a generalized Schur form; otherwise, that pair is in
a general form. Default value is flag = [0,0], that is,
both pairs (A,E), and (B,F ) are in general forms. The op-
tional output parameter dif returns an estimate of the quantity
dif[(A,E), (B,F )], which generalizes the notion of separation
of two matrices.

The commands

[X,sep] = slgely(A, E, C, flag, trans);
[X,sep] = slgest(A, E, C, flag, trans);

compute the unique symmetric solution X of a generalized
continuous-time Lyapunov equation (9), and a generalized
Stein (discrete-time Lyapunov) equation (10), respectively. If
flag = 1, it is assumed that (A,E) is in generalized Schur
form; otherwise, (A,E) is in general form (default). The op-
tional output parameter sep returns the separation, sep(A,E).

Similarly, the following two commands compute a Cholesky
factor U of the unique symmetric positive semi-definite solu-
tion op(U) T op(U) of a stable generalized continuous-time or
discrete-time Lyapunov equation, respectively,

U = slgsly(A, E, D, flag, trans);
U = slgsst(A, E, D, flag, trans);

4 Numerical results

This subsection presents typical performance results for some
components of the SLICOT Library, called via the associated
gateways. The calculations have been done on an IBM PC
computer at 500 MHz, with 128 Mb memory, using Compaq
Visual Fortran V6.5, non-optimized BLAS, and MATLAB 6.1
(R12). These results show that SLICOT routines often out-
perform MATLAB calculations. While the accuracy is com-
parable, and sometimes better, the gain in efficiency by call-
ing SLICOT routines can be significant. Note that the results
have been obtained by timing in MATLAB the equivalent com-
putations. Even better efficiency is to be expected by calling
the SLICOT Fortran routines directly (not through gateways),
and similar accuracy/efficiency improvements are possible for
other SLICOT computations. Better results would be obtained
using optimized BLAS libraries.

Figure 1 shows the execution times for SLICOT function
slstei and MATLAB function dlyap (upper plot), and the
speed-up factor of slstei compared to dlyap (bottom plot),
for solving randomly generated Stein equations with known so-
lutions, and A ∈ IRn×n, for n = 30 : 30 : 300. (The matrices
A and X were generated with rand, X was made symmetric,
and then the corresponding right-hand side matrix C was com-
puted and symmetrized.) Figure 2 plots the relative residuals
and relative errors for the same examples. Figure 3 shows the
execution times and relative errors for solving Stein equations
with A in RSF (n = 30 : 30 : 300). Clearly, the SLICOT func-
tion is much faster, since it can exploit the problem structure,
the speed-up factors varying between 5 and 21. The relative

residuals and relative errors of the solutions are even much bet-
ter than those obtained with dlyap.

The efficiency of the SLICOT continuous-time Lyapunov
solver is similar, but the relative residuals and errors are com-
parable with those for the corresponding MATLAB function
lyap; see Figures 4–5.

Analogous results are also obtained for the Sylvester solvers in
SLICOT and MATLAB; see Figures 6–7.
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Figure 1: SLICOT slstei versus MATLAB dlyap for ran-
dom Stein equations with n = 30 : 30 : 300. Timing compari-
son (top) and speed-up factor (bottom).
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Figure 2: SLICOT slstei versus MATLAB dlyap for ran-
dom Stein equations with n = 30 : 30 : 300. Relative residuals
(top) and relative errors (bottom) comparisons.
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Figure 3: SLICOT slstei versus MATLAB dlyap for ran-
dom Stein equations with A in real Schur form, n = 30 : 30 :
300. Timing (top) and relative errors (bottom) comparisons.
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Figure 4: SLICOT sllyap versus MATLAB lyap for ran-
dom Lyapunov equations with n = 30 : 30 : 300. Timing
comparison (top) and speed-up factor (bottom).

5 Conclusions

We have discussed easy-to-use solvers from the SLICOT Li-
brary for various linear matrix equations from systems and con-
trol theory. Based on Fortran 77 codes implementing state-of-
the-art numerical algorithms, the high-level MATLAB or Scilab
interfaces offer extended functionality, and improved reliabil-
ity and efficiency compared to the existing software tools. This
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Figure 5: SLICOT sllyap versus MATLAB lyap for random
Lyapunov equations with n = 30 : 30 : 300. Relative residuals
(top) and relative errors (bottom) comparisons.

is illustrated by the results for several numerical examples.
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