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Control Problems for Nonlinear PDEs

min
u∈L2(0,Tf ;U)

1

2

Tf∫
0

〈y ,Q y〉Y + 〈u,R u〉U dt + G (x(Tf )),

with Tf ∈ (0,∞] and G ≡ 0 if Tf = ∞, subject to the semilinear
(abstract) state equation

ẋ(t) = f (x(t)) + B u(t) + F v(t) for t > 0, x(0) = x0 + η0,

y(t) = C x(t) + w(t).

Here,

x(t) ∈ X are the states (X = H1(Ω) or X = Rn after semi-
discretization);

u(t) ∈ U are the inputs and v(t) is the input noise (here assume
U = Rm);

y(t) ∈ Y are the outputs and w(t) is the output noise
( Y Hilbert space or Y = Rp after semi-discretization);

η0 is the noise in the initial condition.

MPC für
nichtlineare

PDEs

Peter Benner,
Sabine Görner

Introduction

Nonlinear
Optimal Control
Problems for
PDEs

Motivation

Solution
Strategy

MPC/LQG
Design

Numerical
Example

Summary and
Outlook

References

Control Problems for Nonlinear PDEs

min
u∈L2(0,Tf ;U)

1

2

Tf∫
0

〈y ,Q y〉Y + 〈u,R u〉U dt + G (x(Tf )),

with Tf ∈ (0,∞] and G ≡ 0 if Tf = ∞, subject to the semilinear
(abstract) state equation

ẋ(t) = f (x(t)) + B u(t) + F v(t) for t > 0, x(0) = x0 + η0,

y(t) = C x(t) + w(t).

Examples of semilinear PDEs:

reaction-diffusion equation: f (x) = α∆x + p(x), p – polynomial;

Allen-Cahn equation: f (x) = α∆x + x(1− x2);

Kuramoto-Sivashinsky equation: f (x) = −α∆x − β∆2x − x∇x ;

Burgers equation: f (x) = α∆x − x∇x .
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Control Problems for Nonlinear PDEs

min
u∈L2(0,Tf ;U)

1

2

Tf∫
0

〈y ,Q y〉Y + 〈u,R u〉U dt + G (x(Tf )),

with Tf ∈ (0,∞] and G ≡ 0 if Tf = ∞, subject to the semilinear
(abstract) state equation

ẋ(t) = f (x(t)) + B u(t) + F v(t) for t > 0, x(0) = x0 + η0,

y(t) = C x(t) + w(t).

General form of semilinear PDE control problems considered here:

∂

∂t
x(t, ξ) = A(ξ)x(t, ξ) + N(ξ, x,

∂

∂x
x) + B(ξ)u(t),

ξ ∈ Ω ⊂ Rd ; t ∈ [0,Tf ]; A : X → X linear, elliptic operator;
N sufficiently smooth; together with suitable boundary conditions

MPC für
nichtlineare

PDEs

Peter Benner,
Sabine Görner

Introduction

Nonlinear
Optimal Control
Problems for
PDEs

Motivation

Solution
Strategy

MPC/LQG
Design

Numerical
Example

Summary and
Outlook

References

Motivation
Abrasive Waterjet Cutting

Used to cut titanium, ceramics, and
other compound materials.

Material is cut using a focused beam
(diam ≈ 1mm) in which abrasive
particles (sand, garnet) are
accelerated by water or air to
velocity ≈ 900m/sec;

cut has depth of several centimeters.

Problem: ripple formation at
sidewalls, degradation of cut quality.

Similar problems arise in
laser/ion/electron beam cutting.

Modeled by generalized KS equation.

r = (x , y)
S(r, t) = erosion front
S(r, 0) = 0

u = 0  drilling.

Source: Friedrich/Radons/Ditzinger/Henning, Phys. Rev. Lett., 85(23), 2000.

Goal: control speed u(t) to achieve smooth cut, avoid ripples.
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Solution Strategy

Problems are

1 Nonlinearity → Formulation as an optimization problem leads to
a nonlinear program → large computational effort.

2 Nominal states may not be available because of

noise in input, output (measurements) and initial condition
(noise may also represent modeling errors);
states are not fully accessible (by measurements or simulations).

Strategy (based on Ito/Kunisch, Receding Horizon Control with
Incomplete Observations, SIAM J. Control Optim., Vol. 45, No. 1,
March 2006)

1 Linearize the nonlinear state equation on sub-intervals (Model
Predictive Control (MPC) or Receding Horizon Control (RHC)).

2 Find estimates of the states (Linear Quadratic Gaussian Design
(LQG)) on the sub-intervals.
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MPC/LQG Design
Linearization

(1) Spatial semi-discretization by FEM or FDM.

(2) Linearization on [Ti ,Ti + T ]

Use a given reference trajectory (x∗(t), u∗(t)) and determine an
operating point x̄ , for example

x̄ =
1

T

Ti+T∫
Ti

x∗(t) dt.

Linearize around this operating point to obtain a linear equation on
[Ti ,Ti + T ]:

d

dt
(x(t)− x∗(t)) = A (x(t)− x∗(t)) + B (u(t)− u∗(t)) + Fv(t)

where A = f ′(x̄).
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MPC/LQG Design

(3) LQG Design on [Ti ,Ti + T ]

Assumptions:

The linearized system is controllable and observable.

w and v are zero-mean stochastic processes, that is E [w ] = 0,
E [v ] = 0, E [vwT ] = 0, E [wwT ] = W , E [vvT ] = V .
V and W are symmetric positive definite covariance matrices.

E [η] = 0, E [η vT ] = 0, E [η wT ] = 0

Best estimate x̂(t) of x(t): Kalman filter

˙̂x(t) = A(x̂(t)− x∗(t)) + f (x∗(t)) + Bu(t) + Gf (y(t)− Cx̂(t)),

where x̂(0) = x0 + η0, Gf = Σ∗C
TW−1 and Σ∗ is the solution of

the Filter Algebraic Riccati Equation (FARE)

0 = AΣ + Σ AT − Σ CTW−1C Σ + FVFT .
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MPC/LQG Design

(3) LQG Design on [Ti ,Ti + T ]

The control on [Ti ,Ti + T ] is given by the feedback law

ui (t) = −G x̂(t)

where G = R−1BTX∗ and X∗ is the solution of the Algebraic Riccati
Equation (ARE)

0 = X A + ATX − X BR−1BTX + CTQC .

(4) Update

u(t) = ui (t), t ∈ [Ti ,Ti + δ), δ ≤ T .

Repeat the whole procedure on the next interval [Ti+1,Ti+1 + T ].
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MPC/LQG Design

Effort on every sub-interval [Ti ,Ti + T ]:

1 Reference trajectory (x∗(t), u∗(t)) (known/desired trajectory or
solve an undisturbed problem)

2 Linearization around an operating point based on the reference
trajectory

3 Solve the ARE and FARE to obtain the two gain matrices G and
Gf .

4 Solve two ODEs:

ODE for measurements/simulation of measurement (MODE)
→ uses computed control from EODE
ODE for estimated states (EODE)
→ uses measurements from MODE
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Theoretical Aspects

Performance of the compensator (Ito/Kunisch)

E (t) =
[
〈x − x∗,X (x − x∗)〉+ 〈x − x̂ ,Σ−1(x − x̂)〉

] 1
2

Assumptions:

E (0) ≤ δ
2 , and |x∗(t)− x̄ | ≤ δ on [0,T ] for some δ > 0 and ...

Conclusion:

It can be shown, that E (t) < δ
2 (1 + α) ∀t ∈ [0,T ], α ∈ (0, 1).

If E (0) ≤ δ
2 , and |x∗(t)− x̄ | ≤ δ on [Ti ,Ti+1] ∀i = 0, ... and ...

→ this can be expanded to all t > 0.
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Optimal Control Problem for the Burgers Equation

Burgers Equation: 1D convection-diffusion equation

xt(t, ξ) + x(t, ξ) xξ(t, ξ) = νxξξ(t, ξ)

• ν – viscosity parameter

Optimal control problem for the Burgers equation

min
u∈L2(0,Tf ;U)

1

2

∞∫
0

∫
Ωy

y(t, ξ)T y(t, ξ) dξ + u(t)TR u(t) dt

subject to the Burgers equation

xt(t, ξ) = ν xξξ(t, ξ)− x(t, ξ) xξ(t, ξ) + B(ξ)u(t) + F (ξ)v(t),

x(t, 0) = x(t, 1) = 0, t > 0,

x(0, ξ) = x0(ξ) + η(ξ), ξ ∈ (0, 1),

y(t, ξ) = C x(t, ξ) + w(t, ξ).
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Optimal Control Problem for the Burgers Equation

Burgers Equation: 1D convection-diffusion equation

xt(t, ξ) + x(t, ξ) xξ(t, ξ) = νxξξ(t, ξ)

• ν – viscosity parameter

Optimal control problem for the Burgers equation

FEM discretization in space: N sub-intervals [ξi , ξi+1], i = 0, ..,N − 1

 ODE: MẋN(t) = ν K xN(t) + S(xN(t)) + BNu(t) + FNv(t),

where M is the mass matrix, K the stiffness matrix and S(xN(t)) the
nonlinear part.
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MPC/LQG

Consider a sub-interval [Ti ,Ti + T ]

1 Reference trajectory: from two-point boundary value problem for
the undisturbed control problem

2 Linearization: A = f ′(x̄N(t)) = −M−1(νK + Sx(x̄
N))

(Sx(x̄
N) - Jacobian of S at point x̄N)

3 Solve the two matrix Riccati Equations

0 = X A + ATX − X BNR−1(BN)TX + CTQC → X∗

0 = AΣ + Σ AT − Σ CTW−1C Σ + FNV (FN)T → Σ∗

Gain matrices: G = R−1(BN)T X∗, Gf = Σ∗C
TW−1.

4 ODEs for measured and estimated states in every time step:

MODE: M ẋN(t) = −ν K xN(t)− S(xN(t)) + FNv(t) + BNu(t)

yN(t) = C xN(t) + M−1wN(t)

EODE: ˙̂x(t) = A(x̂(t)− x∗(t)) + f (x∗(t)) + BNu(t)

+Gf (y
N(t)− Cx̂(t))

u(t) = u∗(t)− G (x̂(t)− x∗(t))
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First Results (without noise)

Parameters

Tf = 3, T = 0.5, h = τ = 1
50 , ν = 0.01, C = I, B = F = 1Ωu (ξ),

Q = 0.1I, R = 0.001I, V = 4I, W = 0.01I
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First Results (with noise)

STC: 0.02218 STC: 0.00199

(
State Tracking Cost (STC):

3∫
0

(x − x∗)TCTQC (x − x∗) dt

)
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First Results

STC: 0.00301 STC: 0.00706
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Summary

Summary

Case study for MPC/LQG approach based on Ito/Kunisch with
taking into account disturbance in

input

output

initial value.

 robust control scheme in the presence of uncertainties
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Outlook

More efficient implementation:

large-scale Riccati solvers, especially for FARE;
adapted meshes for time frames;
Riccati differential equation solvers for time-varying
linearizations.

Application to more challenging nonlinear PDEs in 2D and 3D,
in particular to abrasive water cutting problem.

Generalize finite-dimensional convergence theory to more
abstract setting.
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