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Abstract

We review approaches for dimension reduction of smooth nonlinear dynamical
systems. Here, the dimension of the state-space is reduced by projecting the system
onto center or (approximate) inertial manifolds. Examples taken from the open liter-
ature illustrate several aspects one should be aware of when applying these methods.

1 Introduction to the Center Manifold Approach

In dynamical systems theory, dimension reduction is a commonly used technique to
study long-time dynamics or asymptotic behavior. This brief note tries to convey the
basic ideas behind this. We omit inputs and outputs as they play no role in the reduction
process. Thus we consider a “free” dynamical system of the form

ẋ = Ax + f(x), A ∈ R
n×n, (1)

with f being of class C∞ and x(t) ∈ R
n being the state of the dynamical system at time

t ∈ [0, T ]. The matrix A can be considered as the Jacobi matrix Dg(0) if (1) originally
results from a nonlinear autonomous system of the form ẋ = g(x). Furthermore, we assume
(1) to have an isolated equilibrium at x = 0 (implying f(0) = 0) and f(x) = O(‖x‖2)
(which relates f to the higher order terms in a Taylor series expansion about x = 0 of g )

Remark 1 Everything derived here can also be obtained for isolated equilibria at x∗ 6= 0.

The center manifold approach is based on assuming the existence of a spectral decom-
position of A in the following form:

T−1AT = D =





As

Ac

Au



 , (2)

where Λ(As) ⊂ C
−, Λ(Ac) ⊂ ıR, and Λ(Au) ⊂ C

+. Here, Λ(M) denotes the spectrum of
the matrix M , ıR is the imaginary axis, and C

−, C+ denote the open left and right complex
half planes.
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Next, let the eigenspaces corresponding to As, Ac, and Au, respectively, be denoted
by Es, Ec, and Eu, respectively. These are called the stable, center, and unstable, resp.
eigenspaces. For now, assume

dim(Eu) = 0, dim(Ec) = r, dim(Es) = n − r.

Using the change of coordinates

x = T

[

xs

xc

]

and

[

fs(xs, xc)
fc(xs, xc)

]

:= T−1f

(

T

[

xs

xc

])

,

we can transform (1) to its canonical form

ẋs = Asxs + fs(xs, xc)
ẋc = Acxc + fc(xs, xc)

(3)

Note that due the above assumptions on f , we have fs(0, 0) = 0, fc(0, 0) = 0 as well as
Dfs(0, 0) = O and Dfc(0, 0) = 0.

The basis for dimension reduction using center manifolds is the following theorem which
can be found, e.g., in [1].

Theorem 2 (Center Manifold Theorem) Given the dynamical system (3), there exists
a smooth local manifold, called the center manifold,

Wc ≡ W loc
c (0) := {(y, z) ∈ R

n−r × R
r | y = h(z) ∀‖z‖ < δ, h(0) = 0, Dh(0) = 0},

(here, h is a diffeomorphism, i.e., a smooth, bijective map with h−1 of class C∞) such that
(3) restricted to Wc can be expressed as

ẋc = Acxc + fc(h(xc), xc). (4)

Proof. See [1].

Some remarks are in order

a) If f is of class Ck, then Wc is Ck−1.

b) Ec is the tangent space of Wc at O.

c) Solutions of (3) which start on Wc remain on Wc for all times, i.e., if xs(0) = h(xc(0)),
then xs(t) = h(xc(t)) ∀t > 0.

d) Wc attracts all “small norm” solutions of (3) exponentially.

e) Wc is not unique.

Computation of the center manifold

With xs = h(xc) we get ẋs = Dh(xc) · ẋc so that (3) becomes

Dh(xc) · {Acxc + fc(xs, xc)} = Ash(xc) + fs(h(xc), xc)

which is equivalent to

N (h) := Dh(xc){Acxc + fc(xs, xc)} − Ash(xc) − fs(h(xc), xc) = 0. (5)

The center manifold can be approximately computed using (5) and the following theorem,
also available in [1].
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Theorem 3 Let ψ : R
r → R

n−r be of class C1 with ψ(0) = 0 and Dψ(0) = 0. If
N (ψ(xc)) = O(‖xc‖

q) (for ‖xc‖ → 0 and q > 1), then ‖h(xc) − ψ(xc)‖ = O(‖xc‖
q).

To illustrate this, consider the following example.

Example 4 Let the dynamical system be given by

ẋ1 = x2
1x2 − x5

1, ẋ2 = −x2 + x2
1.

Thus, (0, 0) is an equilibrium point and the system is already in canonical form with

A =

[

0 0
0 −1

]

, x1 ≡ xc, x2 ≡ xs.

Recalling that we require h(0) = 0 and h′(0) = 0, we look for

x2 = h(x1) = αx2
1 + βx3

1 + O(x4
1),

i.e., q = 4 in Theorem 3. In order to evaluate (5), we need

ẋ2 = h′(x1) · ẋ1

= (2αx1 + 3βx2
1 + O(x3

1)) · (x
2
1 · h(x1) − x5

1)

= 2α2x5
1 + {2α(β − 1) + 3αβ}x6

1 + O(x7)

and

ẋ2 = −h(x1) + x2
1

= −αx2
1 − βx3

1 −O(x4
1) + x2

1

= (1 − α)x2
1 − βx3

1 + O(x4
1).

Setting α = 1 and β = 0 yields

h(x1) = x2
1 + O(x4

1).

Hence, on Wc, we have
ẋc = x4

c + O(x5
c).

This suffices to conclude that the origin is an unstable equilibrium.

Remark 5 Note that using a projection onto Ec, i.e., replacing Wc by its tangent space
span{

[

1
0

]

} would yield ẋc = −x5
c, suggesting a stable equilibrium at x = O!

Remark 5 shows one of the shortcomings of model reduction methods for nonlinear
systems based on (linear) Galerkin projection onto subspaces of R

n.
The existence of a center manifold requires A to have some purely imaginary eigenval-

ues. We briefly discuss alternatives for dimension reduction if this is not the case in the
following section.
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2 Dimension Reduction based on Inertial Manifolds

If there is no center manifold, e.g., if Λ(A) ⊂ C
−, then w can use (approximate) inertial

manifolds.

Definition 6 M ⊂ R
n is an inertial manifold for (1) if M is a smooth invariant manifold

which attracts all “small norm” solutions of (1) exponentially.

Determining an inertial manifold requires again a spectral decomposition of A and a
separation of “fast” and “slow” modes, analogous to singular perturbation approaches for
the solution of differential-algebraic equations (DAEs). Let this separation be given by

T = [Y, Z], Y ∈ R
n×r, Z ∈ R

n×n−r,

x = Y x1 + Zx2, Y T Z = 0.

Then

ẋ1 = Y T AY x1 + Y T f(Y x1 + Zx2), (6)

ẋ2 = ZT AZx2 + ZT f(Y x1 + Zx2). (7)

In a usual linear Galerkin projection based method we would set x2 = 0 in (6). As
already pointed out in Remark 5 above, this may lead to qualitative wrong reduced-order
approximations!

Better results can be expected using an inertial manifold if it is accessible: assuming
(1) has a low-dimensional inertial manifold defined by x2 = h(x1) with h being a local
diffeomorphism as in Theorem 2, we can integrate (6) error-free and also obtain the solution
of (1) error-free as x = Y x1 + Zh(x1).

As inertial manifolds are not known in general, one mostly tries to compute an approx-
imate inertial manifold (AIM)

x2 ≈ h̃(x1) =: x̃2.

Then one substitutes this in (6) so that x ≈ Y x1 + Zh̃(x1).
A simple idea to compute h̃ is to solve (6) by backwards Euler using a few steps of fixed

point iteration starting from x̃
(0)
2 = 0. This yields

x̃2 = h̃(x1) = −τ(I + τZT AZ)−1ZT f(Y x1)

with time step τ which can be chosen as τ ≈ 1
λr+1

.
The resulting method can also be considered as a nonlinear Galerkin method.
The AIM approach has been applied to dimension reduction of a variety of nonlinear

dynamical systems, including the Navier-Stokes equations; for a survey and references for
further reading see [3]. An example of an AIM model reduction approach applied to control
problems can be found in [2].
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