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THE PRECONDITIONED INVERSE ITERATION FOR HIERARCHICAL

MATRICES

PETER BENNER AND THOMAS MACH

Abstract. The preconditioned inverse iteration [Ney01a] is an efficient method to compute the
smallest eigenpair of a symmetric positive definite matrix M . Here we use this method to find
the smallest eigenvalues of a hierarchical matrix [Hac99]. The storage complexity of the data-

sparse H-matrices is almost linear. We use H-arithmetic to precondition with an approximate
inverse of M or an approximate Cholesky decomposition of M . In general H-arithmetic is of
linear-polylogarithmic complexity, so the computation of one eigenvalue is cheap.

We extend the ideas to the computation of inner eigenvalues by computing an invariant
subspaces S of (M − µI)2 by subspace preconditioned inverse iteration. The eigenvalues of the
generalized matrix Rayleigh quotient µM (S) are the wanted inner eigenvalues of M . The idea

of using (M − µI)2 instead of M is known as folded spectrum method [WZ94].

Numerical results substantiate the convergence properties and show that the computation of
the eigenvalues is superior to existing algorithms for non-sparse matrices.

Keywords: symmetric hierarchical matrices, smallest eigenvalues, preconditioned inverse it-

eration, folded spectrum method, inner eigenvalues, adaptive H-Cholesky decomposition

Mathematics Subject Classification: 65F15, 65F50, 15A18

1. Introduction

The numerical solution of the eigenvalue problem for partial differential equations is of constant
interest, since it is an important task in many applications, see [KMOX09]. For instance the
computation of the electronic structure of molecules requires the solution of an eigenvalue problem
[SRNB09].

Hierarchical matrices are a useful tool to handle discretizations of partial differential operators.
The discretization of integral operators with non-local kernel function, like they occur in the
boundary element method (BEM) [BK05] or in population dynamics [KHS07], leads to dense
matrices. Hierarchical matrices permit the usage of the partial low-rank structure of these matrices
to reduce the storage and computational complexity. So it is beneficial to be able to compute
eigenvalues of hierarchical matrices.

Let M be a hierarchical matrix of dimension n × n. Further let M be real and symmetric
positive definite. The eigenvalue λi ∈ R and the corresponding eigenvector vi ∈ R

n \ {0} fulfill

Mvi = viλi.

We are interested in some eigenpairs (λi, vi) of M . The special structure of hierarchical matrices
permits the computation of matrix-vector products and approximate inverses in almost linear
complexity. These arithmetic operations are used in the preconditioned inverse iteration, which
is suitable for this problem, since it is a so called matrix-free method, not requiring to have M or
M−1 available as matrices, but as functions x → Mx and x → M−1x. The preconditioned inverse
iteration computes the smallest eigenvalue and the corresponding eigenvector by a minimization
process. In the remainder of this introduction we will list some well known facts on eigenvalues
and Rayleigh quotients and some notation required in the subsequent sections.
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2 PETER BENNER AND THOMAS MACH

Since we assume M to be symmetric positive definite, the eigenvalues λi are real and positive.
We sort the eigenvalues in descending order so that the spectrum of M is

Λ(M) = {λ1, . . . , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

Further it is well known that each symmetric matrix M is similar to a diagonal matrix, and that
there is an orthogonal similarity transformation, which diagonalizes M :

QTMQ = diag (λ1, . . . , λn) , with QTQ = I.

Hence the condition number of the symmetric eigenvalue problem is 1 [GV96]. Let Q′ ∈ R
n×d be

an isometry (Q′TQ′ = Id) spanning an invariant subspace (MQ′ = Q′Y ). Then the eigenvalues
corresponding to the eigenvectors in span (Q′) are

Λ
(

Q′TMQ′
)

= Λ(Y ).

This leads to the definition of the Rayleigh quotient, which is minimized by the preconditioned
inverse iteration.

Definition 1.1. (Rayleigh quotient)
The function

µ(x,M) : Rn × R
n×n → R : (x,M) → µ(x) = µ(x,M) =

xTMx

xTx
(1)

is called the Rayleigh quotient.

The Rayleigh quotient of the eigenvector vi is µ(vi) = λi. The definition of the Rayleigh
quotient can be generalized to full rank rectangular matrices X. For this purpose we need the
trace of the matrix M , which is defined by

tr (M) :=

n
∑

i=1

mii =

n
∑

i=1

λi.

Definition 1.2. (matrix Rayleigh quotient, generalized scalar Rayleigh quotient) [AMSV02]
Let X be an element of the Grassmann manifold X ∈ Gr(d, n) =

{

X ∈ R
n×d, column rankX = d

}

,
d ≤ n. Then the matrix Rayleigh quotient is defined by

R(X,M) =
(

XTX
)−1

XTMX.(2)

The function

µ(X,M) : Rn×d → R : X → µ(X,M) = tr (R(X,M))(3)

is called the generalized scalar Rayleigh quotient.

Let S span an invariant subspace with MS = SY . Then the matrix Rayleigh quotient of S is

R(S,M) =
(

STS
)−1

STMS =
(

STS
)−1 (

STS
)

Y = Y.

In the next section we give a brief summary of the preconditioned inverse iteration. The third sec-
tion contains a short review of hierarchical matrices and their approximate inverses and Cholesky
decompositions. Both concepts are combined in the forth section to a preconditioned inverse it-
eration for hierarchical matrices. Afterwards, we use the ideas of the folded spectrum method
[WZ94] to extend the preconditioned inverse iteration to interior eigenvalues. We finally present
some numerical results and concluding remarks.

2. Preconditioned Inverse Iteration

The first iterative eigensolvers with preconditioner dates back to the late 1950s, see [Kny98]
or [Ney01c] for references. In [Ney01c] Neymeyr classifies the different schemes of preconditioned
inverse iteration and proves some statements on the convergence rates, that can be found in
[Ney01a, Ney01b, KN03], too. Further he gives some motivation for using preconditioned inverse
iteration, we pick the following one from there:
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The preconditioned inverse iteration, short PINVIT, can be regarded as a gradient-based min-
imization method minimizing the Rayleigh quotient. We have

µ(x) =
xTMx

xTx

and

∇µ(x) =
2

xTx
(Mx− xµ(x)) .

This leads to the gradient method

xi := xi−1 − α (Mxi−1 − xi−1µ(xi−1)) .

The convergence of this method is too slow, so one should use the acceleration by preconditioning
the residuum r = Mx− xµ(x) with the preconditioner T−1:

∇Tµ(x) =
2

xTx
T−1 (Mx− xµ(x)) .

Finally we get the update equation:

xi := xi−1 − T−1ri−1 = xi−1 − T−1 (Mxi−1 − xi−1µ(xi−1)) .(4)

A second really simple argument, why we use the PINVIT is, that there is a nice sharp bound
on the convergence rate of PINVIT proven in [Ney01a, Ney01b, KN03] and recently in a shorter
form in [KN09]:

Theorem 2.1. [KN09, Theorem 1.1]
Let x ∈ R

n and λj ≤ µ(x) < λj+1. If the preconditioner T−1 satisfies
∥

∥I − T−1M
∥

∥

M
≤ c < 1,(5)

then it holds for the Rayleigh quotient of the next iterate µ(x′), that either µ(x′) < λj or λj ≤
µ(x′) < µ(x). In the latter case,

µ(x′)− λj

λj+1 − µ(x′)
≤ γ2 µ(x)− λj

λj+1 − µ(x)
,

where

γ = 1− (1− c)

(

1− λj

λj+1

)

(6)

is the convergence factor.

There are some variations of this method slightly improving the convergence. One can use the
optimal vector in the subspace spanned by xi−1 and T−1ri−1 as next iterate xi. Neymeyr calls this
variation PINVIT(2), another name is preconditioned steepest descent. Further one can use the
subspace spanned by xi−1, xi−2 and T−1ri−1. This method is called linear optimal (block) precon-
ditioned conjugate gradient method (LOBPCG) or PINVIT(3) in Neymeyr’s classification. Finally
one can replace xi by a subspace Xi of dimension s, then the methods are called PINVIT(k, s).
The convergence factor γ in the subspace case depends among others on the quotient

λs

λs+1
.(7)

If this quotient is one, the subspace is not unique.
We will compute the eigenvalues of a hierarchical matrix using preconditioned inverse iteration

in the version PINVIT(k, s), k ≤ 3. To do this we need H-arithmetic, which will be explained
briefly in the next section. We will mainly focus on the approximate inverse and the approximate
Cholesky decomposition within the H-matrix format.
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3. Hierarchical Matrices

In this section we give a short introduction to hierarchical matrices as far as it is necessary for the
remainder of this paper, for more details see e. g. [GH03, BGH03, Hac09, Beb08]. Hierarchical (H-)
matrices were introduced by W. Hackbusch in 1998 [Hac99]. Some matrices like boundary element
(BEM) or finite element (FEM) matrices have submatrices that admit low-rank approximations.
The basic idea of the H-matrix format is to use a hierarchical structure to find and access such
submatrices and to use good low-rank approximations to reduce their storage amount and the
computation time involving these submatrices. These low-rank approximations make theH-matrix
format data-sparse. The need for truncation in order to close the class of H-matrices under
addition, multiplication and inversion makes formal H-arithmetic an approximative arithmetic.

We will need a few definitions first, for details see [GH03]. A hierarchical tree, short H-tree, TI

of an index set I is a tree with the special conditions:

• the index set I is the root of TI and
• a vertex r ∈ TI is either the disjoint union of its sons S(r) or a leaf of TI .

We denote the set of leaves of the H-tree TI with L(TI). The maximum length of the paths
from the root to each leave is called depth(T ), which is in O(log n), if cardinality or geometrically
balanced clustering is used [GH03, p. 320ff].

A hierarchical product tree, short H×-tree, TI×I is a special H-tree over the index set I×I and
can be regarded as the product set TI ×TI . Every vertex of TI×I is the product of two vertices of
the same level of the H-tree TI . For simplification we assume that both H-trees, which form the
H×-tree, are identical.

Now we are able to define the set of H-matrices based on the H×-tree TI×I with maximum
rank k and minimum block size nmin by

H(TI×I , k) :=

{

M ∈ R
I×I

∣

∣

∣

∣

∀r × s ∈ L(TI×I) : rank (Mr×s) ≤ k
or #r ≤ nmin or #s ≤ nmin

}

.

A hierarchical matrix M ∈ H(TI×I , k) requires a storage of

NH,st(TI×I , k) = O(kn log n),

where n is the size of I. Also a lot of formatted arithmetic needs only linear-polylogarithmic
complexity (M1,M2 ∈ H(TI×I , k), v ∈ R

n):

M1 ∗H v : NH∗v(TI×I , k) ∈ O(kn log n),

M1 +H M2,M1 −H M2 : NH+H(TI×I , k) ∈ O(k2n log n),

M1 ∗H M2, (M1)
−1
H ,HLU(M1) : NH∗H/NH−1/NLU(H) ∈ O(k2n log2 n).

These arithmetic operations (and a lot more) are implemented in the Hlib [HLi09], which we use
for the numerical examples.

In the remainder we will use fixed accuracy H-arithmetic, so we choose the blockwise rank in
each truncation with respect to the given accuracy ǫ. The costs of the H-arithmetic depends on
the maximal blockwise rank k. Thus, in fixed accuracy H-arithmetic the cost depends on log ǫ.

Further the cost depends on the constants nmin, Cid and Csp. The sparsity constant Csp of an
H-matrix is defined as

(8) Csp := max

{

max
r∈TI

|{s ∈ TI | r × s ∈ TI×I}| ,max
s∈TI

|{r ∈ TI | r × s ∈ TI×I}|
}

.

For many problems the sparsity constant Csp is independent of the dimension n [Gra01]. The
sparsity constant is necessary for the adaptive inverse we recall in the next subsection.

3.1. The Approximate Inverse of a Hierarchical Matrix. In the next section we use the
H-inverse as preconditioner in the PINVIT for H-matrices. Therefore we summarize some known
facts about the H-inverse here. The inversion of hierarchical matrices is treated already in the
first H-matrix paper [Hac99]. In many subsequent publications the H-inversion is a subject of
constant investigation, among others in [Gra01, Lin02, BGH03, GH03, HKK04, Beb08, Hac09].
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Algorithm 1: Adaptive Inversion of an H-Matrix [Gra01]

Input: M ∈ H (TI×I), c̃ ∈ R

Output: M−1
adap.,H, with

∥

∥

∥
I −M−1

adap.,HM
∥

∥

∥

2
< c̃

Compute Csp(M) and ‖M‖H2 ;1

Compute M−1
H with ǫlocal = c̃/(Csp(M) ‖M‖H2 );2

δ0M :=
∥

∥I −M−1
H M

∥

∥

H

2
/c̃;3

while δiM > 1 do4

Compute M−1
adap.,H with ǫlocal := ǫlocal/δ

i
M or ǫlocal := ǫlocal/maxi δ

i
M ;5

δiM :=
∥

∥I −M−1
H M

∥

∥

H

2
/c̃;6

end7

The preferred method for the inversion is the recursive block Gaussian elimination. The block-
wise computations of the recursive block Gaussian elimination are done with the H-accuracy ǫ.
Unfortunately this does not guarantee a certain accuracy of the H-inverse M−1

H . Grasedyck de-
signed Algorithm 1 [Gra01], that solves this problem by estimating the required H-accuracy ǫ to
get an approximate inverse M−1

adap.,H, that fulfills

∥

∥

∥
I −M−1

adap.,HM
∥

∥

∥

H

2
< c̃

for a prescribed tolerance c̃. If LLT = M is the Cholesky decomposition of M , then we have

∥

∥I − T−1M
∥

∥

M
=

∥

∥L
(

I − T−1M
)
∥

∥

2
≤ ‖L‖2

∥

∥I − T−1M
∥

∥

2
=

√

‖M‖2
∥

∥I − T−1M
∥

∥

2
.

Thus, we have to choose

c̃ =
c

√

‖M‖2
and c < 1,

to get an inverse fulfilling Condition (5).
The complexity of this process and the rank of the result is in general unknown. There are

only some results for special matrices. In [BH03] it is shown, that the inverse of FEM matrices
of uniformly elliptic operators with L∞-coefficients can be approximated by an H-matrix if the
triangularization is regular. Bebendorf could improve the result in [Beb05, Beb08] to the following
theorem.

Theorem 3.1. Let M be a non-singular FEM matrix. Then under certain assumptions regarding
the grid there is a matrix CH ∈ H(TI×I , k) with k ∼ (|log ǫ| / |log ℓ|)m such that

∥

∥M−1 − CH

∥

∥

2
≤ cond2 (M) ǫ

∥

∥M−1
∥

∥

2
,

where

ℓ = 1− 1

cond2 (M)
2 .

Further, if M is symmetric positive definite, then the bound is tightened to

∥

∥M−1 − CH

∥

∥

2
≤ ǫ

∥

∥M−1
∥

∥

2
,

and ℓ becomes smaller:

ℓ =

√

cond2 (M)− 1
√

cond2 (M) + 1
.

Proof. See [Beb08, Theorem 4.15/4.16]. �
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Algorithm 2: H-Cholesky Decomposition [Hac09]

Input: M ∈ H (TI×I), r = I
Output: L ∈ H (TI×I), with LLT = M
Function H-Cholesky-decomposition(M |r×r , r)1

if r × r ∈ L (TI×I) then2

L|r×r :=Cholesky-decomposition
(

M |r×r

)

; /* M |r×r is dense, use standard3

Cholesky decomposition */

else4

Assume {s1, s2} = S(r); /* TI is a binary tree */5

L|s1×s1
:=H-Cholesky-decomposition

(

M |s1×s1
, s1

)

;6

Compute L|s2×s1
, so that L|s2×s1

L|s1×s1
= M |s2×s1

;7

L|s1×s1
:=H-Cholesky-decomposition

(

M |s2×s2
− L|s2×s1

L|Ts2×s1
, s2

)

;
8

end9

return Lr×r;10

Now we know that there is under certain assumptions an H-matrix CH approximating the
inverse of the matrix M . Numerical examples suggest, that the H-inversion algorithm based on
the recursive block Gaussian elimination is often good enough, that means we get after linear-
polylogarithmic flops an H-matrix of linear-polylogarithmic storage complexity near CH. But we
can not expect to get the optimal matrix CH from the previous theorem.

The evaluation costs for the preconditioner M−1
adap.,H we get from Algorithm 1 depends on the

ranks of the admissible blocks. These ranks depend on the one hand on the used H-accuracy ǫ and
so on c. On the other hand, the ranks depend on the properties of M , especially on the maximal
block rank k and the norms ‖M‖2 and

∥

∥M−1
∥

∥

2
. Both is quite natural: a better preconditioner is

more expensive and a preconditioner for a matrix of better condition is cheaper.
How to find the optimal spectral equivalent preconditioner in the H-format with the minimal

blockwise rank to a given (symmetric positive definite) H-matrix M is still an open problem
[Hac09].

Experiments show that the H-inversion is expensive, though it is of linear-polylogarithmic
complexity. One alternative is the H-Cholesky decomposition, which we investigate in the next
subsection. In Section 6 we will see that the adaptive Cholesky decomposition is much cheaper
than the adaptive H-inversion.

3.2. The Approximate Cholesky Decomposition of a Hierarchical Matrix. For the pre-
conditioned inverse iteration we need a preconditioner for the symmetric positive definite matrix
M . The Cholesky decomposition together with a solver for upper and lower triangular systems of
equations provides us such a preconditioner.

The Cholesky decomposition of hierarchical matrices is computed by a block recursive algo-
rithm, see Algorithm 2 or [Lin02, Hac09].

The H-Cholesky decomposition computes a preconditioner of a certain accuracy c̃ measured by
∥

∥I − L−1L−TM
∥

∥

2
≤ c̃,

where L−1 and L−T are the operators for the forward resp. backward solution process of the
matrix equation LX = M . But like for the H-inversion this accuracy c̃ depends on Csp, ‖M‖,
cond (M) and the H-arithmetic accuracy ǫ. So a priori we do not know how small we must choose
ǫ to get a preconditioner of the necessary accuracy for the preconditioned inverse iteration.

An adaptive Cholesky decomposition of an H-matrix can be computed similar to the adaptive

H-inversion in Algorithm 1. We use the same estimate ǫlocal = c̃/(Csp(M) ‖M‖H2 ) for the H-
arithmetic accuracy. We compute the H-Cholesky decomposition with ǫlocal and compute

η(ǫlocal) =
∥

∥I − L−TL−1M
∥

∥

2
.
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Algorithm 3: Adaptive Cholesky Decomposition of an H-Matrix [Gra01]

Input: M ∈ H (TI×I), c̃ ∈ R

Output: Ladap.,H, with
∥

∥

∥
I − L−T

adap.,HL−1
adap.,HM

∥

∥

∥

2
< c̃

Compute Csp(M) and ‖M‖H2 ;1

Compute LH =H-Cholesky-decomposition(M, I) with ǫlocal = c̃/(Csp(M) ‖M‖H2 );2

δ0 :=
∥

∥I − L−T
H L−1

H M
∥

∥

H

2
/c̃;3

while δi > 1 do4

ǫlocal := ǫlocal/δ
i
M or ǫlocal := ǫlocal/maxi δ

i
M ;5

Compute LH =H-Cholesky-decomposition(M, I) with ǫlocal;6

δi :=
∥

∥I − L−T
H L−1

H M
∥

∥

H

2
/c̃;7

end8

Further we assume that the accuracy of the preconditioner η depends linearly on the H-arithmetic
accuracy ǫ:

η(ǫlocal) = γǫlocal.

With the pair ǫlocal and η(ǫlocal) we make a guess for γ. The quotient c̃/γ gives us a new estimate
for the H-arithmetic accuracy. Unfortunately the dependency between ǫ and η is not linear, so
there is no guarantee, that the second H-Cholesky decomposition is exact enough. Maybe we have
to repeat the process until the preconditioner fulfills Equation (5). All these steps are summarized
in Algorithm 3.

In the next section we apply PINVIT from the previous section to H-matrices using the H-
inversion or the H-Cholesky decomposition.

4. PINVIT for H-Matrices

In this section we will investigate what happens if we use PINVIT to compute the eigenvalues
of an H-matrix. For generality we use the subspace version of PINVIT, see [Ney02] for details. We
assume that the dimension d of the subspace is small compared to n and especially small enough
to store rectangular matrices of dimension n × d in the dense format. We will use Algorithm 4,
which is slightly different from the one in [Ney01a], where Neymeyr uses the Ritz vectors and Ritz
values instead of X and µ(X), this would lead to the following steps replacing the computation of
the residuum in the last line of the for-loop in Algorithm 4:

QDQT := eigendecomposition(µ);

Xi := XiQ;

R := MXi −XiD.

These changes lead to the following update equation

Xi = Xi−1Q− (M)−1
PC (MXi−1Q−Xi−1QD) ,

= Xi−1Q− (M)−1
PC

(

MXi−1 −Xi−1QQTµ
)

Q,(9)

where (M)−1
PC has to be substituted by L−TL−1 in case of using the Cholesky decomposition

as preconditioner. Since Q is orthogonal and square, it holds, that QQT = I. The subspace
version of Equation (4) and Equation (9) only differ in the factor Q, which is multiplied from the
right hand side. This means, that the subspaces spanned by Xi are identical. The orthogonal Q
only causes an orthogonal transformation of the spanning vectors within the spanned subspaces.
Numerical tests do not show an advantage of the diagonalized version, since the extra solutions of
the eigenvalue problems produce additional costs.

Algorithm 4 is equivalent to the algorithm SPINVIT in [Ney02] or [Ney01c], so the convergence
analysis in the literature can be used.
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Algorithm 4: Hierarchical Subspace Preconditioned Inverse Iteration

Input: M ∈ R
n×n, X0 ∈ R

n×d e. g. randomly chosen
Output: Xp ∈ R

n×d, µ ∈ R
r×r, with ‖MXp −Xpµ‖ ≤ ǫ

Orthogonalize X0;1

µ := XT
0 MX0;2

R := MX0 −X0µ;3

T−1 = (M)−1
H ; or L =adaptive-H-Cholesky-decomposition(M);4

for (i := 1; ‖R‖F > ǫ; i++) do5

Xi := Xi−1 − T−1R; or Xi := Xi−1 − L−TL−1R;6

Orthogonalize Xi;7

µ := XT
i MXi;8

R := MXi −Xiµ;9

end10

Remark 4.1. PINVIT can be applied to generalized eigenvalue problems

Mx = λNx,

too. Then we have to orthogonalize in lines 1 and 7 with respect to N , so that XTNX = I.
Furthermore, the computations of the residuum in line 3 and 9 have to be changed to

R := MXi −NXiµ.

The main advantage of H-arithmetic is, that most algorithms are of almost linear complexity.
The PINVIT for H-matrices is one of these algorithms. The computation of the preconditioner
has to be done once and is of linear-polylogarithmic complexity. The non-adaptive H-inversion as
well as the H-Cholesky decomposition have a complexity of O(k2n log2 n).

Further we need one matrix-vector product with M and one evaluation of the preconditioner,
one matrix-vector product with M−1

H or two solutions with the triangular L,LT , per iteration step.

Both products have a complexity equal to the storage complexity of M resp. M−1
H . The handling

of X, R and µ require some dense arithmetic on n×d matrices with O(nd2) flops. So one iteration
has a lower complexity than the H-inversion. Since the number of iterations is independent of the
matrix dimension, the dominant computation in the whole process is the inversion of M .

Theorem 4.2. (Convergence Theorem)
Let x ∈ R

n and λj < µ(x) < λj+1. If M−1
H is computed by Algorithm 1 or LH is computed by

Algorithm 3 and c̃ = c
‖M‖

2

with c < 1, then the Rayleigh quotient of the next iterate x′ computed

by Algorithm 4 is either µ(x′) < λj or λj ≤ µ(x′) < µ(x) with

µ(x′)− λj

λj+1 − µ(x′)
≤ γ2 µ(x)− λj

λj+1 − µ(x)
,

where

γ = 1− (1− c)

(

1− λj

λj+1

)

is the convergence factor.

Proof. In the description of Algorithm 1 we show that M−1
H for c̃ = c

‖M‖
2

fulfills

∥

∥I −M−1
H M

∥

∥

M
< c.

So we can apply Theorem 2.1. �
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4.1. Stopping Criterion. If the subspace spanned by X converges to an invariant subspace,
then the residuum ‖R‖ converges to zero. Since we already compute R for the next iterate,

‖R‖F < ǫ(10)

is a cheap stopping criterion. In [Wil65, p. 173f] the following fact is shown for vectors x.

Lemma 4.3. Let x be a normalized approximation to the eigenvector vj corresponding to the
eigenvalue λj and let µ = xTMx be the Rayleigh quotient of x. Further we need a constant δ, with

δ < |λi − µ| , ∀i ∈ {1, . . . , n} \ {j}.
If ‖Mx− µx‖2 = ǫ < δ, then

|µ− λj | <
ǫ2

δ
(

1− ǫ2

δ2

) .(11)

Proof. [Wil65, p. 173f] �

Relation (11) shows that the Rayleigh quotient has an error of order ǫ2, if δ ≫ ǫ.
In this section we have described the application of PINVIT to hierarchical matrices. This leads

to an algorithm of almost linear complexity for the computation of the smallest eigenvalue. In the
next section we will extend this procedure to compute interior eigenvalues.

5. The Interior of the Spectrum

Often we are interested not only in the smallest eigenvalues, but in eigenvalues in the inte-
rior of the spectrum. The (n − j)th eigenvalue, for j small, can be computed by the subspace
preconditioned inverse iteration. But if j is large, say j ≫ log n, this is prohibitively expensive.

Instead, we will use the folded spectrummethod [WZ94], that is also mentioned in [Mor91]. First
we have to choose a shift σ. Then we compute the smallest eigenpair (λσ, v) of Mσ = (M − σI)2,
here by PINVIT. The eigenvector v is the eigenvector of M to the eigenvalue next to σ. The
Rayleigh quotient µ(v,M) = vTMv/(vT v) is the searched eigenvalue λ.

The following Lemmata are well known:

Lemma 5.1. The condition number of the eigenvalue problem for Mσ = (M − σI)2 is 1.

Proof. Mσ is symmetric. Symmetric matrices can be diagonalized by orthogonal matrices [GV96,
p. 393]. �

Lemma 5.2. Let M ∈ R
n×n be symmetric positive definite and let v be an eigenvector of M , with

Mv = vλ. Then v is an eigenvector of Mσ, too. Further, the corresponding eigenvalue of Mσ is

λσ := (λ− σ)
2
.

If λσ is a simple eigenvector of Mσ, then σ +
√
λσ or σ −

√
λσ is an eigenvalue of M .

Proof.

Mσv = (M − σI)2v = (M − σI)(Mv − σv) = (M − σI)v(λ− σ) = v(λ− σ)2

Since M is symmetric positive definite, there are n disjoint eigenvectors vi, for i = 1, . . . , n. Each
eigenvector vi is an eigenvector of the matrix Mσ. Let vj be the eigenvector corresponding to λσ,
then (λ, vj) is an eigenpair of M and λ and λσ fulfill the relation:

(λ− σ)
2
= λσ.

�

Now we use again H-arithmetic, since the shifted and squared matrix

M̃σ = (M −H σI) ∗H (M −H σI) ≈ Mσ

is an H-matrix like M . The H-inversion of M̃σ is an approximate inverse of Mσ, so that we can use
(M̃σ)

−1
H as preconditioner. Also the H-Cholesky decomposition of M̃σ is an approximation to the

Cholesky decomposition of Mσ and can be used as preconditioner, too. The additional truncation
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Algorithm 5: Inner Eigenvalues by Folded Spectrum Method and Hierarchical Subspace
Preconditioned Inverse Iteration

Input: M ∈ R
n×n, shift σ

Output: Xp ∈ R
n×d, µ ∈ R

r×r, with ‖MXp −Xpµ‖ ≤ ǫ, Λ(µ) are approximations to the to
σ nearest eigenvalues

Orthogonalize X0;1

T−1 = ((M −H σI) ∗H (M −H σI))−1
H ;2

Y0 := MX0 − σX0;3

µ0 := Y T
0 Y0;4

R := MY0 − σY0 −X0µσ;5

for (i := 1; ‖R‖F > ǫ; i++) do6

Xi := Xi−1 − T−1R;7

Orthogonalize Xi;8

Yi := MXi − σXi;9

µi := Y T
i Yi;10

R := MYi − σYi −Xiµσ;11

end12

µ := XT
p MXp;13

in the computation of M̃σ does not disturb the computed eigenvalues, since the preconditioner
needs not to be an exact inverse. The product (M − σI)2xi in the computation of the residuum

need a more accurate evaluation by the formula (M − σI) ((M − σI)xi) instead of M̃σx.
Here H-arithmetic is particularly advantageous, since H-arithmetic enables us to compute an

approximation to M−1
σ or an approximate Cholesky decomposition with reasonable costs.

The smallest eigenvalue of Mσ is the square of the absolute smallest eigenvalue of M − σI. So
the smallest eigenvalue of Mσ is smaller than the smallest eigenvalue of M − σI. The squaring
also increases the largest eigenvalue, and so the condition number of the linear system of equations
with coefficients Mσ is increased by the shifting and squaring. A higher condition number leads
to higher ranks in the admissible submatrices of the H-inverse of Mσ, and this will increase the
costs of the inversion and the application of the preconditioner. This is the main disadvantage of
the folded spectrum method.

Further, if σ + x and σ − x are eigenvalues of M , then Mσ has a double eigenvalue and the
folded spectrum method may fail to converge [Mor91]. Therefore, we should avoid shifts near the
middle of two eigenvalues.

The combination of the folded spectrum method and the preconditioned inverse iteration forms
Algorithm 5.

Theorem 5.3. The for-loop of Algorithm 5 is the preconditioned inverse iteration applied to Mσ.
If M = MT and σ /∈ Λ(M), then Theorem 2.1 holds for this algorithm.

Proof. We have M symmetric and so λi ∈ R. The eigenvalues λi
σ of Mσ = (M − σI)2 are

λi
σ = (λi − σ)

2
. Since σ 6= λi we have λi

σ > 0 for all i. Hence, Mσ is symmetric positive definite.
The for-loop in Algorithm 5 is identical to the for-loop in Algorithm 4 except that M is replaced

by Mσ. This means, that Algorithm 5 does a preconditioned inverse iteration. So Theorem 2.1
can be used here, too. �

In the middle of the next section numerical examples confirm, that this algorithm works well.

6. Numerical Results

In this section we will show some numerical results confirming that Algorithm 4 computes
the smallest eigenvalues in almost linear complexity. We measure the required CPU time for the
computation of the eigenvalues of matrices of different size. This time depends on the performance
of the used computing platform, so all computations are performed on an Intel®Core�i7 CPU
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Preconditioner: H-inversion
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
FEM8 64 5.6146E-010 7.4069E-012 0.01
FEM16 256 4.5918E-010 5.8823E-012 0.02 2.00 106.67
FEM32 1 024 3.7550E-010 4.7702E-012 0.12 6.17 27.08
FEM64 4 096 3.8009E-010 4.8177E-012 0.82 6.68 8.06
FEM128 16 384 4.4099E-010 5.5867E-012 5.84 7.09 5.44
FEM256 65 536 3.9651E-010 5.0311E-012 34.47 5.91 5.22
FEM512 262 144 3.7877E-010 6.7432E-012 194.00 5.63 6.51
Preconditioner: H-Cholesky decomposition
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
FEM8 64 4.6920E-010 6.1898E-012 0.01
FEM16 256 4.7963E-010 6.1442E-012 0.02 2.00 106.67
FEM32 1 024 3.4696E-010 4.4076E-012 0.08 4.00 27.08
FEM64 4 096 4.6414E-010 5.8832E-012 0.48 6.00 8.06
FEM128 16 384 3.3206E-010 4.2071E-012 3.20 6.67 5.44
FEM256 65 536 3.8468E-010 4.8815E-012 13.90 4.34 5.22
FEM512 262 144 3.1353E-010 6.1639E-012 62.40 4.49 6.51

Table 1. Numerical results FEM-series, PINVIT(1, 4), c = 0.2, ǫ = 10−4.

920 with 12 GB RAM. The convergence rate of the algorithm is determined by the gap between
the largest eigenvalue in the computed invariant subspace and the smallest not in the subspace,
see Theorem 2.1, Equation (6). We choose the size of the subspace and the shift, for the last test,
so that the gap, see Equation (7), converges for n to infinity to a fixed number smaller than one.
Another factor of big influence is the complexity of the inversion. We will measure and investigate
the time for the inversion separately.

We choose the start vectors/matrices randomly. The computation of the preconditioner is
the only operation with truncation and since we use the adaptive inversion/adaptive Cholesky
decomposition algorithm we do not need to fix an accuracy for the H-arithmetic. We stop the
iteration if the residuum is smaller than 10−4, then the eigenvalues have under special conditions
an accuracy of about 10−8, see Lemma 4.3.

The influence of the sparsity and the idempotency constant, that are slightly increasing in our
example series, will be accounted for. We expect, that the required CPU time grows asymptotically
like

N(ni) = ni (log2 ni)
2
CspCid.(12)

6.1. FEM matrices. Our first example series is the FEM discretization of the 2D Laplacian over
the unit square. This example is part of the HLib [HLi09], that we use for H-arithmetic operations
in our computations. We vary the discretization from 8 inner discretization points in each direction
to 512 points. The results are shown in Table 1. The absolute resp. relative error is the 2-norm
of the vector with the absolute resp. relative error of each eigenvalue. Figure 1 compares the
CPU time for PINVIT(k, 4), k = 1 or 3 with N(ni). The results confirm our expectations. We
should mention that the FEM matrices are sparse and sparse solvers like eigs in MATLAB® are
faster. The preconditioned inverse iteration for H-matrices is only competitive if we exclude the
H-inversion from the time measurements, that we have done in Table 1 and Figure 1. The inverse
of a sparse matrices is in general not sparse. Here we know, that the inverses of the FEM matrices
are still data-sparse in the H-matrix sense.

Using the adaptive Cholesky decomposition as preconditioner reduces the costs of the algorithm,
see Table 1. But even though the computation of the preconditioner is much cheaper, see Table 6,
the whole algorithm is still about 20 times slower than MATLAB eigs. If we would use the adaptive
inverse as preconditioner, then the whole algorithm is about 2000 times slower.
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FEM16 FEM32 FEM64 FEM128 FEM256 FEM512
10−2

10−1

100

101

102

103
C
P
U

ti
m
e
in

s
H-Inversion PINVIT(1,4)

H-Inversion PINVIT(3,4)

H-Cholesky PINVIT(1,4)

H-Cholesky PINVIT(3,4)

O(N(ni))
MATLAB eigs

Figure 1. CPU time FEM-series, c = 0.2.

Preconditioner: H-inversion
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
BEM8 258 8.0358E-008 1.4669E-006 0.04
BEM16 1 026 1.7211E-007 6.4798E-006 0.28 7.00 24.18
BEM32 4 098 8.6711E-007 6.3498E-005 1.95 6.96 24.22
BEM64 16 386 2.7006E-006 3.9930E-004 17.90 9.18 23.99
BEM128 65 538 – – 186.00 10.39 14.66
Preconditioner: H-Cholesky decomposition
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
BEM8 258 7.9511E-008 1.4516E-006 0.01
BEM16 1 026 2.1351E-007 8.0390E-006 0.14 14.00 24.18
BEM32 4 098 5.0143E-007 3.6719E-005 0.97 6.93 24.22
BEM64 16 386 2.1985E-006 3.2560E-004 7.04 7.26 23.99
BEM128 65 538 – – 47.00 6.68 14.66

Table 2. Numerical results BEM-series, PINVIT(1, 6), c = 0.2, BEM128 is too
large for computing the exact eigenvalues using Lapack [ABB+99].

6.2. BEM matrices. As second example series we use a BEM discretization of the Poisson
problem on the 3D unit sphere, again an example of the HLib. The results, see Table 2 and
Figure 2, confirm again our expectation. Since the BEM matrices are dense, sparse solvers can
not be used here. The usage of dense solvers is no alternative, since the matrix BEM128 would
need about 32 GB storage. The MATLAB functions eigs is the fastest MATLAB build-in function
for this problem, so that we compare here with eigs, too. We are not able to read in the matrix
BEM64 into MATLAB due to the limitation of the size of m-files to 2 GB.

6.3. Inner eigenvalues. In this subsection we use the same matrices again. We shift them to
demonstrate Algorithm 5. We choose the shift and the subspace dimension, so that we have a
large gap between the computed and the other eigenvalues. The gap is almost constant for each of
both example series. The results are shown in Tables 3 and 4. There was not enough memory for
the H-inversion of the shifted FEM512 matrix and not enough fast memory for the H-Cholesky
decomposition of the shifted FEM512 matrix.

6.4. Adaptive H-Inversion vs. Adaptive H-Cholesky Decomposition. Finally we have to
investigate the computation of the preconditioner, which we excluded from the previous investiga-
tions. In Table 5 and 6 one can see, that for the FEM-matrices the storage and the computational
complexity does not fulfill the expectations. Since the costs are still much lower than for dense
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Figure 2. CPU time BEM-series, c = 0.2.

Preconditioner: H-inversion
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
FEM8 64 1.7219E-013 8.2738E-016 <0.010
FEM16 256 7.2388E-012 4.1801E-014 0.035 106.67
FEM32 1 024 6.0045E-013 3.2162E-015 0.125 3.57 27.08
FEM64 4 096 1.0915E-012 5.8548E-015 0.935 7.48 8.06
FEM128 16 384 1.5655E-012 8.0577E-015 6.080 6.50 5.44
FEM256 65 536 1.1976E-011 6.3174E-014 52.400 8.62 5.22
Preconditioner: H-Cholesky decomposition
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
FEM8 64 1.5306E-013 7.5852E-016 <0.010
FEM16 256 9.8071E-012 5.6638E-014 0.020 106.67
FEM32 1 024 1.0577E-012 5.8753E-015 0.050 2.50 27.08
FEM64 4 096 1.5776E-012 8.5785E-015 0.310 6.20 8.06
FEM128 16 384 2.1416E-012 1.0937E-014 1.640 5.29 5.44
FEM256 65 536 6.7400E-012 3.6758E-014 9.730 5.93 5.22
FEM512 262 144 1.5002E-010 7.9036E-013 545.000 56.01 6.51

Table 3. Numerical results for shifted FEM-series, PINVIT(1, 3), c = 0.2, ǫ = 10−4.

Preconditioner: H-inversion
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
BEM8 258 9.8089E-010 3.0652E-010 0.01
BEM16 1 026 3.0867E-005 8.4994E-006 0.31 31.00 24.18
BEM32 4 098 5.4469E-004 1.6450E-004 1.04 3.35 24.22
BEM64 16 386 5.0141E-005 1.5244E-005 11.50 11.06 23.99
BEM128 6 5538 – – 15.90 1.38 14.66
Preconditioner: H-Cholesky decomposition
Name n abs. Err. rel. Err. t in s ti/ti−1 N(ni)/N(ni−1)
BEM8 258 1.6234E-009 5.0731E-010 0.01
BEM16 1026 1.9052E-005 5.2460E-006 0.30 30.00 24.18
BEM32 4098 4.3829E-004 1.3237E-004 1.04 3.47 24.22
BEM64 16386 2.2523E-005 6.8473E-006 11.50 11.06 23.99

Table 4. Numerical results for shifted BEM-series, PINVIT(1, 6), c = 0.2, ǫ = 10−4.
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Name n s(M−1) in kB si/si−1 t in s ti/ti−1 N(ni)/N(ni−1)
FEM8 64 25 <0.01
FEM16 256 246 10.02 0.03 106.67
FEM32 1 024 2 089 8.51 0.29 9.67 27.08
FEM64 4 096 16 539 7.92 5.49 18.93 8.06
FEM128 16 384 116 551 7.05 47.25 8.61 5.44
FEM256 65 536 755 422 6.48 366.14 7.75 5.22
FEM512 262 144 4 541 299 6.01 2 731.28 7.46 6.51

Table 5. Required storage and CPU-time for adaptive H-inversion of different
FEM-matrices, c = 0.2.

Name n s(L) in kB si/si−1 t in s ti/ti−1 N(ni)/N(ni−1)
FEM8 64 24 <0.01
FEM16 256 175 7.13 <0.01 106.67
FEM32 1 024 1 137 6.51 0.02 27.08
FEM64 4 096 6 728 5.92 0.18 9.00 8.06
FEM128 16 384 37 177 5.53 1.28 7.11 5.44
FEM256 65 536 197 261 5.31 8.05 6.29 5.22
FEM512 262 144 1 033 787 5.24 48.98 6.08 6.51

Table 6. Required storage and CPU-time for adaptive H-Cholesky decomposi-
tion of different FEM-matrices, c = 0.2.

Name n s(M−1) in kB si/si−1 t in s ti/ti−1 N(ni)/N(ni−1)
BEM8 258 542 0.31
BEM16 1 026 5 439 10.04 2.03 6.55 24.18
BEM32 4 098 47 807 8.79 21.60 10.64 24.22
BEM64 16 386 470 197 9.84 529.98 24.54 23.99
BEM128 65 538 4 596 971 9.78 7 764.12 14.65 14.66

Table 7. Required storage and CPU-time for adaptive H-inversion of different
BEM-matrices, c = 0.2.

arithmetic, we will not further investigate this small deviation, that we found in the BEM-series
only sporadically, see Tables 7 and 8.

The computation of the preconditioner is responsible for at least half of the cost of the whole
algorithm. The only parameter directly effecting these costs is the c in Equation (5), that we
choose relatively large with c = 0.2.

The adaptive H-Cholesky decomposition is much cheaper than the adaptive H-inversion, in
some examples the Cholesky decomposition needs only 2% of the time of the inversion. The
Cholesky factors require less storage than the H-inverse. That is beneficial in two ways. On the
one hand less storage means, that we can handle larger problems, e. g. shifted FEM512. And on
the other hand the effort for the application of the preconditioner is reduced. This seem to be
the main explanation for the lower CPU time we see in Table 1, 2, and 3, since the number of
iterations are similar.

To summarize the recommendation is to use the adaptive H-Cholesky decomposition instead
of the adaptive H-inversion.

7. Conclusions

We have seen, that the preconditioned inverse iteration can be used to compute the small-
est eigenvalues of hierarchical matrices. Further one can use the ideas of the folded spectrum
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Name n s(L) in kB si/si−1 t in s ti/ti−1 N(ni)/N(ni−1)
BEM8 258 452 0.03
BEM16 1 026 3 111 6.88 0.38 12.67 24.18
BEM32 4 098 21 099 6.78 3.54 9.32 24.22
BEM64 16 386 127 066 6.02 27.94 7.89 23.99
BEM128 65 538 735 170 5.79 209.38 7.49 14.66

Table 8. Required storage and CPU-time for adaptive H-Cholesky decomposi-
tion of different BEM-matrices, c = 0.2.

method together with the efficient H-arithmetic to compute inner eigenvalues of an H-matrix
using PINVIT. This can be used to compute inner eigenvalues of sparse matrices as well as of
data-sparse matrices like boundary element matrices.

For sparse matrices the handling as H-matrix and the computation of the eigenvalues by pre-
conditioned inverse iteration for H-matrices is not competitive, since especially the H-inversion
is too expensive. If we have the H-inverse or H-Cholesky decomposition already available, for
instance we have to solve some systems Mx = b as well, then the approach presented here is
competitive to sparse eigensolvers.

In the case of data-sparse matrices, that are not sparse matrices, the limitation of storage limits
the use of dense eigensolvers. The data-sparse H-arithmetic together with preconditioned inverse
iteration enables us to solve larger eigenproblems, that do not fit in the storage otherwise.

The electronic structure computations in computational chemistry lead to dense but data-
sparse matrices. In the future we will investigate the usage of preconditioned inverse iteration for
hierarchical matrices in computational chemistry.
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