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Abstract. We describe a prototype web service for model reduction of very large-scale linear systems, with
dimension in the order of millions of states, that includes a user-friendly interface designed so that the computation
can be easily performed via the HTTP protocol. Access via a web browser isolates the user of the service from the
complexities of installing and using the parallel model reduction codes and the maintenance of the hardware. In case
the routines are found to be appropriate for the problem the user needs to solve, the library can be then downloaded
and installed on the user’s own computing resources.

This paper illustrates the major issues of the access procedure by means of graphical examples, and describes
the structure and implementation of the remote model reduction service. The service is offered in a cluster of Linux
machines.
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1. Introduction. The development of the Internet and its popularization via the world
wide web (www) is producing a tremendous impact in our society. The www is nowadays
employed to consult databases, retrieve documents, submit jobs to remote systems, and access
a large number of services which is continuously growing. The extension of these services
has recently reached the area of scientific computing in projects like NetSolve [4], LAPK
(http://lapk3.hsc.usc.edu/lapk), the SLICOT Web Environment [16], NPACI (https://hotpa-
ge.npaci.edu), CACTUS (http://www.cactuscode.org), and EOT-PACI (http://www.eot.org),
among others. Many of these efforts can be generically classified as problem-solving envi-
ronments or computational science portals [18]. A related, extensive survey of applications
of web-computing and grid-computing can be consulted, e.g., in [10].

In this paper we further explore the www and the HTTP protocol as a means of offering an
enhanced service for scientific computing to a certain cluster of the scientific and engineering
community. Specifically, we offer a computational service for model reduction of large-scale
linear systems, with potentially even millions of states, on a parallel cluster. The idea here is to
provide an easy way for remote users to interact with the model reduction codes via the www
so that the service becomes a demonstrator of the capabilities of the parallel model reduction
library. Note that a usual case is that of a user with a problem that needs to be solved, who has
to search for a likely solver (in the form of a code or a library), read the manuals, install the
application (after having solved compatibility problems with the compiler, operating system,
or even architecture), write the interface programs, and run it just to then discover that the
code is not the appropriate one to solve his/her problem.

Thus, the main advantage of providing this service via the www is that the end-user
remains completely isolated from the complexities of the software and the hardware system,
and the maintenance of both. Then, in case the routines are evaluated as satisfactory by
the user, the library itself can be downloaded and installed on any (parallel) architecture
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with MPI and the appropriate parallel numerical libraries (basically, BLAS, LAPACK, and
ScaLAPACK [2, 9]).

The problem considered here, model reduction, is of fundamental importance in many
modeling and control applications involving continuous linear time-invariant (LTI) dynamical
systems in state-space form:

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0.

(1.1)

Here, A ∈ IRn×n is the state matrix, B ∈ IRn×m, C ∈ IRp×n, D ∈ IRp×m, x0 ∈ IRn is the
initial state of the system, and the number of states, n, is known as the state-space dimension
(or the order) of the system. The transfer function matrix (TFM) associated with the system
is defined by G(s) = C(sI − A)−1B + D. Hereafter, we assume that A is stable, i.e., the
spectrum of A is contained in the open left half plane. This implies that the system is stable,
i.e., has no poles in the closed right half plane.

The model reduction problem consists in finding a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂û(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0,
(1.2)

of order r, r ¿ n, and associated TFM Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ which approximates
G(s). The reduced-order model can then replace the original high-order system in subsequent
calculations including, e.g., the design of the controller [22], thus saving valuable hardware
resources.

Model reduction of large-scale stable linear systems (n in the thousands) arises, among
others, in control of large flexible mechanical structures or large power systems, and weather
simulation (storm surge forecast and perturbation evolution); see, e.g., [11, 12, 13, 17, 23].
Very large-scale linear systems, with state-space dimension n as large as 106, are common
in circuit simulation and VLSI design, air quality simulation, etc. [3]. These systems often
present a sparse (unstructured or banded) state matrix A.

In general, model reduction methods for LTI systems with dense state matrices have a
computational cost of O(n3) floating-point arithmetic operations (flops) and require storage
for O(n2) numbers. While current desktop computers provide enough computational power
to reduce models of order n in the hundreds using libraries like SLICOT1 or the MATLAB

control-related toolboxes, large-scale applications clearly require the use of advanced com-
puting techniques. The approach proposed in PLiCMR2 [7, 8] is to employ dense model
reduction methods on parallel computers, thus allowing for larger problems to be reduced.
Nevertheless, none of these approaches exploit nor preserve the sparsity of the state matrix
and therefore the dimensions of the largest systems they can deal with is quite limited.

The model reduction approach considered in this paper is based on the so-called state-
space truncation and requires, at a first stage, the solution of two large Lyapunov equations
whose coefficient matrix is the state matrix of the system. These equations are solved via a
low-rank iteration [20, 25] which only involves numerical computations such as the solution
of linear systems and matrix-vector products. The success of these Lyapunov solvers relies
in the use of efficient routines that exploit the sparsity of the coefficient matrix. Once the
equations are solved, the reduced-order system is obtained using a slightly modified version

1Available from http://www.win.tue.nl/niconet/NIC2/slicot.html.
2Available from http://spine.act.uji.es/˜plicmr.html.
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of the balanced truncation (BT) method [7, 24], which only requires dense linear algebra
operations on much smaller data matrices.

The paper is structured as follows. In Section 2 we briefly revisit the methods for model
reduction of very large linear systems, including the square-root BT method and the low-rank
solvers for the Lyapunov equations arising in state-space truncation. The usage, structure,
and implementation details of the web service are introduced in Section 3. There graphical
examples are employed to illustrate the procedure to access the service. Concluding remarks
and possible future extensions of the service follow in the final Section.

2. Model Reduction of Very Large Linear Systems.

2.1. The square-root BT Method. Our routines are based on BT model reduction [21,
26, 27, 28]. BT belongs to the family of absolute error methods, which try to minimize
‖∆a‖∞ = ‖G − Ĝ‖∞. Here, ‖G‖∞ denotes the L∞- or H∞-norm of a stable, rational
matrix function defined as

‖G‖∞ = ess sup
ω∈IR

σmax(G(ω)),(2.1)

where  :=
√
−1 and σmax(M) denotes the largest singular value of the matrix M . In the

continuous-time case, a reduced-order model computed by BT approximates the original one
well at high frequencies (ω → ∞), with a perfect match at ω = ∞.

BT methods are strongly related to the controllability Gramian Wc and the observability
Gramian Wo of the system (1.1), given by the solutions of two “coupled” Lyapunov matrix
equations:

AWc + WcA
T + BBT = 0,(2.2)

AT Wo + WoA + CT C = 0.(2.3)

As the coefficient matrix in the equations, A, is assumed to be stable, Wc and Wo are positive
semidefinite and therefore can be factored as Wc = ST S and Wo = RT R. The factors S and
R can be the Cholesky factors (square and triangular) of the Gramians or full-rank factors
(possibly rectangular and full).

Efficient Lyapunov solvers that exploit the sparsity of the coefficient matrix A are de-
scribed in the next subsection.

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [ U1 U2 ]

[

Σ1

Σ2

]

[ V1 V2 ]
T

,(2.4)

where U and V are orthogonal matrices, and Σ = diag (σ1, σ2, . . . , σ`) is a diagonal matrix
containing the singular values of SRT . Here, ` = max{s, r}, where S ∈ IRs×n, R ∈ IRr×n.
The singular values σ1, . . . , σ` are known as the Hankel singular values of the system. If
σr > σr+1 = 0, then r is the state-space dimension of a minimal realization of the system.

Next, a reduced system of order r is determined by partitioning the diagonal matrix Σ
into Σ1 = diag (σ1, σ2, . . . , σr) and Σ2 = diag (σr+1, σr+2, . . . , σ`), so that, hopefully, a
large gap exists between σr and σr+1. A conformal partition of U and V is induced by the
partitioning of Σ.

The square-root BT method determines then the reduced-order model of order r as

Â = TlATr,

B̂ = TlB,

Ĉ = CTr, and

D̂ = D,

(2.5)
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with the projection matrices Tl and Tr given by

Tl = Σ
−1/2

1 V T
1 R and

Tr = ST U1Σ
−1/2

1 .
(2.6)

The realization of order r computed by the square-root BT algorithm satisfies the error
bound

‖∆a‖∞ := ‖G − Ĝ‖∞ ≤ 2
n
∑

i=r+1

σi.(2.7)

This allows an adaptive choice of the size of the reduced-order model if a given upper bound
for the error is to be satisfied.

2.2. Low Rank Solution of Lyapunov Equations. In this subsection we revisit the
Lyapunov solvers introduced in [20, 25]. These iterative algorithms benefit from the usual
low-rank property of the right-hand side matrix to provide low-rank approximations to a
Cholesky or full-rank factor of the solution matrix. These approximations can reliably sub-
stitute S and R in the computation of (2.4) and (2.6).

Specifically, given an “l–cyclic” set of (complex) shift parameters {p1, p2, . . .}, pk =
αk + βk , such that pk = pk+l, the cyclic low-rank alternating direction implicit (LR-ADI)
iteration proposed in [25] can be reformulated as follows:

V0 = (A + p1In)−1B,
S0 =

√
−2 α1 V0,

Vk+1 = Vk − δk(A + pk+1In)−1Vk,
Sk+1 = [Sk , γkVk+1] ,

(2.8)

where γk =
√

αk+1/αk, δk = pk+1 + pk, pk is the conjugate of pk, and In denotes the
identity matrix of order n. On convergence, after kmax iterations, a low-rank matrix S̃ of order
n × kmaxm is computed such that S̃S̃T approximates Wc = ST S. An analogous iteration
provides a low-rank approximation R̃ of R. The use of direct linear system solvers [15]
(based, e.g., on the LU or Cholesky factorization) here is appealing as the same coefficient
matrix is involved in iterations k and k + l. Therefore, the computed factorization can be re-
used several times as long as sufficient workspace is available to store l (sparse) factorizations.

The performance of iteration (2.8) strongly depends on the selection of the shift param-
eters. In practice, the set {p1, p2, . . . , pl} should be chosen so that it is closed under complex
conjugation (i.e., if pk is a selected shift parameter, so is pk). In case the eigenvalues of A
are real, the optimal parameters can be computed explicitly [30, 31]. Otherwise, an optimal
solution is not known. A heuristic procedure is proposed in [25] to compute parameters by
approximating the largest eigenvalues of A and A−1. The procedure is based on an Arnoldi
iteration [19] involving A and A−1. For further details on the convergence of the LR-ADI
iteration and the properties of the heuristic selection procedure, see [25]. Preliminary results
of a parallel Lyapunov equation solver based on the LR-ADI method are reported in [5].

It should be emphasized that, though mathematically equivalent, the methods just de-
scribed for solving (2.2)-(2.3) and (2.4) significantly differ from standard methods used in
the MATLAB toolboxes or SLICOT [29]. First, the proposed LR-ADI iteration for the solu-
tion of the coupled Lyapunov equation exploits the sparsity in the coefficient matrix. Besides,
as we are using low-rank approximations to the full-rank or Cholesky factors, the computa-
tion of the SVD in (2.4) is usually much more efficient: instead of a computational cost of
O(n3) when using the Cholesky factors, this approach leads to an O(k2

max · m · p · n) cost
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where, in model reduction, often m, p ¿ n; see [7]. This latter advantage is shared by the
routines in our dense parallel model reduction library PLiCMR [7, 8]. However, PLiCMR is
not able to exploit the sparsity of the coefficient matrix.

2.3. Parallelization. The LR-ADI iteration and the computation of the acceleration
shifts basically require linear algebra operations like matrix-vector products and the solu-
tion of linear systems. Our approach for dealing with these matrix operations is based on
the use of parallel linear algebra libraries. Specifically, in case sparse matrices are involved,
we propose to employ codes like SuperLU [14] or MUMPS [1] to compute LU-like factor-
izations of the matrices A + pkIn and keep the factors if sufficient storage is available. In
case the coefficient matrix is dense or banded we use the LU factorization routines in the
parallel dense linear algebra library like ScaLAPACK [9]. Note that for full dense coefficient
matrices the methods in PLiCMR (see [8] for a description of the library and [6] for a web
environment similar to the one described here) are to be preferred as the Lyapunov equation
solvers used there have quadratic convergence rate as opposed to (super-)linear convergence
of the ADI method at a comparable cost of the remaining computational steps.

Figure 2.1 shows the relation between our library of methods for model reduction, SpaRed,
and the underlying parallel linear algebra libraries. All the model reduction codes in the li-
brary are written using the C programming language following an approach that could be
roughly classified as object-oriented.

BLAS

LAPACK

ScaLAPACKSuperLUMUMPS

SpaRed

PBLAS

Local

Global

FIG. 2.1. SpaRed and the underlying libraries.

3. Web Service. In this section we describe both the access procedure and the structure
and implementation of the prototype service for model reduction via the www. This service
is provided on a cluster of computers, running the Linux (Suse 7.0) operating system, at the
University Jaume I.

3.1. Accessing the Service. Our computational web service for model reduction is
provided at http://spine.act.uji.es/˜plicmr/SpaRedW3/SpaRedW3.html. On entry (see Fig-
ure 3.1), the user is offered the possibility of registering to access the service, perform model
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reduction on a given system, check the status of submitted jobs, obtain information on the
cluster load, etc.

FIG. 3.1. Access to the parallel model reduction service.

The actual access to the service is performed through the job submission form (see Fig-
ure 3.2). In this form the user is requested to specify the parameters of the job, which can be
grouped as follows:

– Validation of access: An identifier (parameter 1 in the job submission form or, for
short, P1) and a password (P2), both provided via e-mail on registration, allow iden-
tification of the responsible of the requests. This identification is merely for statisti-
cal purposes as no real encryption of these data is performed.

– System parameters: The model dimensions, n, m, and p (P6, P7, and P8, respec-
tively), and the type of matrix entries (P15), real or complex; also, the class of state
matrix (P14) which, in the current implementation of the service, can be dense, sym-
metric/unsymmetric banded, or sparse.

– Reduced-order system parameters: Here the user is given the choice (P5) to either
select a fixed order r for the reduced system (P9), or allow the order to be automati-
cally determined using tolerance thresholds (P10 and P11).
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– Numerical methods: Only the low rank square-root method (P3), a variant of the BT
method that solves the Lyapunov equations using the LR-ADI iteration, is currently
available. Future extensions will also provide the possibility of selecting the solver
for the linear systems of equations, depending on the properties of the state matrix.
Notice that this is specially interesting when sparse matrices are involved, as the
performance of the model reduction methods strongly depends on the linear system
solver that is selected [15].

– Execution environment: The recommended number of nodes of the cluster to par-
ticipate in the execution of the job (P12), and the e-mail address (P16) where the
results should be returned to.

– Data: The files with the system matrices and the compression tool (P13) employed
for their preprocessing.

FIG. 3.2. Job submission form.

The same form can be used to upload the data matrices from the local file system. The
structure of the file containing the data depends on the class of the matrix. Thus, column-
major order is compulsory for all but the sparse matrices; files for banded matrices only
include the diagonals within the band; files for symmetric matrices only contain the upper
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triangular part; and sparse matrices are stored in compressed column (or Harwell-Boeing)
format [15]. As an example, in Figure 3.3 we show the contents of a file containing a square
matrix of order n = 6 with nnz = 4 non-zero entries in sparse format:

















−0.42 0 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0 0 0
0 −0.36 −0.58 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(3.1)

In particular, the first line of the file specifies the value of nnz. This is followed by the matrix
stored using the compressed column format: the n + 1 entries of vector colptr, the nnz
entries of vector rowind, and the nnz entries of the matrix. The indices of both vectors start
at zero following the convention of the C programming language.

4
0
1
2
2
4
4
4
0
1
3
3
-4.2e-01
1.0e-01
-3.6e-01
-5.8e-01

FIG. 3.3. Contents of a file specifying the matrix in (3.1) in sparse format.

1. JOB ID. = 00011
(METHOD=’LRSR’, SOLVER=’default’,
ORDSEL=’F’, N=7, M=3, P=2, NR=3,
TOL1=0.0, TOL2=0.0,
NP=1, COMPRESS=’NO’)

2. NR = 3
3. NHSV = 3
4. NP = 1
5. TIME = 0.3507E+1
6. INFO = 0

FIG. 3.4. Text of an e-mail with the results of a job submission.

In order to reduce the size of the data files that need to be transfered, compressed data
files using several standard compression tools are accepted (e.g., zip and gzip).

The results of the execution are returned via e-mail, with the matrices of the reduced
system as attached files (compressed with the same tool that was used on the data files). The
text of the e-mail contains a few lines with the following data:

– The job identifier that was assigned to the user’s job after submission. This parame-
ter is followed by a compact description of the parameters of the job.
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– The order of the resulting reduced-order system.
– The number of computed Hankel singular values.
– The number of processors that were used to execute the job.
– The wall-time required to execute the job.
– The info result (or status) from the execution of the routine.

Figure 3.4 shows an example of the text of the e-mail that is returned to the user after the
job is finished.

Our model reduction service is connectionless in that any data that is submitted to the
system is only stored while the reduction of the system is being performed and until the
response is returned to the user. A connection-oriented (or session-oriented) service presents
some advantages: for instance, the system could keep the user’s data, allowing thus to perform
interactive model reduction more efficiently (the data only needs to be sent once and remains
stored in the system as long as the session is open). This is the approach adopted, e.g., in [16].
However, this translates much of the burden of the client-server (user-web service) interaction
to the server side, apart from leading to much more complex failure recovery. Therefore, we
prefer the connectionless approach, as the goal of the web service is still to serve as a rapid
testbed of our parallel model reduction routines.

3.2. Structure and Implementation. The model reduction web server is composed
of several PHP programs and the PBS (portable batch system) job control system. In the
previous implementation, the service was accessed via a set of CGI programs, written in
a shell script programming language. In the current version the CGI programs have been
replaced by PHP codes. The web server includes a management system so that job requests
are processed using no external procedures, as was necessary in the CGI-based variant.

Thus, the job submission form includes PHP code that is directly interpreted by the web
server. The code is in charge of validating the data of the request and, in case the request is
correct, create a pair of files necessary for job submission: a text file with the definition of the
job parameters, and a submission shell-script specifying the number of nodes to participate
in the execution and the path of executable program and data files. Next, the job is submitted
to the job management system that is controlled by PBS.

From then on it is the responsibility of PBS to monitor the execution of the job. This
queuing system consists of a server process which is executed in the cluster server and a
client process running in each node of the cluster. The scheduler determines when a job
begins its execution in the cluster using a FIFO strategy. The number of actual jobs that can
be simultaneously in execution in the cluster is limited by the number of available nodes, due
to the exclusive use application processes make of the Myrinet network interface cards. The
client processes are in charge of receiving and executing job requests and also keep the PBS
server informed of the current status of the node (basically, down, idle, or busy),

The submission shell-script maintains information on the actions that are to be performed
in response to the user request when the job is finished. This code is implemented in PHP
and is responsible for locating the results, composing an e-mail with those data, and sending
back the response. Both the parameters of the job submission (except for the data matrices)
and the results of the execution are sent as part of this message.

Figure 3.5 summarizes the actors and actions of the web service.

4. Concluding Remarks and Future Work. We have described a web service for par-
allel model reduction of very large linear systems. By providing a remote access, the end-user
is given a computational tool to reduce large-scale systems and/or to test the numerical re-
liability of the reduced-order models produced via these methods. Moreover, in case the
methods are found to be appropriate for the problems to be solved, the parallel library can
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INTERNET PRIVATE NET

Client
Web browser

Server

User

Cluster Nodes

SendMaiLMail client

PBS receives a
job submission.

executed

When PBS job finishes
a PHP script prepares

the submission form

The Web server receives
the data in the form

The Web server executes
the PHP programs that
prepare the files for
PBS

and sends a response mail
with the results

The job is scheduled and

The user receives a
mail containing the

PBS queueing system

The user completes

and submits the job

Web + PHP module

reduced−order system

FIG. 3.5. Actors and actions involved in processing a service request for model reduction.

be then downloaded and installed on any parallel platform with the appropriate underlying
libraries.

Future extensions of this work will include the estimation of the absolute error ‖∆a‖∞
as part of the reduction procedure, the possibility of selecting among different linear system
solvers and/or new state-space truncation methods for model reduction, the availability of the
model reduction routines via an RPC interface (like, e.g, in NetSolve), and the development of
a connection-oriented service, capable of storing the user data for efficient interactive model
reduction.
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