
1

Solving Algebraic Riccati Equations with SLICOT
Peter Benner

Institut für Mathematik, MA 4-5

Technische Universität Berlin

Straße des 17. Juni 136

D-10623 Berlin, Germany

eMail: benner@math.tu-berlin.de

phone +49-30-314-28035; fax +49-30-314-79706

Vasile Sima

National Institute for Research & Development in Informatics

Bd. Mareşal Al. Averescu, Nr. 8–10

71316 Bucharest, Romania

eMail: vsima@iciadmin.ici.ro

phone +40-21-224-0765; fax +40-21-224-0539

Abstract— The numerical solution of algebraic Riccati
equations is a central issue in computer-aided control sys-
tems design. It is the key step in many computational meth-
ods for model reduction, filtering, and controller design for
linear control systems. We discuss recent advances in the
solvers for continuous-time and discrete-time algebraic Ric-
cati equations available in the SLICOT Library (Subroutine
Library In COntrol Theory) and compare their performance
with the corresponding solvers in the Matlab toolboxes.

Keywords— algebraic Riccati equations, numerical algo-
rithms, computer-aided control system design, numerical
linear algebra, software library

I. Introduction

Let A, E ∈ IRn×n, B ∈ IRn×m, and Q, R, F be symmet-
ric matrices of suitable dimensions. The continuous-time
algebraic Riccati equation (CARE)

0 = Q + AT XE + ET XA − ET XFXE (1)

and the discrete-time algebraic Riccati equation (DARE)

ET XE = Q+AT XA−AT XB(R+BT XB)−1BT XA (2)

play a fundamental role in many analysis and design proce-
dures for linear and nonlinear control problems. In particu-
lar, the methods for computing linear-quadratic regulators
and Kalman filters, for solving linear-quadratic Gaussian
(H2-) optimal control problems, as well as the computa-
tion of (sub)optimal H∞ controllers are traditionally based
on solving algebraic Riccati equations (AREs). Moreover,
model reduction techniques based on stochastic and posi-
tive real balancing require the solution of AREs [20], [28].
In these applications, usually E = In in (1) and (2). The
case E 6= In appears, for instance, in factorization pro-
cedures for transfer functions, see, e.g., [33], or optimal

This work was supported in part by the European Commu-
nity BRITE-EURAM III Thematic Networks Programme NICONET
(project BRRT–CT97-5040) and the DFG Research Center “Mathe-
matics for key technologies” (FZT 86) in Berlin.

control problems for second-order systems, see, e.g., [13],
[18], [19]. Common to all these applications is that among
the possibly infinitely many solutions of the ARE, usu-
ally the unique stabilizing solution X∗ is required; this is
the solution for which all eigenvalues of the matrix pen-
cils λE − (A − FX∗E) in the continuous-time case, and
λE − (A−B(R + BT X∗B)−1BT X∗A) in the discrete-time
case, are in the appropriate stability region (the left half
plane in the continuous-time case and the open unit disk
in the discrete-time case).

There is a huge amount of theoretical results available
both in systems and control, as well as in the linear al-
gebra literature devoted to matrix Riccati equations and
related topics; see, e.g., the monographs [21], [26]. Due
to its importance in computational control, a vast vari-
ety of numerical methods has been proposed for solving
AREs; see, e.g., [7], [26], [30]. There are also a lot of as-
sociated software implementations, both commercial (e.g.,
in Matlab1 [17], [25], [12], [5]), copyrighted freeware (e.g.,
in the SLICOT Library [9], [27], [32]), or in the public do-
main (e.g., in Scilab [14]). The reliability, efficiency, and
functionality of the different solvers vary significantly from
package to package.

This paper presents several solvers for AREs available
in the SLICOT Library (Subroutine Library In COntrol
Theory). SLICOT provides Fortran 77 implementations of
many numerical algorithms in systems and control theory,
as well as standardized interfaces (gateways) to Matlab

and Scilab. Built around a nucleus of basic numerical lin-
ear algebra subroutines from the state-of-the-art software
packages LAPACK [4] and BLAS [15], [16], [23] the po-
tential of modern high-performance computer architectures
can be exploited.

The paper also presents some performance improvements
(concerning efficiency, reliability, and accuracy) offered by

1Matlab is a registered trademark of The MathWorks, Inc.

2

the SLICOT tools, in comparison with equivalent computa-
tions performed by some Matlab functions included in the
Matlab nucleus or in the Control Systems, Robust Con-
trol, µ-Analysis and Synthesis, or LMI Control Toolboxes
[17], [25], [12], [5]. The results show that, at comparable or
better accuracy, SLICOT computations are several times
faster than Matlab computations; moreover, the underly-
ing problem structure is often fully exploited.

II. Algebraic Riccati Equations

In a general setting, AREs are defined as follows.
• Continuous-time and discrete-time algebraic Riccati
equations: if, for notational convenience, we use the ab-
breviation

op(F) := op(B)R−1 op(B) T (for CARE),

op(R̂) := R + op(B) T X op(B) (for DARE),

where op(M) is either M or MT , then

0 = Q + op(A) T X + X op(A) − X op(F)X, (3)

X = Q + op(A) T X op(A) (4)

− op(A) T X op(B) op(R̂)−1 op(B) T X op(A) .

• Generalized CAREs and DAREs: defining

op(L(X)) := op(L) + op(E) T X op(B) (for CARE),

op(L̂(X)) := op(L) + op(A) T X op(B) (for DARE),

the equations are defined by

0 = Q + op(A) T X op(E) + op(E) T X op(A) (5)

− op(L(X))R−1 op(L(X)) T ,

0 = Q − op(E) T X op(E) + op(A) T X op(A) (6)

− op(L̂(X)) op(R̂)−1 op(L̂(X)) T .

For AREs, the ability to work with the op(·) operator
is important for notational convenience. For instance, an
optimal regulator problem involves the solution of an ARE
with op(M) = M , while an optimal estimator problem
involves the solution of an ARE with op(M) = MT . The
Riccati solution can be used for computing the gain matrix
of the optimal regulator, G, or estimator, K = GT ,

G = R−1 op(L(X)) T , (7)

G = op(R̂)−1 op(L̂(X)) T , (8)

for continuous-time and discrete-time systems, respec-
tively. The basic methods for solving AREs are the
Schur vector method [22] and the deflating subspaces
method [29], [31] which we will briefly describe here for
future reference: for the CARE (3), the associated Hamil-
tonian matrix is

H =

[

op(A) − op(F)
−Q − op(A) T

]

, (9)

while the symplectic matrix associated to (4) is

H =

[

op(A) + op(F) op(A) −T Q − op(F) op(A) −T

− op(A)−T Q op(A)−T

]

(10)

with F defined as in the continuous-time case. Note that
the symplectic matrix can only be formed if A is nonsingu-
lar and even in case A is invertible, forming H should be
done with care if A is ill-conditioned; in the latter case, it
is preferable to work with the symplectic pencil

L − λM =

[

op(A) 0
−Q In

]

− λ

[

In op(F)
0 op(A) T

]

. (11)

The Schur vector method now computes the ordered real
Schur form T of the Hamiltonian or symplectic matrix H,
i.e., U ∈ IR2n,2n orthogonal is computed such that with a
partitioning according to (9), (10),

HU = UT =

[

U11 U12

U21 U22

] [

T11 T12

0 T22

]

and the eigenvalues of T11 are the n stable eigenvalues of
H. Hence, the columns of [UT

11, UT
21]T span the stable H-

invariant subspace. If the stabilizing solution exists, then
U11 is invertible and the solution of the CARE or DARE
is X = U21U

−1

11 .
The deflating subspace approach proceeds in an analo-

gous way. Define the extended Hamiltonian pencil associ-
ated to (5),

L − λM =





op(A) 0 op(B)
Q op(A) T op(L)

op(L) T op(B) T R



 (12)

−λ





op(E) 0 0
0 − op(E) T 0
0 0 0





and extended symplectic pencil corresponding to (6),

L − λM =





op(A) 0 op(B)
Q − op(E) T op(L)

op(L) T 0 R



 (13)

−λ





op(E) 0 0
0 − op(A) T 0
0 − op(B) T 0





Then the ordered generalized real Schur form of L − λM
is computed, i.e., U, V ∈ IR2n+m,2n+m orthogonal are com-
puted such that (L − λM)U = V (TL − λTM) and the first
n columns of U , denoted by [UT

11, UT
21, UT

3]T span the
stable deflating subspace of L − λM . Then, the stabiliz-
ing solution of the generalized CARE or DARE is given
via XE = U21U

−1

11 and the gain matrices in (7), (8) are
given via G = −U3U

−1

11 . The deflating subspace approach
is also used to solve the DARE via (11); the deflating sub-
space is given by the first n Schur vectors of the ordered
generalized real Schur form of L− λM in (11), denoted by
[UT

11, UT
21]T and X = U21U

−1

11 . It should also be noted that
the deflating subspace approach using the extended pencils
yields better numerical accuracy if R is ill-conditioned as
rounding errors introduced by forming R−1 are avoided.

For the standard continuous-time case (3) with
op(M) = M , SLICOT also includes an implementation

3

of the matrix sign function method [11]. It is planned to
extend SLICOT by integrating CARE and DARE solvers
based on Newton’s method (with line search) [6], [8], [30].
This will be particularly useful as it enables users to com-
pute a solution to maximal accuracy by refining any ap-
proximate solution by applying Newton’s method to it.
Moreover, solvers based on structure-preserving methods
for the underlying eigenproblems ([3], [10]) are under con-
sideration. These methods can deal with situations where
eigenvalues of the corresponding matrix (pencil) are close
to or on the imaginary axis (CARE case) or unit circle
(DARE case).

III. Solvers for Riccati Equations

The Matlab Control Toolbox and the LMI Toolbox
([25], [17]) include two solvers for AREs. The commands

[X,ev,G,rr] = care(A,B,Q,R,L,E);

[X,ev,G,rr] = dare(A,B,Q,R,L,E);

compute the unique symmetric stabilizing solution X of the
generalized continuous-time or discrete-time algebraic Ric-
cati equation (5) or (6), respectively, with op(M) = M .
When omitted, R, L and E are set to the default values
Im, 0 ∈ IRn×m, and In, respectively. The optional out-
put arguments ev and rr contain the vector of closed-loop
eigenvalues (i.e., eig(A - B*G, E)), and the Frobenius
norm of the relative residual matrix, respectively. An ad-
ditional last input argument ’report’ turns off the error
messages and returns instead a success/failure diagnosis in
rr, then containing one of the following results

−1 if the associated matrix or matrix pencil (9)–
(13) has eigenvalues too close to the jω axis (or
the unit circle, respectively);

−2 if the linear algebraic system UT
11X = UT

21 can-
not be solved due to singularity of U11;

rr the relative residual when the solver succeeds.

The command below, where * means either c or d,

[U11,U21,ev,rr] = *are(A,B,Q,R,L,E,’implicit’);

also turns off the error messages, but each solver returns
the matrices U11 and U21 so that X = U21U

−1

11 . The value
rr = 0 indicates success. It should be noted that the
Matlab Robust Control Toolbox and the µ-Analysis and
Synthesis Toolbox also provide CARE and DARE solvers
(aresolv, daresolv in [12], ric eig and ric schr in [5],
where the latter only apply to CAREs). The functional-
ity of these solvers is reduced compared to *are as only a
particular form of the equations (3) and (4) can be solved.
They are either based on the Schur vector method applied
to the associated Hamiltonian or symplectic matrix or on
computing the eigenvectors of these matrices corresponding
to the stable eigenvalues. These methods typically behave
worse than the *are solvers, see Table I. Also note that
daresolv calls dare if A has zero eigenvalues (which is not
reported in [12])!

The SLICOT Library contains 9 “user-callable” and
3 “programmer-callable” Fortran 77 routines for Riccati

equations (3)–(6). Just one solver, based on a refined Schur
vector method for standard equations (with E = In and
L = 0), is able to deal with the operator op(·) . All other
solvers assume op(M) = M . Currently, there are two
MEX-files, aresol and aresolc, both for equations with
op(M) = M , E = In, but L can be nonzero. The MEX-file
aresolc can provide estimates for condition numbers and
forward error bounds for solutions. (Note that condition
number estimates are also provided by the Matlab Robust
Control Toolbox functions riccond, driccond.) Another
MEX-file for general E and L matrices, based on the avail-
able SLICOT Fortran routines, will be ready soon. The
following M-files calling the corresponding MEX-file are
currently available for solving Riccati equations:

slcaregs Solve CARE with generalized Schur
method applied to (12).

slcares Solve CARE with Schur method.
slcaresc Solve CARE with refined Schur method

and estimate condition.
sldaregs Solve DARE with generalized Schur

method applied to (13).
sldares Solve DARE with Schur method.
sldaresc Solve DARE with refined Schur method

and estimate condition.
sldaregsv Solve DARE with generalized Schur

method applied to (11).

The command

[X,G,ev,rcond1] = sl*ares(A,Q,R,B,L,flag);

computes the symmetric solution X of a CARE (5) or
DARE (6) with E = In, the feedback gain matrix G in (7)
or (8), the closed-loop eigenvalues ev, and an estimate
rcond1 of the reciprocal of the condition number of the
system of algebraic equations from which the solution X is
obtained (XU11 = U21), by using the Schur vector method
applied to (9) or (10). The command

[U11,U21,ev,rcond1] = sl*ares(A,Q,R,B,L,flag);

computes a basis,
[

UT
11 UT

21

]T
, of the invariant subspace

instead of the solution X. (Clearly, X = U21U
−1

11 , when
U11 is nonsingular.) The commands

[X,ev,rcond1] = sl*ares(A,Q,F,flag);

[U11,U21,ev,rcond1] = sl*ares(A,Q,F,flag);

compute the same results when F = BR−1BT is given in-
stead of B and R. The argument flag is a vector with 3
elements containing the following options:

flag(1) = 0 Compute the stabilizing solu-
tion; otherwise, compute the
anti-stabilizing solution.

flag(2) = 0 Use a scaling strategy; otherwise, do
not use a scaling strategy.

flag(3) = 0 Compute both the solution X and
the feedback gain matrix G;

flag(3) > 0 Compute the solution X only;
flag(3) < 0 Compute the invariant subspace.

Default value is flag = [0, 0, 1].

4

Replacing the names slcares by slcaregs and sldares

by sldaregs, the same results can be computed using the
generalized Schur method applied to (12) or (13). These
M-files can be also used when R is singular. For this reason,
the calling sequences using the matrix F above are not valid
for slcaregs and sldaregs. The argument flag is again
a vector with 3 elements: flag(1) has the same meaning,
flag(2) corresponds to flag(3) above, and flag(3) is
this time a tolerance to check the singularity of the ma-
trix pencil. If flag(3) ≤ 0, the used tolerance is εM , the
machine precision. Default value is flag = [0, 1, 0.0].

The M-file sldaregsv has the same function and calling
sequences as sldares, but it uses the generalized Schur
method applied to (11). The argument flag has the same
meaning as for slcaregs and sldaregs.

The M-files slcaresc and sldaresc are similar to
slcares and sldares, respectively, but for positive val-
ues of flag(3) we have

flag(3) = 1 Compute the solution X only;
flag(3) = 2 Compute the solution X and estimates

of the separation, reciprocal condition
number and forward error bound.

These M-files use a refined Schur method and, for
flag(3) = 2, the calling sequences are:

[X,ev,rcond1,acc] = sl*aresc(A,Q,R,B,L,flag);

[X,ev,rcond1,acc] = sl*aresc(A,Q,F,flag);

where acc is a vector of length 3 containing estimates of
the separation, reciprocal condition number, and forward
error bound, respectively.

IV. Numerical results

This section presents typical performance results for
some ARE solvers contained in the SLICOT Library,
called via the associated gateways. The calculations were
performed on an IBM PC computer at 500 MHz, with
128 Mb memory, using Compaq Visual Fortran V6.5, non-
optimized BLAS, and Matlab 6.1 (R12). These results
show that SLICOT routines often outperform Matlab cal-
culations. While the accuracy is comparable, and some-
times better, the gain in efficiency by calling SLICOT rou-
tines can be significant. Note that the results have been
obtained by timing in Matlab the equivalent computa-
tions. Even better efficiency is to be expected by calling
the SLICOT Fortran routines directly (not through gate-
ways), and similar accuracy/efficiency improvements are
possible for other SLICOT computations. Better results
can be expected using optimized BLAS implementations.

Figure 1 shows the execution times and relative residuals
for solving randomly generated CAREs with n = 30 : 30 :
300 and m = n/5.

Figure 2 shows the execution times and speed-up factors
for solving the CAREs for the benchmark collection [1].
(All examples are included, except for Example 4.4 (n =
421, m = 211), which could not be solved satisfactorily
by the Schur vector based solvers.) Default values for the
parameter(s) have been used.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

n

Tim
e (

s)

SLICOT
MATLAB

0 50 100 150 200 250 300
0

1

2

3

4
x 10

−10

n

Re
lat

ive
 re

sid
ua

ls

SLICOT
MATLAB

Fig. 1. SLICOT slcares versus Matlab care for random CAREs,
n = 30 : 30 : 300, m = n/5. Timing (top) and relative residuals
(bottom) comparisons.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

Benchmark example #

Ex
ec

uti
on

 tim
e (

se
c.)

slcaresc
care

0 5 10 15 20 25
0

5

10

15

20

25

Benchmark example #

Sp
ee

d−
up

 fa
cto

r (s
ec

.)

care ./ slcaresc

Fig. 2. SLICOT slcaresc versus Matlab care for the CAREs in the
benchmark collection. Timing (top) and speed-up factors (bottom)
comparisons.

Figure 3 shows the decimal logarithms of the relative
residuals and relative errors (when available) for the same
examples.

Table I shows the cumulative execution times, and the
Euclidean norms of the relative residuals and relative er-
rors for 34 experiments performed as described in [1]
with the 20 CAREs in the benchmark collection. Besides
slcaresc and care, the functions ric eig and ric schr

from the Robust Control Toolbox, as well as aresolv from
µ-Analysis and Synthesis Toolbox have been used. These

5

Performance slcaresc care ric eig ric schr aresolv aresolv

’eigen’ ’Schur’

Time (sec.) 6.71 13.84 2.9 15.75 4.07 15.21
Rel. residuals 2.98e-4 4.90e-4 1.33e+3 1.31e+3 1.33e+3 3.18e+3

Rel. errors 8.88e-5 4.44e-5 2.32e-4 2.45e-4 2.32e-4 5.72e-4

TABLE I

Cumulative performance for continuous-time ARE solvers for benchmark collection examples

0 5 10 15 20 25
−30

−25

−20

−15

−10

−5

0

Benchmark example #

log
10

 (R
ela

tiv
e r

es
idu

als
)

slcaresc
care

0 5 10 15 20 25
−30

−25

−20

−15

−10

−5

0

Benchmark example #

log
10

 (R
ela

tiv
e e

rro
rs)

slcaresc
care

Fig. 3. SLICOT slcaresc versus Matlab care for the CAREs in
the benchmark collection. Relative residuals (top) and relative errors
(bottom) comparisons.

additional solvers worked worse than slcaresc and care;
the worst results were obtained for example 2.6 (renum-
bered 12 in the figures), for which the relative residuals
and relative errors corresponding to ric eig, ric schr,
and aresolv were O(103) and O(10−4), respectively, in
comparison with O(10−8) and O(10−15), respectively, for
slcaresc and care.

Similarly, Figure 4 shows the execution times and speed-
up factors for solving the DAREs for the benchmark col-
lection [2], and Figure 5 shows the decimal logarithms of
the relative residuals and relative errors (when available)
for the same examples. The SLICOT function sldaregs is
used instead of sldaresc when the matrices R and/or A
are singular.

Table II shows the cumulative execution times, and
the Euclidean norms of the relative residuals and relative
errors for 25 experiments performed as described in [2]
with the 19 DAREs in the benchmark collection. Be-
sides sldaresc/sldaregs and dare, daresolv from the
µ-Analysis and Synthesis Toolbox has been used. This
additional solver calls dare when matrix A is singular,
or when used with option aretype = ’dare’; it did not
work (for aretype 6= ’dare’) for examples 1.1, 1.2, and
1.4 (renumbered 1, 2, and 4, respectively, in the figures),

0 5 10 15 20
0

2

4

6

8

10

12

14

Benchmark example #

Ex
ec

uti
on

 tim
e (

se
c.)

sldaresc
dare

0 5 10 15 20
0

2

4

6

8

10

12

14

16

Benchmark example #

Sp
ee

d−
up

 fa
cto

r (s
ec

.)

dare./sldaresc

Fig. 4. SLICOT sldaresc/sldaregs versus Matlab dare for the
DAREs in the benchmark collection. Timing (top) and speed-up
factors (bottom) comparisons.

0 5 10 15 20
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Benchmark example #

log
10

 (R
ela

tiv
e r

es
idu

als
)

sldaresc
dare

0 5 10 15 20
−16

−14

−12

−10

−8

−6

−4

−2

0

Benchmark example #

log
10

 (R
ela

tiv
e e

rro
rs)

sldaresc
dare

Fig. 5. SLICOT sldaresc/sldaregs versus Matlab dare for the
DAREs in the benchmark collection. Relative residuals (top) and
relative errors (bottom) comparisons.

6

Performance sldaresc/ dare daresolv daresolv

sldaregs ’eigen’ ’Schur’

Time (sec.) 3.74 14.12 12.64 13.38
Rel. residuals 3.34e-5 6.11e-5 6.11e-5 6.11e-5

Rel. errors 3.34e-5 6.11e-5 6.11e-5 6.11e-5

TABLE II

Cumulative performance for DARE solvers for benchmark collection examples

which have a singular matrix R. The worst relative er-
rors, of order O(10−4), have been obtained for Example
1.4, but the associated relative residuals were very small.
All solvers gave O(10−5) relative residuals and errors for
Example 2.3 (renumbered 16). The other examples have
been solved significantly more accurately.

V. Conclusions

Easy-to-use solvers for algebraic Riccati equations, avail-
able in the SLICOT Library have been discussed. Based on
Fortran 77 codes implementing state-of-the-art algorithms,
the high-level Matlab or Scilab interfaces offer extended
functionality, and improved reliability and efficiency over
the existing software tools. This is illustrated by the in-
cluded summary of the numerical results.

References

[1] J. Abels and P. Benner, “CAREX – a collection of benchmark
examples for continuous-time algebraic Riccati equations (ver-
sion 2.0),” SLICOT Working Note 1999-14, Nov. 1999,

[2] J. Abels and P. Benner, “DAREX – a collection of benchmark
examples for discrete-time algebraic Riccati equations (version
2.0),” SLICOT Working Note 1999-15, Nov. 1999,

[3] G.S. Ammar, P. Benner, and V. Mehrmann, “A multishift
algorithm for the numerical solution of algebraic Riccati equa-
tions,” Electr. Trans. Num. Anal., vol. 1, pp. 33–48, 1993.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide,
SIAM, Philadelphia, PA, third edition, 1999.

[5] G.J. Balas, J.C. Doyle, K. Glover, A. Packard, and R. Smith,
µ-Analysis and Synthesis Toolbox. For Use with Matlab,
Version 4, The MathWorks, Inc., Cochituate Place, 24 Prime
Park Way, Natick, Mass, 01760, 2001.

[6] P. Benner, “Accelerating Newton’s method for discrete-time
algebraic Riccati equations,” in Mathematical Theory of Net-
works and Systems, A. Beghi, L. Finesso, and G. Picci, Eds.,
Il Poligrafo, Padova, Italy, 1998, pp. 569–572.

[7] P. Benner, “Computational methods for linear-quadratic opti-
mization,” Supplemento ai Rendiconti del Circolo Matematico
di Palermo, Serie II, No. 58, pp. 21–56, 1999.

[8] P. Benner and R. Byers, “An exact line search method for solv-
ing generalized continuous-time algebraic Riccati equations,”
IEEE Trans. Automat. Control, vol. 43, pp. 101–107, 1998.

[9] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and
A. Varga, “SLICOT - a subroutine library in systems and
control theory,” in Applied and Computational Control, Sig-
nals, and Circuits, B.N. Datta, Ed., vol. 1, chapter 10, pp.
499–539. Birkhäuser, Boston, MA, 1999.

[10] P. Benner, V. Mehrmann, and H. Xu, “A new method for
computing the stable invariant subspace of a real Hamiltonian
matrix,” J. Comput. Appl. Math., vol. 86, pp. 17–43, 1997.

[11] R. Byers, “Solving the algebraic Riccati equation with the
matrix sign function,” Linear Algebra Appl., vol. 85, pp. 267–
279, 1987.

[12] R.Y. Chiang and M.G. Safonov, Robust Control Toolbox. For
Use with Matlab. Version 2, The MathWorks, Inc., Cochit-
uate Place, 24 Prime Park Way, Natick, Mass, 01760, 2000.

[13] B.N. Datta, “Linear and numerical linear algebra in control
theory: Some research problems,” Linear Algebra Appl., vol.
197/198, pp. 755–790, 1994.

[14] F. Delebecque and S. Steer, Integrated Scientific Computing
with Scilab, Birkhäuser, Boston, 1997.

[15] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling,
“Algorithm 679: A set of Level 3 Basic Linear Algebra Sub-
programs,” ACM Trans. Math. Soft., vol. 16, pp. 1–17, 1990.

[16] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Han-
son, “Algorithm 656: An extended set of Fortran Basic Linear
Algebra Subprograms,” ACM Trans. Math. Softw., vol. 14,
pp. 1–17, 18–32, 1988.

[17] P. Gahinet, A. Laub, and A. Nemirovski, “The LMI Control
Toolbox,” The MathWorks, Inc., 24 Prime Park Way, Natick,
MA 01760, 1995.

[18] M. Gawronski, Balanced control of flexible structures, Number
211 of Lecture Notes in Control and Information Sciences,
Springer-Verlag, London, UK, 1996.

[19] M. Gawronski, Dynamics and control of structures: A modal
approach, Springer-Verlag, Berlin, FRG, 1998.

[20] M. Green, “Balanced stochastic realization,” Linear Algebra
Appl., vol. 98, pp. 211–247, 1988.

[21] P. Lancaster and L. Rodman, The Algebraic Riccati Equation,
Oxford University Press, Oxford, 1995.

[22] A. J. Laub, “A Schur method for solving algebraic Riccati
equations”, IEEE Trans. Automat. Control, vol. AC-24, pp.
913–921, 1979.

[23] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
“Basic linear algebra subprograms for FORTRAN usage,”
ACM Trans. Math. Software, vol. 5, pp. 303–323, 1979.

[24] The MathWorks, Inc., Cochituate Place, 24 Prime Park Way,
Natick, Mass, 01760, Matlab Version 6.0.0.88, 2001.

[25] The MathWorks, Inc., Cochituate Place, 24 Prime Park Way,
Natick, Mass, 01760, The Matlab Control Toolbox, Version
5, 2000.

[26] V. Mehrmann, The Autonomous Linear Quadratic Control
Problem, Theory and Numerical Solution, Number 163 in
Lecture Notes in Control and Information Sciences. Springer-
Verlag, Heidelberg, July 1991.

[27] V. Mehrmann, V. Sima, A. Varga, and H. Xu, “A MATLAB
MEX-file environment of SLICOT,” SLICOT Working Note
1999-11, Aug. 1999,

[28] R. Ober. Balanced parametrizations of classes of linear sys-
tems. SIAM J. Control & Optimiz., 29:1251–1287, 1991.

[29] T. Pappas, A.J. Laub, and N.R. Sandell, “On the numeri-
cal solution of the discrete-time algebraic Riccati equation,”
IEEE Trans. Automat. Control, vol. AC-25, pp. 631–641,
1980.

[30] V. Sima, Algorithms for Linear-Quadratic Optimization, vol.
200 of Pure and Applied Mathematics, Marcel Dekker, Inc.,
New York, NY, 1996.

[31] P. Van Dooren, “A generalized eigenvalue approach for solving
Riccati equations,” SIAM J. Sci. Statist. Comput., vol. 2, pp.
121–135, 1981.

[32] S. Van Huffel and V. Sima, “SLICOT and control systems
numerical software packages,” in Proc. 2002 IEEE Int. Conf.
Control Appl. and IEEE Int. Symp. Comp. Aided Cont. Syst.
Design, CCA/CACSD 2002, Sep. 18–20, 2002, Glasgow, UK,
P.R. Kalata, Ed., 2002, pp. 39–44. Omnipress, Madison, WI.

[33] A. Varga, “Computation of normalized coprime factorizations
of rational matrices,” Sys. Control Lett., vol. 271, pp. 37–45,
1998.

Electronic versions of [1], [2], [27] are available from
http://www.win.tue.nl/niconet/NIC2/reports.html.

	Conference Program
	Author Index
	Main Menu

