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Abstract

This paper describes a numerical method for extracting the sta-
ble right deflating subspace of a matrix pencil Z − λY using
a spectral projection method. It has several advantages com-
pared to other spectral projection methods like the sign func-
tion method. In particular it avoids the rounding error induced
loss of accuracy associated with matrix inversions. The new al-
gorithm is particularly well adapted to solving continuous-time
algebraic Riccati equations. In numerical examples, it solves
Riccati equations to high accuracy.

1 Introduction

One of the most important computational tool in control de-
sign is the numerical solution of (generalized) continuous-time
algebraic Riccati equations (CAREs) of the form

0 = R(X) = Q + AT XE + ET XA−ET XGXE, (1)

where A,E,G,Q ∈ IRn×n, G = GT , Q = QT , and X =
XT ∈ IRn×n is the sought-after solution. It arises in the com-
putation of linear-quadratic regulators, optimal H2- and H∞-
controllers, model reduction based on stochastic or positive real
balancing, finding equilibria in differential games, see, e.g.,
[2, 3, 19, 28, 31, 32]. In all these applications, a particular so-
lution is desired which has the property that λE− (A−GXE)
is a stable matrix pencil in the sense that all its eigenvalues lie
in the open left half complex plane. (Assuming that E is non-
singular, all eigenvalues of the matrix pencil are finite).

A classical approach to solving the CARE (1) is to com-
pute the stable right deflating subspace of the corresponding
Hamiltonian/skew-Hamiltonian matrix pencil

H − λK :=

[

A G
Q −AT

]

− λ

[

E 0
0 ET

]

. (2)

(The stable right deflating subspace is the right deflating sub-
space corresponding to eigenvalues in the open left half com-
plex plane.) Under suitable assumptions typically satisfied in
the control problems mentioned above, H − λK has exactly n

eigenvalues contained in the open left half plane. It is well

known that if the columns of
[

U
V

]

∈ IR2n×n form a basis

for the corresponding n-dimensional stable right deflating sub-
space, then X = −V U−1E−1 is the required stabilizing solu-
tion of the CARE (1).

There are many numerical methods for solving (1). Here we
will focus on spectral projection methods which have been used
successfully for solving many computational problems in con-
trol theory. The matrix sign function is a popular method for
computing projectors onto the stable invariant subspace of a
matrix Z [29] or onto the stable right deflating subspace of a
regular matrix pencil Z−λY [17]. See [22] for a survey of the
theoretical and computational aspects of the sign function. The
most frequently used iteration employed by the sign function
method is the (generalized) sign-Newton iteration [17] given
by

Z0 ← Z (3)

ck ←
∣

∣

∣

∣

det(Zk)

det(Y )

∣

∣

∣

∣

1/n

(4)

Zk+1 ← 1

2ck

(

Zk + c2
kY Z−1

k Y
)

(5)

(For the matrix case, set Y = I in (5).) If both Y and Z are
nonsingular and Z − λY has no eigenvalues on the imaginary
axis, then it can be shown that Zk and Yk are nonsingular for all
k, Z∞ := limk→∞ Zk exists, (I − Y −1Z∞)/2 is the projector
onto the stable right deflating subspace of Z−λY parallel to the
anti-stable right deflating subspace, and (I +Y −1Z∞)/2 is the
projector onto the anti-stable subspace parallel to the stable de-
flating subspace. Thus, a basis for the stable deflating subspace
of Z − λY as required when solving (1) can be obtained from
the null space of Z∞ + Y . The method has been proved both
theoretically and numerically efficient and accurate for prob-
lems with spectra well separated from the imaginary axis and
well conditioned matrices Y and Z [5, 6, 13, 15].

The scalar ck in (4) is a parameter chosen to accelerate con-
vergence. The particular choice used in (4) is a generalization
proposed in [17] of determinantal scaling [14]. There are many
other possibilities for the acceleration parameter [9, 16, 21, 29].

A weakness of the iteration (5) is that inverses have to be
formed either explicitly or implicitly by solving linear systems.
If any of the Zk’s in (5) is ill-conditioned with respect to inver-



sion, then a severe loss of accuracy is possible. The following
example demonstrates this effect.

Example 1 Construct a pencil Z − λYp as follows. Let Bp be
the 10-by-10 Jordan block with eigenvalue 1/p; let K be the
10-by-10 matrix with (1, 1) entry equal to one and all other en-
tries equal to zero; let W be the 10-by-10 matrix all of whose
entries are one; and let U be the 10-by-10 elementary reflec-
tor U = I − 0.2 · W . Construct Z − λYp as the 20-by-20
Hamiltonian/skew-Hamiltonian pencil pencil

Z =

[

U 0
0 U

] [

I − 2K K
I −K 2K − I

] [

U 0
0 U

]

(6)

Yp =

[

U 0
0 U

] [

Bp 0
0 BT

p

] [

U 0
0 U

]

. (7)

Note that this matrix pencil has exactly the structure of (2) cor-
responding to a generalized algebraic Riccati equation. The
eigenvalues are ±1/p each with algebraic multiplicity 10 and
geometric multiplicity 2. The stable and unstable deflating sub-
spaces grow increasingly ill-conditioned as p increases from
p = 1 to p = 7. In addition, as p varies from p = 1 to p = 7,
the condition number of Yp varies from 101 to 108.

We calculated orthonormal bases of the 10-dimensional stable
right deflating subspace using the QZ algorithm [27] and as
the null space of Z + Yp,∞ obtaining Yp,∞ from the gener-
alized sign-Newton iteration (3)–(5). (The computations were
run under MATLAB version 6 [25] on a workstation with unit
round approximately 2.22 × 10−16.) This produced orthonor-
mal bases Vp,qz and Vp,gl of rounding-error-corrupted approxi-
mate deflating subspaces from the QZ algorithm and the gener-
alized sign-Newton iteration (3)–(5) respectively. The example
is simple enough to be able to calculate an exact, analytic or-
thonormal basis Vp of the right stable deflating subspace. The
forward or absolute errors are ‖Vp,qzV H

p,qz − VpV
H
p ‖F and

‖Vp,glV
H
p,gl− VpV

H
p ‖F . If σ1, σ2, σ3, . . . σ20 are the 20 singu-

lar values of [ZVp,qz, YpVp,qz] or [ZVp,gl, Y Vp,gl], then the

respective backward errors are (σ2
n+1 + σ2

n+2 + . . . + σ2
2n)1/2.

The backward error is the magnitude of the smallest Frobenius
norm perturbation of Yp and Z which yields a pencil for which
the computed deflating subspace is an exact deflating subspace.
Table 1 lists these forward and backward errors for p = 1, 2,
. . . 7. The table demonstrates how ill-conditioned Zk in (5) can
adversely affect both forward and backward errors. Note par-
ticularly the backward errors in comparison with the expensive
but backward stable QZ algorithm. For p ≥ 3 the iterates Zk

in (5) are so ill-conditioned that our program failed to meet its
stopping criterion ‖Zk+1 − Zk‖F ≤ n2ε‖Zj+1‖F where ε is
the machine precision 2.22 × 10−16. In that case, we termi-
nated the program after 50 iterations. For p ≥ 4, many iterates
had condition numbers larger than 1014.

2 Inverse-Free Methods

To overcome the problem with inverses in (5), inverse-free
methods have been investigated. In particular the inverse-

Forward Errors
p QZ (3)–(5) Inverse-Free
1 10−15 10−15 10−15

2 10−13 10−12 10−13

3 10−9 10−9 10−10

4 10−7 10−7 10−8

5 10−5 10−3 10−7

6 10−4 10−1 10−5

7 10−3 10−1 10−4

Backward Errors
p QZ (3)–(5) Inverse-Free
1 10−15 10−15 10−15

2 10−15 10−13 10−14

3 10−15 10−10 10−11

4 10−15 10−8 10−9

5 10−15 10−5 10−8

6 10−15 10−3 10−7

7 10−15 10−2 10−7

Table 1: Rounding error induced forward and backward errors
in the computed stable deflating subspace of Z −λYp given by
(7) and (6).

free spectral divide and conquer method [7, 24] has received
some attention in recent years. It can be considered as an
instance of the disk function method [10, 11]. The method
computes spectral projectors onto the deflating subspaces cor-
responding to eigenvalues inside and outside the unit circle.
Hence it can be used to solve the CARE (1) by applying it
to the Cayley-transform of the matrix pencil (2), Z − λY =
(H −K)− λ(H + K). Unfortunately, the iteration described
in [7, 24] does more than twice the amount of floating point
arithmetic than (5).

We propose a new inverse-free iteration scheme that computes
the projector onto the stable invariant subspace of a matrix or
the stable right deflating subspace of a matrix pencil without
the need to compute a Cayley transformation. It also allows the
use of scaling to accelerate convergence. The computational
cost of the new method is comparable to that of the disk func-
tion method [7, 24] described above, though still being some-
what higher than that of (5).

The generalized sign-Newton iteration (3)–(5) preserves both
the left and right deflating subspaces of Z − λY = Z0 − λY .
Most CARE (1) applications require only the right stable de-
flating subspace. The left deflating subspaces are not needed.
This suggests that one might be able to avoid some of the haz-
ards of matrix inversion by replacing the sequence of pencils
generated by (5) with another sequence having the same right
deflating subspaces but possibly different left deflating sub-
spaces.

Call a sequence of pencils Ẑk − λŶk a right handed sign-
Newton sequence (RHSNS) if there is a sequence of nonsin-



gular matrices Mk for which

Ẑk − λŶk = MkZk − λMkY (8)

where Zk − λY satisfies (3)–(5). (Of course, Mk = ŶkY −1 =
ẐkZ−1

k .) A RHSNS has the same eigenvalues and right de-
flating subspaces as Zk − λY in (5), but it may have differ-
ent left deflating subspaces. The eigenvalues and Kronecker
canonical form of a RHSNS has the same convergence prop-
erties as (5) although the individual matrices Ẑk and Ŷk may
or may not converge to a limit. If Ẑ∞ = limk→∞ Ẑk and
Ŷ∞ = limk→∞ Ŷk exist, then the stable right deflating sub-
space of Z − λY is the null space of Ẑ∞ + Ŷ∞ and the anti-
stable right deflating subspace is the null space of Ẑ∞ − Ŷ∞.
(Even if Ẑk and/or Ŷk do not converge, a practical numeri-
cal procedure might extract a good approximation to the stable
right deflating subspace from an n-dimensional approximate
null space of Ẑk + Ŷk for large enough k.)

The following theorem shows how to generate a RHSNS with-
out necessarily using an explicit inverse. It is based on an arith-
metic for matrix pencils introduced and discussed in detail in
[12].

Theorem 1 If Y, Z ∈ Cn×n are nonsingular then the follow-
ing generates a RHSNS.

Ẑ0 − λŶ0 = (M0Z)− λ(M0Y ) (9)

ĉk =

∣

∣

∣

∣

∣

det(Ẑk)

det(Ŷk)

∣

∣

∣

∣

∣

1/n

(10)

Ẑk+1 − λŶk+1 = αk

(

ỸkẐk

)

(11)

− λ
(αk

2

)(

ĉkỸkŶk + ĉ−1

k Z̃kẐk

)

where M0 ∈ Cn×n is any nonsingular matrix, αk ∈ C is any
nonzero scalar, and Ỹk, Z̃k ∈ Cn×n are any matrices such
that rank[Ỹk, Z̃k] = n and

[

Ỹk Z̃k

]

[

−Ẑk

Ŷk

]

= 0. (12)

Proof. Let Zk−λY be determined by the sign-Newton iteration
(3)–(5) and let Ẑk − λŶk be any sequence of pencils satisfying
(9)–(12). We will show that for all k, there exists a nonsingular
matrix Mk ∈ Cn×n satisfying (8). The proof is by induction
on k.

Equation (8) holds for k = 0 by hypothesis (9). Assume that
for some integer k, there exists a nonsingular matrix Mk ∈
Cn×n satisfying (8). Observe first that in (10)

ĉk =

∣

∣
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1/n

=

∣

∣

∣

∣

det(MkZk)

det(MkY )

∣

∣

∣

∣

1/n

=

∣

∣

∣

∣

det(Zk)

det(Y )

∣

∣

∣

∣
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= ck.

So ĉk in (10) is equal to ck in (4).

By induction hypothesis Ẑk = MkZk is a product of non-
singular matrices, so Ẑk is nonsingular. It follows that

rank
[

−Ẑk

Ŷk

]

= n, and all bases of the left null space of
[

−Ẑk

Ŷk

]

take the form [Ỹk, Z̃k] = Wk[ŶkẐ−1

k , I] for some nonsingular
matrix Wk ∈ Cn×n. Hence,

Ŷk+1 = αkỸkẐk

= αkWkŶkẐ−1

k Ẑk

= αkWkMkY

and

Ẑk+1 =
αk

2

(

ĉkỸkŶk + ĉ−1

k Z̃kẐk

)

=
αk

2

(

ckWkŶkẐ−1

k Ŷk + c−1

k WkẐk

)

=
αk

2

(

ckWkMkY Z−1

k M−1

k MkY + c−1

k WkMkZ
)

= (αkWkMk)

(

1

2ck

)

(c2
kY Z−1

k Y + Z).

Hence, with Mk+1 = αkWkMk the identity (8) is satisfied.

There are many possible choices of M0 in (9), Ỹk, Z̃k in
(12) and αk in (11). As suggested in the proof, if M0 = I ,
Ỹk = ŶkẐ−1

k , Z̃k = I and αk ≡ 1, then (9)–(11) reduce to the
generalized sign-Newton iteration (3)–(5).

If
[

−Ẑk

Ŷk

]

=

[

Q11,k Q12,k

Q21,k Q22,k

] [

Rk

0

]

(13)

is a QR (unitary-triangular) factorization partitioned into
n-by-n blocks, then a possible choice of Ỹk and Z̃k in (12) is
Ỹk = QH

12,k and Z̃k = QH
22,k. This choice does not require an

explicit inverse. It is used in [7] for the disk function inverse-
free algorithm. It is not clear whether it is possible to improve
on (13) as a way to choose Ỹk and Z̃k. A possible alternative
appears in [12].

The choice of the scalar αk is subtle. A poor choice of αk

leads to a RHSNS in which Ẑk and/or Ŷk diverge or con-
verge to zero. For example, if Y = Z = I and αk ≡
1, then (13) may give Ỹk = Z̃k = 2−1/2I . With these
choices, for k = 1, 2, 3, . . . Ŷk = (

√
2)kI , Ẑk = (

√
2)kI .

Hence, limk→∞ Yk = limk→∞ Zk = ∞. If αk ≡ 2, then
limj→∞ Yk = limj→∞ Zk = 0. Converging to zero is at least
as problematic as diverging to ∞. Note that in this example,
the sign-Newton iteration (3)–(5) is stationary. The Kronecker
structure of Ẑk − λŶk is stationary, so a numerical procedure
may stop immediately and obtain the stable right deflating sub-
space as the null space of Ẑ0 + Ŷ0 This is an extreme case.
In more typical examples, the Kronecker structure (including
eigenvalues) of Ẑk−λŶk converge so rapidly that one can stop
a numerical procedure before a less-than-optimal choice of αk

causes numerical instability. If Ỹk and Z̃k are obtained from
(13), then the example above shows that a necessary condition
for convergence of the sequences Ẑk and Ŷk is αk =

√
2, see

[12] for details.



Note that (13) determines Ỹk = QH
12,k and Z̃k = QH

22,k only
up to right multiplication by an arbitrary n-by-n unitary factor.
In order to assure that Ŷk and Ẑk converge, one can require
that Ỹk = Q12,k be triangular with positive diagonal entries.
This choice leads to a particularly efficient numerical algorithm
implementation which is described in detail in [12].

In summary the inverse-free sign function iteration can be de-
scribed as follows.

1. Set Ẑ0 := Z, Ŷ0 := Y .

2. FOR k = 0, 1, 2, . . . until convergence

i) Calculate matrices Q12,k and Q22,k satisfying (13).
Set Ỹk := QH

12,k and Z̃k := QH
22,k.

ii) Set ĉk := |det(Ẑk)/det(Ŷk)|1/n.

iii) Set
Ẑk+1 := 1√

2

(

ĉ−1

k Z̃kẐk + ĉkỸkŶk

)

,

Ŷk+1 :=
√

2Z̃kŶk

.

Like the sign-Newton algorithm (3)–(5), the right deflating sub-
spaces of Z − λY are preserved throughout the iteration. In
particular, both the sign-Newton algorithm and the inverse-free
sign function algorithm preserves any special structure that the
right deflating subspaces may have. Linear quadratic and H∞
optimal control problems [23] along with quadratic eigenvalue
linear damping models [18] lead to invariant subspace prob-
lems whose right deflating subspaces are Lagrangian. This
special structure is preserved in the inverse-free sign function
algorithm.

3 Numerical Results

Example 1 continued. We implemented the inverse-free sign
function algorithm in the same environment as describe above
for the sign-Newton algorithm (3)–(5). When applied to Ex-
ample 1 in the introduction, we obtain the results that appear in
Table 1. The stable right deflating subspace computed using the
inverse-free sign function algorithm has much smaller back-
ward errors than when computed using the sign-Newton algo-
rithm, but larger backward errors than when computed using
the expensive but backward stable QZ algorithm. The inverse-
free sign function forward errors are significantly smaller than
the sign-Newton algorithm (3)–(5) forward errors. The inverse-
free sign function forward errors are even slightly smaller than
the QZ algorithm forward errors.

Example 2 We generated a CARE of the form (1) from the fi-
nite element semi-discretization of a point control problem for
a heat equation described in [30] and summarized as Exam-
ple 4.2 in the benchmark collection [1]. Here, n = 200 and the
other parameters take the default values given in [1]. In contrast
to [1], in order to obtain a generalized CARE with E 6= In,
we did not invert the Gramian (or mass) matrix. Both the sign-
Newton iteration and the inverse-free sign function iteration re-
quired 17 iterations to convergence. The convergence history

(‖Ak+1 − Ak‖F /‖Ak+1‖F for the sign-Newton iteration (3)–
(5) and ‖Rk+1 − Rk‖F /‖Rk+1‖F from (13) for the inverse-
free sign function iteration) is shown in Figure 1. The figure
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Figure 1: Example 2, Convergence history.

shows the similar convergence behavior expected from math-
ematically equivalent iterations. The locally quadratic conver-
gence rate is evident for both iterations.

We obtained the following residuals for the CARE solutions
Xgl, Xif, and Xqz computed by the sign-Newton iteration, the
inverse-free sign function iteration, and the MATLAB Control
Toolbox function care [8, 26] implementing the generalized
Schur method [4].

R(Xgl) = 1.5 · 10−15,

R(Xif) = 3.6 · 10−14,

R(Xqz) = 2.1 · 10−13,

In this example, both iterative methods yield smaller residuals
than the MATLAB function.

Example 3 Here, the CARE comes from a linear-quadratic
control problem for a second-order linear system described in
[20] and summarized as Example 4.3 in the benchmark collec-
tion [1]. Here, n = 60 and the other parameters take the default
values given in [1]. In order to obtain a generalized CARE with
E 6= In, we did not invert the mass matrix. Using the same no-
tation as in Example 2 we get residuals

R(Xgl) = 3.4 · 10−11,

R(Xif) = 4.0 · 10−12,

R(Xqz) = 1.3 · 10−10.

Here, the residual from the inverse-free sign function iteration
is almost two orders of magnitude smaller than the residual
from the generalized Schur method.

Figure 3 shows the convergence history of the sign-Newton and
inverse-free sign function iterations.
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Figure 2: Example 3, convergence history.

4 Conclusions

We have described a new inverse-free sign function iteration
method for solving generalized continuous-time algebraic Ric-
cati equations. It is closely related to the generalized sign-
Newton iteration and can be considered as an instance of the
sign function method. It attains improved numerical backward
stability compared to the generalized sign-Newton iteration by
avoiding explicit matrix inverses.

Example 1 suggests that inverse-free sign function algorithm is
more robust in the presence of rounding errors than the sign-
Newton iteration (3)–(5). However, the example also demon-
strates that the inverse-free sign function is not backward nu-
merically stable in the conventional sense that rounding er-
rors are equivalent to making a rounding-error-small perturba-
tion of the data. Nevertheless, contrary to expectations, in all
three examples, rounding error induced forward errors using
the inverse-free sign function are slightly smaller than when
using the backward stable QZ algorithm. An understanding of
the effects of rounding errors remains an open question.
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