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Passivity is an important concept in circuit and control theory [1]. A linear system

ẋ(t) = Ax(t) + Bu(t), A ∈ R
n×n, B ∈ R

n×m,

y(t) = Cx(t) + Du(t), C ∈ R
p×n, B ∈ R

p×m,

is passive if and only if its transfer function

G(s) = C(sIn − A)−1B + D

is positive real. The positive real lemma (or Kalman-Yakubovich-Popov-Anderson
lemma) states that for minimal systems this is the case if and only if the linear
matrix inequality (LMI)

(1)

[

AT X + XA XB − CT

BT X − C −(D + DT )

]

≤ 0.

has a positive semidefinite solution X ∈ R
n×n. Moreover, if D + DT > 0, then

G(s) is (strictly) positive real if the algebraic Riccati equation (ARE)

AT X + XA + (XB − CT )(D + DT )−1(BT X − C) = 0,

has a stabilizing solution X.
Recently, a similar LMI-based criterion for testing positive realness (and thereby

passivity) of descriptor systems

(2)
Eẋ(t) = Ax(t) + Bu(t), A,E ∈ R

n×n, B ∈ R
n×m,

y(t) = Cx(t) + Du(t), C ∈ R
p×n, B ∈ R

p×m,

was proposed by Freund and Jarre in [3]. It states that the descriptor system (2) is
positive real if the LMI (1) has a solution satisfying ET X = XT E ≥ 0. A Riccati
equation based test is not known in the case that E is singular.

The task of checking passivity of descriptor systems arises, e.g., when validating
models of passive devices generated by automatic modeling tools. It also plays an
important role in model order reduction techniques for the large-scale dynamical
systems that arise in the simulation of VLSI circuits. Most of the methods in use
for this purpose do not compute a reduced-order model that can be guaranteed
to be passive. Unfortunately, the complexity of solving the semidefinite program
related to the LMI arising in the positive real lemma for descriptor systems makes
this test infeasible for many of the aforementioned applications. For single-input
single-output systems, a positive realness test exclusively relying on eigenvalue
computations is proposed in [2], but this does not extend to the general situation.

Here, we investigate a numerical method for testing whether a given general
rational matrix is positive real. The main features of our method are:

• it exclusively relies on orthogonal restricted system equivalence transfor-
mations;

• it has the acceptable computational complexity of order n3;
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• it can be implemented in a numerically reliable manner.

The main contribution is that the positive realness test for an arbitrary rational
matrix function is reduced to testing positive realness of a proper rational matrix
function in a special format. Employing this special format, we can use the positive
real lemma for standard systems by employing a recursive reduction procedure
along the lines of the method proposed in [4].

The following lemma is the main step needed for the reduction to the case of a
proper rational function.

Lemma 1. For any regular pencil A− λE there exist orthogonal matrices U, V ∈
R

n×n such that

n1 n2 n3 n4

U(A − λE)V =

2

6

6

4

A11 − λE11 A12 − λE12 A13 − λE13 A14 − λE14

0 A22 A23 − λE23 A24 − λE24

0 0 A33 A34

0 0 0 A44

3

7

7

5

}n1

}n3

}n2

}n4

,

where rank (E11) = n1, rank (E23) = n3, rank (A44) = n4, and

rank

 "

A22 A23 − λE23

0 A33

#!

= n2 + n3 ∀λ ∈ C.

The proof of this lemma is constructive and yields an algorithm to compute
the given form. The algorithm requires a sequence of orthogonal decompositions
including URV and QR factorizations and the computation of a generalized Schur
form.

Our positive realness test makes use of the fact that the transfer function of (2)
has an expansion at s = ∞ of the form

G(s) = C(sE − A)−1B + D =

q
∑

k=−∞

skMk,

where Mk ∈ R
m×m are the Markov parameters of G. Positive realness can be

related to the Markov parameters as follows, see [1, 3].

Proposition 1. Given a rational matrix-valued function

G(s) = Gp(s) + sM1 +

q
∑

k=2

skMk,

where Gp is the proper part of G, then G(s) is positive real if and only if

(1) Gp(s) is positive real,
(2) M1 ≥ 0,
(3) Mk = 0, k = 2, 3, . . . , q.

Applying the restricted system equivalence

(E,A,B,C,D) 7→ (UEV,UAV,UB,CV,D)

induced by the matrices U, V from Lemma 1, we can prove the following result.
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Lemma 2. Let (E,A,B,C,D) be a minimal realization of the descriptor system 2.
Then:

a) If the descriptor system is positive real, then n2 = n3.
b) If n2 = n3, then Mk ≥ 0 for all k ≥ 2.

With this lemma, the positive realness test of minimal descriptor systems is
reduced to checking M1 ≥ 0 and positive realness of the proper part of G.

We can now distinguish two cases.

Case 1: n2 = n3 = 0:: in this case, it is easy to see that in the new coor-
dinates induced by Lemma 1, M1 = 0 and the proper part of G can be
transformed via another orthogonal restricted system equivalence to

(3) Gp(s) =
[

C1 C2

]

(

s

[

E11 0
0 0

]

−

[

A11 A12

A21 A22

])

−1 [

B1

B2

]

+ D,

with E11,A22 nonsingular.
Case 2: n2 = n3 6= 0: this case is slightly more involved, but using the struc-

ture imposed by Lemma 1, we obtain a reliable test for M1 ≥ 0 and we
can show that Gp(s) can be transformed to the same representation as in
(3) using again only orthogonal transformations.

Thus, in both cases, we have reduced the passivity test for descriptor systems to
testing positive realness of a proper transfer function which can be done using the
Riccati equation-based criterion resulting from the standard positive real lemma
together with a specially adapted version of the recursive reduction procedure
given in [4].
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