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Abstract

Differential Riccati Equations (DREs) arise in many scientific and engineering
applications. Particularly, they play an important role in control problems, where
a finite-time horizon of integration is considered. In this paper, we present several
high-performance implementations of the Rosenbrock method for multi-core and
graphic processors (GPUs). The Rosenbrock method for solving DREs is an itera-
tive technique that requires the solution of a Lyapunov equation per step, which in
our approach is solved via the highly parallel sign function method. Mainly, this
is an iterative procedure, where the most time-consuming operation is the com-
putation of a matrix inverse per step. Hence, an efficient implementation of the
Rosenbrock method can be obtained providing an efficient matrix inversion ker-
nel. We analyze two different approaches for the matrix inversion: the traditional
method based on the LU factorization and the Gauss-Jordan elimination method.
Numerical experiments show that the execution time can be drastically reduced by
off-loading part of the computations to one or more GPUs.

Key words: Differential Riccati equations, Rosenbrock methods, matriz sign
function, graphics processors, multi-core processors.
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1 Introduction

Consider the symmetric differential Riceati equation (DRE)

X() = Q+X(DA+ATX() — X()SX(t) = F(X(£), "
X(to) = Xo,

where t € [a,b], A € R™*", Q € R™™, § € R"™™ and X(t) € R™*™. The solution
of (1) exists and it is unique, e.g., [1, Thm. 4.1.6]. Symmetric DREs arise in linear-
quadratic optimal control problems such as LQR and LQG design with finite-time hori-
zon, in Hs, control of linear-time varying systems as well as in differential games, e.g.,
[1, 2]. Unfortunately, in most control problems fast and slow modes occur. Then, the
DRE will be fairly stiff, so implicit methods have to be used for solving the DRE numer-
ically. Matrix-valued algorithms based on generalizations of the Rosenbrock methods
have been proved to yield accurate solutions for large-scale DREs arising in optimal
control problems for parabolic partial differential equations [4, 6]. Using Rosenbrock
methods for solving DREs requires the solution of one Lyapunov equation per itera-
tive step. The Lyapunov equation is usually solved by exploiting the structure of the
matrices (sparsity, symmetry, low rank), see, e.g., [3]. However, in some applications,
a large interval of integration has to be considered and/or a thiner mesh is required to
describe the solution accurately, which turns these methods un affordable due to their
high computational cost.

We will focus on the method of order one, i.e, the so-called linearly implicit Euler
method, on equidistant meshes. For practical purposes, the method should be used with
adaptive time steps as suggested in [4]. Here we will focus on the parallel perfomance of
the computation of one time step, which is independet of the grid chosen. Thus, we keep
things as simple as possible for this purpose. The resulting Lyapunov equation is solved
via the highly parallel sign function method, where the most time-consuming operation
is the computation of a matrix inversion per step. We analyze two different approaches
for the matrix inversion: the traditional method based on the LU factorization and the
Gauss-Jordan elimination method.

We present several high-performance implementations of the Rosenbrock method
for a hybrid platform composed of multi-core processors and several graphics processors.
The use of high-performance kernels of several linear algebra libraries, and several
optimization techniques, like padding or the concurrent computation in all the devices
of the platform, report a remarkable performance in the developed implementations.

This paper is organized as follows. In Section 2, we briefly describe the application
of the Rosenbrock method of order one to DREs and the sign function method for
solving Lyapunov equations. The different implementations are described in Section 3.
Then, in Section 4, numerical experiments showing the performance of the proposed
methods are included. Finally, conclusions and future work are pointed out.
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2 Numerical solution of DREs

We focus on the solution of DREs arising in optimal control for ordinary differential
equations. Using the Rosenbrock method of order one for solving an autonomous
symmetric DRE of the form (1) yields:

_ i 1
Al X1 + X1 Ay = —Q — X3S X, — ‘ﬁXk (2)

where Xi ~ X (#x) and A = A—SX;, — 2—15]; see [6, 4] for details. In addition, we
assume that

Q = CTc, C € Rpx™,
S = BBT, B e Rw<™
X, = ZkZ]z, Z]C € Rnxzk’

with p, m, z; < n. If we denote Ny = [CT, Zyx(ZF B), Vh=1Z], then the Lyapunov
equation in (2) results in

AL Xj1 + Xpy1 Ak = —NpNE, (3)

where A = A — B(Zk(Z,ZB))T - 2—1};[‘. Observing that rank(N;) < p+m + 2z < n,
we can efficiently solve (3) with the sign function method as described in the following
subsection. This is stated in Algorithm 1

Algorithm 1: Rosenbrock method of order one for DREs
Data: A € R**", B, C, Zy satisfying (2), t € [a, b], and step size h.
Result: (Z,t;) such that X ~ ZpZ], Zj € R™*% with z; < n.

1 begin

2 to:=a

3 fork:=0to [b—ﬁ—@] do

4 Nk = [CT, Zk(Z}ch), \/h—"TZk]

5 Compute Zi4q such that the low rank factor product Zj,, Z/,r;’:r1
approximates the solution of AY Xy 11 + Xp14r = — N NI

6 tpy1 =1t + h.

7 end

8 end

2.1 The sign function method

The matrix sign function is an efficient tool to solve stable Lyapunov equations. There
exist several iterative schemes for the computation of this matrix function. Among
those, the Newton iteration described in Algorithm 2 is specially appealing for its
simplicity, efficiency, parallel performance, and asymptotic quadratic convergence [7].
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Algorithm 2: Matrix sign function for Lyapunov equations

Data: A€ R™", N gRiX”,
Result: S such that STS ~ X and ATX + XA = NNT.

1 begin

2 AO = A

3 S’o = NT

4 k=0

5 repeat

6 Apyr = % (Ak/ck -+ CkAkﬂl)

7 Compute the rank-revealing QR (RRQR) decomposition

o 0
i[5 aS(4p)7 ] :Qs[ ! }H

8
vak—}‘l = Uslls

10 k:=k+1

1 until /et ooy gy

12 end

Algorithm 2 roughly requires 2n? floating-point arithmetic operations (flops) per iter-
ation. B
On convergence, S is the factor of the approximated solution and satisfies X ~ S7'S.

Convergence can be accelerated using several techniques [7]. In our approach, we
employ a scaling defined by the parameter

ek =/ 14k oo/ | Aklloo-

In the convergence test, 7 is a tolerance threshold for the iteration that is usually
set as a function of the problem dimension and the machine precision e.

3 High-performance implementations

In this section we describe several high-performance codes for the solution of DREs.
All the implementations use linear algebra libraries (e.g.,, MKL or CUBLAS) and
employing single precision arithmetic. A double precision accurate solution can be
obtained, at a low-computational cost, applying an iterative refinement technique like
the one proposed in Benner et al. [8].

The solution of the Lyapunov equation is the most expensive part when solving
DREs using the Rosenbrock method (see Algorithm 1). Particularly, most of the com-
putational cost is due to the matrix inversion required at each iteration of the sign
function method (Algorithm 2). Thus, we have optimized the matrix inversion process.
The rest of operations are mainly matrix-matrix products of small matrices, which can
be efficiently computed on the multi-core architecture invoking a multi-thread imple-
mentation of BLAS.
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We present three different algorithms/implementations of the Rosenbrock method
which, basically differ in the procedure to compute the matrix inverse. All the remaining
steps in these algorithms/implementations are performed on the CPU and therefore,
we do not go into detail.

3.1 Implementation on a multi-core CPU: Ros (CPU)

The traditional approach to compute the inverse of a matrix A € R®*™ is based on
Gaussian elimination (i.e., the LU factorization), and consists of the following three

steps:

1. Compute the LU factorization PA = LU, where P € R™™ is a permutation
matrix, and L, U € R™*™ are unit lower and upper triangular factors, respectively,
see [9].

2. Invert the triangular factor U — UL
3. Solve the system XL = U~! using backward substitution for X.

4. Undo the permutations A~ := X P.

LAPACK [10] is a high-performance linear algebra library, which provides efficient
routines to compute the previous steps. In particular, routine getrf yields the LU fac-
torization (with partial pivoting) of a nonsingular matrix (Step 1), while routine getri
computes the inverse matrix of A using the LU factorization obtained by getrf (Steps
2-4). The computational cost of computing a matrix inverse following the previous
four steps is 2n3 flops.

3.2 Implementation on a many-core GPU: Ros (GPU)

The traditional algorithm for matrix inversion (see Section 3.1) shows some limitations
from the high-performance computing point of view. There is no possibility to compute
concurrently several steps, so parallelism has to be extracted within each step. Also,
step 2 and 3 are unbalanced, because they operate on triangular matrices. The Gauss-
Jordan elimination algorithm (GJE) is a reordering of the computations performed by
the Gaussian elimination procedure for matrix inversion. Thus, the arithmetic cost of
matrix inversion using GJE is the same as the one based on the LU factorization. How-
ever, the GJE method is better suited for parallelization. We present an implementation
of the GJE method on a GPU.

Algorithm 4 illustrates a blocked version of the GJE for matrix inversion. A de-
scription of the unblocked version (GEINGJ), called from inside the blocked one, can
be found in [11]; for simplicity, the application of pivoting during the factorization is
concealed; see [11]. The bulk of computations is cast in terms of matrix-matrix prod-
ucts; an operation which exhibits a high degree of concurrency. Therefore, GJE is a
highly appealing method for matrix inversion on emerging architectures like GPUs,
where many computational units are available and a highly tuned implementation of
the matrix-matrix product is available (e.g., in the NVIDIA CUBLAS library).
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Algorithm 3: Blocked Gauss-Jordan elimination algorithm for matrix inversion

Data: A € R™*™,
Result: A:= A"1

1 begin

2 to:=a

3 for k:=1to [%] do

Ago | Ao1 | Aoz
A— | A [ AL | A where Agy € RE-1DEx (=1 4, ¢ ROXD
4 Az | Ag | A
5 [A()l, Ajq, AQl]T = GEINGJ([AQL Aqy, A21]T)
6 Ago = Ago + Ap1 410
7 Agp = Agp + A21410
8 Ajo = A1 Aio
9 Agz = Aga + Ag1 A1z
10 Agg = Ao + An Ao
11 A12 = A11A12
12 end
13 end

3.3 Implementation on multi-GPU: Ros (MGPU)

Ros (MGPU) is in essence an extension of the Ros(GPU) solver which targets platforms
equipped with multiple GPUs. As mentioned before, the critical operation of the
Rosenbrock method is the matrix inversion. In this variant we employ a highly tuned
implementation for this operation that targets a platform with several GPUs connected
to a single CPU. This matrix inversion routine includes several optimization techniques,
in particular, the use of optimized CUBLAS kernels, padding to accelerate the GPU-
memory access, an optimized task schedule that permits the concurrent computation in
all the devices, a look-ahead approach to minimize the negative impact from the critical
path, a cyclic distribution that maximizes load balance, and the use of two block-sizes
that allows to adapt the routine execution to the particularities of the CPU and the
GPU architectures simultaneously. See [12] for more details on the matrix inversion

routine.

4 Numerical Results

In this section we evaluate the performance of the implementations introduced in Sec-
tion 3 on a hybrid platform composed of a multi-core CPU and several many-core
GPUs. Particularly, the experiments are performed on a computer with two INTEL
Xeon QuadCore E5530 processors at 2.27GHz, connected to an NVIDIA Tesla C1060
(consisting of four NVIDIA Tesla S1060 GPUs) via a PCI-e bus (more details about the
platform can be found in Table 4).
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Algorithm 4: Blocked Gauss-Jordan elimination algorithm for matrix inversion
Require: A € R™*"

1: {g:=a

2: for k:=1to [}] do
Aoo | Aot | Aoz

3: Partition A — Ag | A11 | Ars where Agy € R(k—l)bx(k——l)b, Ay € RExD
Ao | A21 | A2

[Ao1, A1, Aai]” == GEINGJI([Ao1, A11, An]Y)

4:
5 Ago == Ago + Ao1 410
6:  Agg:= A+ Andio
7 A]o = A11A10
8 Aoz = Aoz + Ap1A12
9:  Ago = Ago + A1 Ar2
10: Ao = A11419
11: end for
Processors #proc. #cores Frequency L2 Memory
(per proc.) cache
(GHz) (MB) (GB)
InTEL QuadCore E5530 2 4 2.27 8 48
NViDiA TESLA ¢1060 4 240 1.3 - (4x4)16

Table 1: Hardware employed in the experiments.

A multi-thread version of the INTEL MKL library (version 10.2) provided the
necessary LAPACK and BLAS kernels for the CPU, and NViDia CUBLAS (version
2.1) for the GPU computations.

4.1 Test examples

We evaluate the performance of the implementations using two problems from the
Oberwolfach Model Reduction Benchmark Collection': the semi-discretized heat trans-
fer problem for the optimal cooling of steel profiles (STEEL), and the butterfly gyro
problem (GYRO). In the following we briefly describe these two models.

4.1.1 STEEL

This model arises in a manufacturing method for steel profiles. The goal is to design
a control that yields moderate temperature gradients when the rail is cooled down.
The mathematical model corresponds to the boundary control for a 2-D heat equation.
A finite element discretization, followed by adaptive refinement of the mesh, results

"http://www. intek.de/simulation/benchmark/.
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in several instances of this benchmark. We employed two instances of this problem,
STEELs and STEELy. For both DREs, m = 7 and p = 6. The order of the system (size
of A) is n=5,177 for the STEELg instance and 20,209 for the STEEL, instance.

4.1.2 GYRO

The Butterfly is a vibrating micro-mechanical gyro that has been proposed for iner-
tial navigation applications. The model is a simplified version which includes the pure
structural mechanics problem only. It is designed to test model reduction approaches.
The dimension of the mechanical system described by a system of second-order dif-
ferential equations is n = 17,361. Hence, for the numerical experiments we first need
to transform the system into a first order one, the main dimension of the transformed
system is thus n = 34, 722.

4.2 Numerical Results

All the experiments were done using single-precision arithmetic, and all the reported
execution times include the overhead introduced by data transfers between the CPU
and the GPUs memory spaces.

We first study the STEEL case, because our three implementations can tackle this
problem using the available hardware (the large dimension of the matrices involved in
GYRO did not allow us to solve this problem using Ros(GPU)).

Tables 2 and 3 present the total time as well as the time spend in the sign function
Lyapunov solver (Fyign) required to solve the DRE associated with both instances of
STEEL on the [0, 1] interval with a stepsize of h = 0.1.

Ros (GPU) Ros (MGPU) Speed-up
Time Time Time
Fyign | Total || Feign | Total | Fuign | Total || Fuign | Total | Fyq, | Total

| 92.06 | 94.65 || 47.55 | 50.13 [ 1.94 | 1.89 ][ 26.44 [ 28.99 | 3.48 | 3.27 |

Ros (CPU) Speed-up

Table 2: Execution time (in seconds) and speed-up obtained for the STEELg benchmark.

Ros (CPU)
Time

Ros (GPU)
Time

Speed-up

Ros (MGPU)
Time

Speed-up

Fiign | Total

Fsign | Total

F sign l Total

Fyign | Total

Flign | Total

| 8703.2 [ 9061.6 | 3406.5 | 3712.7 | 2.56 | 244 [ 1338.2[1688.5 ] 6.50 | 5.37 |

Table 3: Execution time (in seconds) and speed-up obtained for the STEEL;, benchmark.

The experimental results in the tables show that most of the time (approximately
97%) is dedicated to the computation of the sign function method. They also shown
how this computation can be drastically accelerated using graphics processors. The
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hybrid CPU-GPU implementation accelerates the computation time of Fy;g, between
1.94x and 2.56x. The use of the four GPUs available on the platform enhances this
acceleration factor to 3.48x for the STEELg problem and 6.5x for the STEELj, case.

In a second experiment we evaluate the performance of the CPU and the multi-
GPU implementations (Ros(CPU) and Ros(MGPU)) using the GYRO example. Table 4
summarizes the results obtained for this benchmark. Once more, most of the time is
spent in the computation of Fi;4, and important time reductions are obtained from the
use of the four GPUs. In this problem routine Ros (MGPU) computes Fy;g, approximately
9x faster than the Ros(CPU) implementation.

Ros (CPU) Ros (MGPU) Speed-up
Time Time
Fiign | Total Fiyign | Total | Fiign | Total
| 4491969 | 46136.36 || 4986.36 | 6141.64 | 9.01 [ 7.51 |

Table 4: Execution time (in seconds) and speed-up obtained for the GYRO benchmark.

From the results we can conclude that the hybrid CPU-GPU implementation re-
ports an important reduction of the computational time, but the amount of memory
limits its application to small and medium problems. The multi-GPU permits to target
larger problems while simultaneously providing a notorious performance, e.g., acceler-
ating the execution of the GYRO problem 7.51x.

Finally, we remark that in the Ros(CPU) implementation based on the LAPACK
routines for the matrix inversion, approximately the 97% from the execution time is
dedicated to the computation of the sign function. Despite the effort to optimize this
operation in the GPU-based implementations (Ros(GPU) and Ros(MGPU)), the sign
function still concentrates a 80% of the total time for the fastest implementation and
the largest problem studied in this work.

5 Conclusions and future work

The numerical results show the dramatic acceleration when using GPUs for solving
DREs. The single GPU-based implementation reports a speed-up of 2.5x over the
multi-core CPU implementation based on LAPACK. The multi-GPU implementation,
executed on four GPUs, increases this ratio up to 7.5x Another remarkable advantage
from the use of several GPUs is the increment of the aggregated memory. As each device
includes its own memory, an increase in the number of devices reports an increment
in the amount of available memory and, hence, also the dimension of the affordable
problems. This is specially important in many optimal control problems, where the
dimension of the related mathematical models is extremely large.

The use of four GPUs reduces the percentage of time dedicated to compute matrix
inverses from 97% to 80%. The use of more GPUs will probably keep decreasing this
percentage. In general, GPUs show an excellent relationship between cost and com-
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puting power, achieving more FLOPS per dollar than the traditional high performance
architectures in many application areas, e.g., in the execution of dense linear algebra
operations.

The acceleration of other stages involved in Algorithm 1, the implementation of
higher order methods and a stepsize control will be discussed in future works.
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