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Abstract

Sylvester equations play a central role in many areas of applied mathematics and
in particular in systems and control theory. Here we will show how low-rank solutions
for stable Sylvester equations can be computed based on the matrix sign function
method. We discuss applications in model reduction as well as in observer design.
Numerical experiments demonstrate the efficiency of the proposed method.
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1 Introduction

Consider the Sylvester equation

AX + XB + C = 0, (1)

where A ∈ R
n×n, B ∈ R

m×m, C ∈ R
n×m, and X ∈ R

n×m is the sought-after solution.
Equation (1) has a unique solution if and only if α+β 6= 0 for all α ∈ σ (A) and β ∈ σ (B)
[22], where σ (Z) denotes the spectrum of the matrix Z. In particular, this property holds
for stable Sylvester equations, where both σ (A) and σ (B) lie in the open left half plane.
The anti-stable case, where σ (A) and σ (B) are contained in the open right half plane, is
trivially turned into a stable one by multiplying (1) by −1.

Sylvester equations have numerous applications in control theory, signal processing, fil-
tering, model reduction, image restoration, decoupling techniques for ordinary and partial
differential equations, implementation of implicit numerical methods for ordinary differen-
tial equations, and block-diagonalization of matrices, see, e.g., [3, 13, 14, 9, 12, 18, 27] to
name only a few references. Many of these applications lead to stable Sylvester equations.

Standard solution methods for Sylvester equations of the form (1) are the Bartels-
Stewart method [5] and the Hessenberg-Schur method [13, 17]. The methods are based
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on transforming the coefficient matrices to Schur or Hessenberg form and then solving the
corresponding linear system of equations directly by a backsubstitution process. Therefore,
these methods are classified as direct methods. Several iterative schemes to solve Sylvester
equations have also been proposed; for methods focusing on large sparse systems see,
e.g., [9, 20, 28]. The focus in this paper is on a special class of iterative schemes to
solve stable Sylvester equations related to computing the matrix sign function. The basic
Newton iteration classically used in this context was first proposed for (1) in [25]; see also
[6, 19]. It can basically be described by the recursive application of the rational function
f(z) = z + 1

z
to a suitably chosen matrix. Many other polynomial and rational iteration

functions can be employed, though. Here, we will focus on a new and special variant of
the standard iteration which allows to compute the solution of the Sylvester equation in
factorized form directly, given that the constant term C is factored as C = FG, where
F ∈ R

n×p, G ∈ R
p×m. Equations of this type arise for instance in model reduction and

observer design as discussed in Section 3. The new method is described in Section 2.
Numerical experiments reporting the numerical accuracy and performance as compared to
standard methods are given in Section 4. Some concluding remarks follow in Section 5.

2 Factorized Solution of Stable Sylvester Equations

The following basic property of the solutions of Sylvester equations is important in many
of the above-mentioned applications and also lays the foundations for the numerical algo-
rithms considered here. Namely, if X is a solution of (1), the similarity transformation

defined by

[

In X
0 Im

]

, can be used to block-diagonalize the block upper triangular matrix

H =

[

A C
0 −B

]

, (2)

as follows:
[

In X
0 Im

]

−1 [

A C
0 −B

] [

In X
0 Im

]

=

[

In −X
0 Im

] [

A C
0 −B

] [

In X
0 Im

]

=

[

A 0
0 −B

]

.

(3)

Using the matrix sign function of H and the relation given in (3), Roberts derives in
[25] the following expression for the solution of the Sylvester equation (1):

1

2
(sign (H) + In+m) =

[

0 X
0 I

]

. (4)

This relation forms the basis of the numerical algorithms considered since it states that
we can solve (1) by computing the matrix sign function of H from (2). Therefore, we may
apply the iterative schemes proposed for sign function computations in order to solve (1).

In this section we review the most frequently used iterative scheme for computing the
sign function and adapt this iteration to the solution of the Sylvester equation.
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2.1 The Newton iteration

The well-known Newton iteration for computing the sign function of a square matrix Z,
with no eigenvalues on the imaginary axis, is given by

Z0 := Z, Zk+1 :=
1

2

(

Zk + Z−1

k

)

, k = 0, 1, 2, . . . . (5)

Roberts [25] already observed that this iteration, applied to H from (2), can be written in
terms of separate iterations for A, B, and C:

gA0 := A, Ak+1 := 1

2

(

Ak + A−1

k

)

,

B0 := B, Bk+1 := 1

2

(

Bk + B−1

k

)

,

C0 := C, Ck+1 := 1

2

(

Ck + A−1

k CkB
−1

k

)

,

k = 0, 1, 2, . . . , (6)

thus saving a considerable computational cost and work space. The iterations for A and B
compute the matrix sign functions of A and B, respectively. Hence, because of the stability
of A and B,

A∞ := lim
k→∞

Ak = sign (A) = −In, (7)

B∞ := lim
k→∞

Bk = sign (B) = −Im, (8)

and if we define C∞ := limk→∞ Ck, then X = C∞/2 is the solution of the Sylvester
equation (1).

The iterations for A and B can be implemented in the way suggested by Byers [8], i.e.,

Zk+1 := Zk −
1

2

(

Zk − Z−1

k

)

,

with Z ∈ {A,B}. This iteration treats the update of Zk as a “correction” to the ap-
proximation Zk. This can sometimes improve the accuracy of the computed iterates in
the final stages of the iteration, when the limiting accuracy is almost reached. In some
ill-conditioned problems, the usual iteration may stagnate without satisfying the stopping
criterion while the “defect correction” iteration will satisfy the criterion. Furthermore, the
convergence of both iterations can be improved using an acceleration strategy. Here we
use the determinantal scaling suggested in [8] that is given by

Zk := ckZk, ck = | det (Zk)|−
1

p ,

where p is assumed to be the dimension of the square matrix Z and det (Zk) denotes the
determinant of Zk. Note that the determinant is obtained as a by-product during the
inversion of the matrix at no additional cost. The determinantal scaling is easily adapted
to be based on the determinants of Ak and Bk for the corresponding iterations. Hence this
scaling differs from the one that would be used if the same strategy would be used for the
iteration (5) applied to H from (2).
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A simple stopping criterion for (6) is obtained from (7) and (8). This suggests to stop
the iteration if the relative errors for the computed approximations to the sign functions
of A and B are both small enough, i.e., if

max {‖Ak + In‖, ‖Bk + Im‖} ≤ tol, (9)

where tol is the tolerance threshold. One might choose tol = cε for the machine precision
ε and, for instance, c = n or c = 10

√
n. However, as the terminal accuracy can not be

reached, in order to avoid stagnation it is better to choose tol =
√

ε and to perform 1–2
additional iterations once this criterion is satisfied. Due to the quadratic convergence of
the Newton iteration (5), this is usually enough to obtain the attainable accuracy.

The computational cost of (6) is dominated by forming the inverses of Ak and Bk,
respectively, and the solution of two linear systems for the sequence Ck. If we consider
the factorizations of Ak and Bk to be available as a by-product of the inversion, this adds
up to 2(n3 + nm(n + m) + m3) flops (floating-point arithmetic operations) as compared to
2(n+m)3 flops for a general Newton iteration step for an (n+m)× (n+m) matrix. Thus,
e.g., if n = m, iteration (6) requires only half of the computational cost of the general
iteration (5). We would obtain the same computational cost had we computed the inverse
matrices by means of a Gauss-Jordan elimination procedure and the next matrix in the
sequence Ck as two matrix products.

2.2 The factorized iteration

Here we only consider the Ck-iterates for the Sylvester equation (1) with factorized right-
hand side, i.e., C = FG, where F ∈ R

n×p, G ∈ R
p×m. The Ak- and Bk-iterations remain

unaltered. We can re-write th Ck-iteration as follows:

F0 := F, Fk+1 =
[

Fk, A−1

k Fk

]

,

G0 := G, Gk+1 =

[

Gk

GkB
−1

k

]

.

Even though this iteration is much cheaper during the initial steps if p ≪ n,m, this
advantage is lost in later iterations since the number of columns in Fk+1 and the number of
rows in Gk+1 is doubled in each iteration step. This can be avoided by applying a similar
technique as used in [7] for factorized solution of Lyapunov equations. Let Fk ∈ R

n×pk and
Gk ∈ R

pk×n. We first compute a rank-revealing QR factorization [11] of Gk+1 as defined
above, i.e.,

[

Gk

GkB
−1

k

]

= URP, R =

[

R1

0

]

,

where U is orthogonal, P is a permutation matrix, and R is upper triangular with R1 ∈
R

r×m of full row-rank. Then we compute a rank-revealing QR factorization of Fk+1U , i.e.,

[

Fk, A−1

k Fk

]

U = V TQ, T =

[

T1

0

]

,
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where V is orthogonal, Q is a permutation matrix, and T is upper triangular with T1 ∈
R

t×2pj of full row-rank. Partitioning V = [ V1, V2 ] with V1 ∈ R
n×t, and computing

[ T11, T12 ] := T1Q, T11 ∈ R
t×r,

we then obtain as new iterates

Fk+1 := V1T11, Gk+1 := R1P.

Then with Ck+1 from (6) we have

Ck+1 = Fk+1Gk+1.

Setting

Y :=
1√
2

lim
k→∞

Fk, Z :=
1√
2

lim
k→∞

Gk,

we get the solution X of (1) in factored from, X = Y Z. If X has low numerical rank, the
factors Y and Z will have the corresponding number of columns and rows, respectively, and
the storage and computation time needed for the factorized solution will be much lower
than for the original iteration (6).

3 Applications

In this section we discuss two applications of the new algorithm to solve Sylvester equations
with factorized right-hand side. Both applications considered here trdult from systems and
control theory; applications of Sylvester equations with factorized right-hand side in image
restoration can be found in [9].

3.1 Observer design

Given the continuous linear time-invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t), t ≥ 0,

(10)

with A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n, a state observer is a function z : [0,∞) → R

n

such that for some nonsingular matrix Z ∈ R
n×n and e(t) := z(t) − Zx(t), we have

lim
t→∞

e(t) = 0.

The classical idea of Luenberger [23] to construct a state observer is to find another dy-
namical system

ż(t) = Hz(t) + Fy(t) + Gu(t) (11)
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with solution z(t). If (A,C) is observable and (H,F ) is controllable, then a unique full-rank
solution of theSylvester observer equation

HX − XA + FC = 0

exists and with G := XB, the solution z(t) of (11) is a state observer for any initial values
x0, z(0), and any input function u(t). If H and F are given, this equation has the discussed
structure of low-rank right-hand side as usually, the number p of outputs of the system is
much smaller than the dimension n of the state-space.

3.2 Model reduction using the cross-Gramian

If we consider again the LTI system (10), then the task in model reduction is to find another
LTI system

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0 x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t), t ≥ 0,
(12)

with Â ∈ R
r×r, B̂ ∈ R

r×m, Ĉ ∈ R
p×r, so that the state-space dimension r of the system

(12) is much less than n and the output error y(t) − ŷ(t), obtained by applying the same
input function u(t) to both systems, is small. One of the classical approaches to model
reduction is balanced truncation, see, e.g., [4, 24, 29] and the references therein. This
requires the solution of the two Lyapunov equations

AWc + WcA
T + BBT = 0, AT Wo + WoA + CT C = 0. (13)

Balanced truncation model reduction methods are then based on invariant or singular
subspaces of the matrix product WcWo or its square root. In some situations, the product
WcWo is the square root of the solution of the Sylvester equation

AX + XA + BC = 0. (14)

The solution X of (14) is called the cross-Gramian of the system (10). Of course, for (14)
being well-defined, the system must be square, i.e., p = m. Then we have X2 = WcWo if

• the system is symmetric, which is trivially the case if A = AT and C = BT (in that
case, both equations in (13) equal (14)) [15];

• the system is a single-input/single-output (SISO) system, i.e., p = m = 1 [16].

In both cases, instead of solving (13) it is more efficient to use (14). The new algorithm
presented in the previous section is ideally suited for this purpose, particularly in the SISO
case, as p = m = 1 is the case yielding the highest efficiency. Moreover, the Bk-iterates in
(6) need not be computed as they equal the Ak’s. This further reduces the computational
cost of this approach significantly. Also note that the cross-Gramian carries information
of the LTI system and its internally balanced realization if it is not the product of the
controllability and observability Gramian and can still be used for model reduction; see
[16, 2].
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4 Numerical Results

All the experiments presented in this section were performed on an Intel Pentium M pro-
cessor at 1.4 GHz with 512 MBytes of RAM using Matlab Version 6.5.1 (R13) and the
Matlab Control Toolbox Version 5.2.1. Matlab uses ieee double-precision floating-point
arithmetic with machine precision (ε ≈ 2.2204 × 10−16).

Example 4.1 In this example we evaluate the accuracy and computational performance
of the factorized Sylvester solver and the Bartels-Stewart method as implemented in the
Matlab Control Toolbox function lyap.

We construct nonsymmetric stable matrices A,B ∈ R
n×n with eigenvalues λj ∈ R

equally distributed between − 1

n
and −1 as follows:

A = UT
(

diag(λ1, . . . , λn) + e1e
T
n

)

U, B = V T
(

diag(λ1, . . . , λn) + e1e
T
n

)

V

where U, V ∈ R
n×n are the orthogonal factors of the QR decomposition of random n × n-

matrices. The matrices F ∈ R
n×1 and G ∈ R

1×n have normally distributed random entries.
Figure 1 shows the residuals and execution times obtained by the two methods. Here,

the accuracy is comparable while the execution time of the new method is clearly superior.
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Figure 1: Example 4.1, residuals (left) and performance (measured by CPU time, right)
of the factorized Sylvester solver and the Bartels-Stewart method for solving a Sylvester
equation with factorized right-hand side.

Example 4.2 Here we test the factorized sign function iteration for the cross-Gramian of
a SISO system resulting from the semi-discretization of a control problem for a 1D heat
equation. This is a test example frequently encountered in the literature [1, 10, 21, 26] and
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an appropriate test case here The numerical rank of the Gramians of the system is low.
Execution times and residuals for the new algorithm are compared to the Matlab solver
lyap for several system orders n. Again the obtained results are very promising.
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Figure 2: Example 4.2, residuals (left) and performance (measured by CPU time, right)
of the factorized Sylvester solver and the Bartels-Stewart method for computing the cross-
Gramian.

5 Conclusions

We have proposed a new method for solving stable Sylvester equations right-hand side
given in factored form as they arise in model reduction problems as well as in observer
design. The obtained numerical accuracy as well as the execution time of the new method
appear to be favorable when compared to standard solvers. It remains an open problem
to give a theoretical foundation to justify the good accuracy, in particular when using the
factorized form of the solution.
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