
P. Benner P. Ezzatti H. Mena

E. S. Quintana-Ort́ı A. Remón

Solving Matrix Equations on Multi-core

and Many-core Architectures

FÜR DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Max Planck Institute Magdeburg

Preprints

MPIMD/11-07 September 27, 2011

Impressum:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for Dynamics of Complex
Technical Systems

Address:
Max Planck Institute for Dynamics of
Complex Technical Systems
Sandtorstr. 1
39106 Magdeburg

www.mpi-magdeburg.mpg.de/preprints

Solving Matrix Equations on Multi-core and

Many-core Architectures

P. Benner∗ P. Ezzatti † H. Mena‡

E. S. Quintana-Ort́ı A. Remón§

Abstract

We address the numerical solution of Lyapunov, algebraic and dif-
ferential Riccati equations, via the matrix sign function, on platforms
equipped with general-purpose multi-core processors and, optionally,
one or more graphics processing units (GPUs). In the paper, we re-
view the solvers for these equations as well as the underlying methods,
emphasizing their concurrency and scalability, and providing a few de-
tails on their parallel implementation. Our experimental results show
that this class of hardware provides sufficient computational power to
tackle large-scale problems, which only a few years ago would have
required a cluster of computers.

Keywords: Control theory , Lyapunov and Riccati equations , high
performance.

∗Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Ger-
many benner@mpi-magdeburg.mpg.de.

†Centro de Cálculo-Instituto de Computación, Univ. de la República, Montevideo,
Uruguay, pezzatti@fing.edu.uy

‡Departamento de Matemática, Escuela Politécnica Nacional, Quito, Ecuador,
hermann.mena@epn.edu.ec

§Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaime I, Castellón,
Spain, {quintana,remon}@icc.uji.es

1

1 Introduction

Matrix equations are frequently encountered in control theory applications
like, e.g., model reduction or linear-quadratic optimal control problems, in-
volving dynamical linear systems modeling a variety of physical phenomena
or chemical processes [1]. In general, reliable (i.e., numerically stable) meth-
ods for the solution of these equations require a number of floating-point
operations (flops) that is cubic in the number of states of the dynamical lin-
ear systems, say n. Therefore, the solution of matrix equations with n of
O(1, 000) and larger asks for the use of high performance architectures, often
parallel computers, as well as highly concurrent numerical methods.

In this paper we address the solution of three types of control theory
problems, specifically Lyapunov equations and algebraic/differential Riccati
equations (AREs/DREs). PLiC (see, e.g., [9, 8]) can be viewed as an exten-
sion of some of the methods in SLICOT∗ for message-passing platforms (e.g.,
clusters of computers and other kinds of distributed-memory systems) that
employs ScaLAPACK [10] for computation and BLACS [11] for communi-
cation. Thus, the PLiCMR package offers a tool for the numerical solution
of very-large scale problems, provided a proportional amount of hardware
resources are employed.

In recent years, we have witnessed a rapid evolution in the number and
computational power of processing units (cores) featured by general-purpose
CPUs, and an increasing adoption of GPUs as hardware accelerators in sci-
entific computing. A number of works have demonstrated the remarkable
speed-up these systems can provide for the solution of dense and sparse lin-
ear algebra problems. A few works have presently targeted the numerical
solution of matrix equations, which basically can be decomposed into primi-
tive linear algebra problems, using this class of hardware [3, 5, 6, 7]. In this
paper we address the rapid solution of Lyapunov equations, AREs and DREs,
on multi-core processors as well as GPUs, with the following contributions:

• We show that the matrix sign function provides a crucial building block
for the efficient parallel solution of these three types of matrix equations
on multi-core CPUs and hybrid CPU-GPU platforms.

• While most previous work focuses on performance, experimentally eval-
uating matrix equations solvers using single-precision arithmetic [3, 5,

∗http://www.slicot.de/.

2

6], double-precision is the convention for linear algebra problems. In
this paper we update these data by reporting double-precision results
on the latest available version of GPU architecture from NVIDIA: the
Fermi processor, which doubles the number of processing cores with
respect to the previous generation, and which was mostly employed in
those works as well as in [4].

• We follow the design in [5] for DREs, implementing and evaluating
algorithms that employ multiple GPUs for the solution of Lyapunov
equations and AREs.

• Overall, we provide a clear demonstration that commodity hardware,
available in most current desktop systems, offers sufficient computa-
tional power to solve large-scale matrix equations, with n ≈ 5, 000 −
10, 000.

The rest of the paper is structured as follows. In Section 2 we revisit the
matrix sign function, which is the highly parallel building block underlying
our Lyapunov equation and ARE solvers described in the first two subsec-
tions there. The third subsection then addresses the solution of the DRE
using the matrix-sign function-based Lyapunov solver just introduced. Sev-
eral implementation details for the different solvers/equations are provided
next, in Section 3. The main contribution of this paper, namely the ex-
perimental evaluation of double-precision implementations of these solvers,
using an state-of-the-art CPU-GPU platform, follows in Section 4 and a few
concluding remarks close the paper in Section 5.

2 Matrix Sign Function-Based Solvers

The sign function method [17] is an efficient tool to solve Lyapunov, Sylvester
and Riccati equations on parallel message-passing computers [9, 8] as well as
on hardware accelerators [4]. The convenience of the sign function method
is based on two properties: First, it is composed of well-known basic linear
algebra operations that exhibit a high degree of concurrency. Moreover, high
performance implementations for parallel architectures of these operations
are included in linear algebra libraries like BLAS and LAPACK, and their
extensions for GPUs (CUBLAS, from NVIDIA) and message-passing plat-
forms (e.g., ScaLAPACK). Second, it is an iterative algorithm which presents
a fast convergence rate, asymptotically quadratic.

3

Several schemes have been proposed in the literature to compute the sign
function. Among them, the Newton iteration illustrated in Algorithm GESINE

below exhibits a remarkable simplicity and efficiency.

Algorithm GESINE:

A0 ← A
k ← 0
repeat

Ak+1 ←
(

Ak + A−1

k

)

/2
k ← k + 1

until
√

‖Ak − Ak−1‖1 < τs‖Ak‖1

The most time consuming operation in Algorithm GESINE is the inversion
of Ak. Given a square matrix A of order n, this operation renders the cost
of the whole algorithm as O(n3) flops. The cubic computational cost in the
matrix dimension is inherited by all solvers described next.

To avoid stagnation in the iteration, we set τs = n · √ε, where ε stands
for the machine precision, and perform one additional iteration step after
the stopping criterion is satisfied. Due to the asymptotic quadratic conver-
gence of the Newton iteration, this is usually enough to reach the attainable
accuracy.

2.1 Solution of Lyapunov equations

Algorithm GECLNC, presented below, illustrates a variant of the sign function
method for the solution of a Lyapunov equation of the form

AX + XAT = −BBT , (1)

where A ∈ Rn×n is c-stable (i.e., all its eigenvalues have negative real part)
and B ∈ Rn×m are the coefficient matrices, and X ∈ Rn×n is the desired
solution.

4

Algorithm GECLNC:

A0 ← A, S̃0 ← BT

k ← 0
repeat

Compute the rank-revealing QR (RRQR) decomposition

1√
2ck

[

S̃k, ckS̃kA
−T
k

]

= Qs

[

Us

0

]

Πs

S̃k+1 ← UsΠs

Ak+1 ← 1√
2

(

Ak/ck + ckA
−1

k

)

k ← k + 1

until
√

‖Ak − I‖1 < τl

On convergence, after k̃ iterations, S̃ = 1√
2
S̃k̃, is a full (row-)rank approxi-

mation of S, so that X = ST S ≈ S̃T S̃.
In practice, the scaling factor ck is used to accelerate the convergence rate

of the algorithm, (i.e., reduce the number of required iterations). In our case,
we set

ck = ‖Ak‖/‖A−1

k ‖.
We choose τl = τs and perform an extra step after the convergence cri-

terion is satisfied. Note that the number of columns of S̃k is doubled at
each iteration and, in consequence, the computational and storage costs as-
sociated with its update increase with each iteration. This growth can be
controlled by computing a RRQR factorization, which introduces a relatively
low overhead. This approach reports important gains when the number of
iterations needed for convergence is large, or when the number of columns
of B is large. The RRQR decomposition can be obtained by means of the
traditional QR factorization with column pivoting [14] plus a reliable rank
estimator. Note that Qs is not accumulated as it is not needed in subsequent
computations. This reduces the cost of computing the RRQR significantly.

2.2 Solution of algebraic Riccati equations

The sign function method can be also employed to compute the stabilizing
solution of an algebraic Riccati equation (ARE) of the form

F TX + XF −XGX + Q = 0, (2)

5

where F , G, Q ∈ Rn×n, and the solution X ∈ Rn×n satisfies that F − GX
is symmetric and c-stable.

The matrix sign function can be also employed to solve eq:ARE. In par-
ticular, the solution to the ARE can be obtained from the c-stable invariant
subspace of the Hamiltonian matrix [2]:

H =

[

F G
−Q −F T

]

, (3)

which can be extracted by first obtaining the matrix sign function of H ,

sign(H) = Y =

[

Y11 Y12

Y21 Y22

]

, (4)

and, then, solving the over-determined system,
[

Y11

Y12 + In

]

X =

[

In − Y21

−Y11

]

. (5)

Algorithm GECRSG summarizes the above steps to solve the ARE in eq:ARE
with this method.

Algorithm GECRSG:

H0 ←
[

F G
−Q −F T

]

Apply GESINE to compute Y =

[

Y11 Y12

Y21Q Y22

]

← sign(H0)

Solve

[

Y11

Y12 + In

]

X =

[

In − Y21

−Y11

]

for X

2.3 Solution of differential Riccati equations

The matrix sign function can be also applied in combination with the Rosen-
brock method for the solution of an autonomous symmetric differential Ric-
cati equation (DRE) of the form

Ẋ(t) = Q(t) + X(t)A(t) + A(t)T X(t)−X(t)S(t)X(t) ≡ F (t, X(t)),
X(t0) = X0,

(6)

6

where t ∈ [t0, tf], A(t) ∈ R
n×n, Q(t) = Q(t)T ∈ R

n×n, S(t) = S(t)T ∈
R

n×n, and X(t) ∈ R
m×n. Here, we assume that the coefficient matrices are

piecewise continuous locally bounded matrix-valued functions which ensures
the existence and uniqueness of the solution to (6); see, e.g., [1, Thm. 4.1.6].

The application of the Rosenbrock method of order one to an autonomous
symmetric DRE of the form (6) yields:

ÃT
k Xk+1 + Xk+1Ãk = −Q−XkSXk −

1

h
Xk, (7)

where Xk ≈ X(tk) and Ãk = A− SXk − 1

2h
I; see [15, 16] for details. In ad-

dition we assume, Q = CT C, C ∈ R
p×n, S = BBT , B ∈ R

n×m, Xk = ZkZ
T
k ,

Zk ∈ R
n×zk , with p, m, zk ≪ n. If we denote Nk = [CT Zk(Z

T
k B)

√
h−1Zk],

then the Lyapunov equation (7) results in

ÃT
k Xk+1 + Xk+1Ãk = −NkN

T
k , (8)

where Ãk = A− B(Zk(Z
T
k B))T − 1

2h
I. The procedure that is obtained from

this elaboration is offered in Algorithm ROS1. Observing that rank(Nk) ≤
p+m+zk ≪ n, we can use the sign function method to solve (8), as illustrated
in Algorithm GECLNC (see subsection 3.1).

Algorithm ROS1:

t0 ← a

for k=0 to ⌈ b−a
h
⌉

Ãk = A− B(Zk(Z
T
k B))T − 1

2h
I

Nk = [CT Zk(Z
T
k B)

√
h−1Zk]

Apply GECLNC to obtain Zk+1, a low-rank approximation to

the solution of ÃT
k Xk+1 + Xk+1Ãk = −NkN

T
k

tk+1 = tk + h
end for

Note that, since we obtain the low rank factor of the solution of (8), the
cost associated to the updates of both Ãk and Ñk is drastically decreased, and
thus, the most time consuming operation in Algorithm ROS1 is the solution
of (8), i.e., the execution of Algorithm GECLNC.

7

3 High Performance Implementations

In this section we briefly introduce several high performance implementa-
tions for the solution of the different matrix equations in study. All the
developed routines are based on the sign function method. Three different
implementations are proposed for each matrix equation: one based on the use
of multi-threaded BLAS for general-purpose multi-core processors, a hybrid
CPU-GPU one, and a hybrid CPU-multiGPU implementation.

The multi-core implementations basically employ high performance rou-
tines from BLAS and LAPACK to leverage the hardware parallelism of these
architectures. In addition, OpenMP directives are utilized to accelerate the
computation of other minor operations.

Hybrid CPU-GPU implementations exploit the massively parallel archi-
tecture of the GPU to reduce the time-to-response of large and highly paral-
lel computations (e.g., large matrix-matrix products), while operations that
feature a reduced computational cost, and/or that present a fine grain par-
allelism, are executed on the CPU. In general, our hybrid CPU-GPU im-
plementations aim at reducing the overhead introduced by CPU-GPU data
transfers. Thus, data are transferred only when this is amortized with a re-
duction of the global execution time. In practice, the most time consuming
operation present in the solution of Lyapunov and Riccati equations via the
sign function method is the matrix inversion. This operation is dramatically
accelerated by off-loading most of the computations to the GPU [4]. To
enhance the performance, the matrix inversion is computed via the Gauss-
Jordan elimination method, which is more suitable for the GPU architecture
than the traditional approach based on the LU factorization; see [13].

Hybrid CPU-GPU implementations offer remarkable performance, but
the dimension of the problems that can be tackled with them is limited by
the size of the GPU memory (typically, 3 Gbytes). Hybrid implementations
that combine a CPU with multiple GPUs partially overcome this problem
since, as the number of GPUs grows, the aggregated size of the memory is
also increased. The use of several GPUs also increments the computational
power of the platform, and thus, can potentially reduce the execution time.
These implementations are based on a multi-GPU matrix inversion kernel,
where the CPU and the GPUs present in the platform cooperate in the
computation of the matrix inverse; see [12].

8

3.1 Lyapunov solvers

Three implementations of Algorithm GECLNC are proposed. In the multi-core
routine, GECLNC mc, all the computations are performed on the CPU.
High performance linear algebra kernels from BLAS and LAPACK are em-
ployed to execute most of the computations (QR factorization, matrix in-
version, matrix-matrix products and the computation of the scaling factor),
while OpenMP directives are employed to parallelize other minor computa-
tions, like matrix addition, matrix scaling and the computation of the loop
guard.

In routine GECLNC gpu, each operation is performed on the most con-
venient device. The CPU computes the RRQR decomposition and the update
of matrix S̃k+1, while CPU and GPU cooperate in the computation of Ak+1.
In particular, the GPU is employed to accelerate the computation of A−1

k .
Finally, GECLNC mgpu employs several GPUs to accelerate the com-

putation of the matrix inverse. This implementation permits the solution of
larger problems and potentially reduces their execution time.

3.2 Algebraic Riccati equations

Three implementations are presented for the solution of AREs as well: a
multi-core, a hybrid CPU-GPU, and a multi-GPU variant. GECRSG mc

refers to the multi-core implementation that employs multi-threaded ker-
nels from BLAS. In addition, OpenMP directives are used to parallelize the
construction of matrix H , the matrix addition and scaling required for the
update of Hk+1, and other minor computations. Multi-thread routines from
BLAS and LAPACK are used to compute H−1

k as well as to solve the over-
determined system in the last stage of the method.

During the development of the GECRSG gpu variant, some experi-
ments [7] demonstrated that, in practice, only the matrix inversion can be
accelerated using the GPU as off-loading more computations to the GPU
reported heavy data transfer overheads. The same inversion kernel em-
ployed in GECLNC gpu can be leveraged here to compute H−1

k . Note
that GECRSG gpu can only be used to solve problems where H fits in
the GPU memory, which in general is much smaller than that of the main
system, and that the dimension of H doubles that of A.

Finally, the multi-GPU implementation, GECRSG mgpu, accelerates
the matrix inversion kernel and partially alleviates the constraint of the mem-

9

ory dimension introduced by GECRSG gpu.

3.3 Differential Riccati equations

As in the previous subsections, we have developed a CPU-based and two
GPU-based implementations. The computational cost of Algorithm ROS1 is
clearly reduced if Zk+1 is a low-rank factor. In this case, the total cost of
the algorithm is diminished to that required by the solver of the Lyapunov
equations.

The multi-core implementation, ROS1 mc, employs BLAS and LAPACK
kernels to update Ãk and Ñk, and routine GECLNC mc to obtain the solu-
tion of (8). Once more, OpenMP directives have been employed to parallelize
some minor computations like matrix additions and norm computations.

The hybrid CPU-GPU implementation, ROS1 gpu, executes each oper-
ation on the most convenient device. In particular, the update of Ãk and Ñk

require several matrix-matrix products, matrix additions and scalings that
are computed on the CPU. Despite matrix-matrix products of large matrices
are suitable for the GPU architecture, the dimensions of B and ZT

k are usu-
ally too small to amortize the cost of data transfers. Routine GECLNC gpu

is employed to obtain the solution of the Lyapunov equation.
The last implementation, ROS1 mgpu, employs several GPUs to acceler-

ate the solution of Lyapunov equations using the GECLNC mgpu variant.

4 Experimental Results

We evaluate the performance of the implementations using two problems
from the Oberwolfach Model Reduction Benchmark Collection†: STEEL (we
employ two instances of this problem, steelS and steelL. For both cases,
m = 7 and p = 6. The order of the system is n=1,357 for the steelS instance
and 5,177 for the steelL instance) and FLOW METER (the dimensions of
this problem are n = 9, 669, m = 1, p = 5.).

Experiments are performed on a computer equipped with two intel Xeon
QuadCore E5440 processors at 2.83 GHz, with 16 GB of RAM, connected to
an nvidia Tesla S2050 (consisting of four nvidia M2050 GPUs) via a PCI-e
bus.

†http://www.imtek.de/simulation/benchmark/.

10

GECLNC mc GECLNC gpu GECLNC mgpu

STEELS 0.51 0.54 0.73

STEELL 24.05 7.52 6.79

FLOW METER 239.35 61.70 40.53

Table 1: Execution time (in secs.) for the solution of Lyapunov equations.

A multi-thread version of the intel MKL library (version 11.0) pro-
vides the necessary LAPACK and BLAS kernels for the CPU, and nvidia

CUBLAS (version 3.2) for the GPU computations. Experiments are per-
formed in double precision arithmetic.

Table 1 shows the results obtained with the Lyapunov equation solvers
using the three implementations. GECLNC mc is the fastest option for the
small problem, STEELS , while the use of the GPU reports important gains
for the two largest problems. GECLNC gpu is approximately 3.5× faster
than the CPU variant for the STEELL and the FLOW METER benchmarks. The
multi-GPU routine, GECLNC mgpu, obtains the best results for the larger
problems, being 50% faster than GECLNC cpu for the largest evaluated
problem.

Table 2 summarizes the results for the solution of algebraic Riccati equa-
tions. Note that the codes to build matrix H0 (column 2) and solve the
over-determined system (column 3) are similar for the three implementa-
tions evaluated. Columns 4–9 report the time dedicated to compute the sign
function and the total execution time for each variant. GECRSG gpu ob-
tains the best result for the STEELS problem, and clearly outperforms the
multi-core routine. GECRSG mgpu is the faster variant for the other two
problems. Specifically, it is 8× and 1.5× faster for the STEELL problem
than the GECRSG mgpu and the GECRSG gpu variants, respectively.
Results for the largest problem, FLOW METER, illustrate the efficiency of the
multi-GPU routine. Compared with the CPU variant, it reports an accelerat-
ing factor larger than 13×, while GECRSG gpu cannot solve this problem
due to the limited size of the memory.

Finally, Table 3 shows the execution time obtained for the solution of
differential Riccati equations using the sign function-based Lyapunov solver.
Two values are reported for each implementation, the time to compute the

11

GECRSG mc GECRSG gpu GECRSG mgpu

H0 System Fsign Total Fsign Total Fsign Total

STEELS 0.10 0.59 28.60 29.29 12.07 12.76 15.48 16.17

STEELL 1.36 24.75 1,467.69 1,493.80 267.56 293.67 162.75 188.86

FLOW METER 4.76 151.25 9,263.71 9,419.72 533.25 689.26

Table 2: Execution time (in secs.) for the solution of algebraic Riccati equa-
tions.

ROS1 mc ROS1 gpu ROS1 mgpu

Fsign Total Fsign Total Fsign Total

STEELS 5.80 5.97 5.86 6.02 8.15 8.31

STEELL 262.36 264.36 87.90 90.24 79.46 81.80

FLOW METER 2,664.78 2,674.54 626.99 637.08 391.81 401.64

Table 3: Execution time (in secs.) for the solution of differential Riccati
equations.

sign function (Fsign) and the total execution time. Most of the time, approx-
imately a 97%, is dedicated to the sign function method (i.e., the Lyapunov
solver). The ROS1 mc implementation attains the best execution time for
the small problem, STEELS , while it is clearly outperformed for larger prob-
lems. The multi-GPU variant, ROS1 mgpu, is the best option for the solu-
tion of large problems. In comparison with the multi-core implementation,
it is 3× and 6× faster for the STEELL and the FLOW METER problems, re-
spectively. The single GPU variant also obtains remarkable performances in
all the experiments, but ROS1 mgpu is 50% faster for the solution of the
FLOW METER benchmark.

12

5 Conclusions

We have addressed the solution of three types of matrix equations that arise
in control theory applications: Lyapunov, algebraic Riccati and differential
Riccati equations. Three implementations are presented for each solver: one
that runs on a multi-core CPU; and two hybrid implementations, one for a
system equipped with a multi-core CPU and a GPU, and one for a platform
composed by a multi-core CPU connected to several GPUs. All the imple-
mentations heavily make use of high performance kernels from linear algebra
libraries like MKL and CUBLAS, and OpenMP directives.

Numerical results employing three benchmarks, extracted from the Ober-

wolfach Model Reduction Benchmark Collection, show the efficiency attained
by the proposed routines. The hybrid implementations, based on the use of
a single GPU, report a remarkable performance, being more than 4× faster
than their corresponding multi-core counterparts for large problems. How-
ever, their applicability is limited by the size of the GPU memory. This
limitation is partially overcome in the multi-GPU implementations which, in
addition, are 50% faster in the solution of large dimension problems for the
three matrix equations evaluated.

Acknowledgements The researchers at Universidad Jaume I were sup-
ported by project CICYT TIN2008-06570-C04-01 and FEDER.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank. Matrix Riccati

equations in control and systems theory. Basel, Switzerland, 2003.

[2] P. Benner, R. Byers, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solv-
ing algebraic Riccati equations on parallel computers using Newton’s
method with exact line search. Parallel Computing, 26(10):1345–1368,
2000.

[3] P. Benner, P. Ezzatti, D. Kressner, E. S. Quintana-Ort́ı, and A. Remón.
Accelerating model reduction of larger linear systems with graphics pro-
cessors. In PARA’10 Applied Computing: State-of-the-Art in Scientific

Computing, Lecture Notes in Computer Science. Springer-Verlag, 2011.
Submitted.

13

[4] P. Benner, P. Ezzatti, Daniel Kressner, E. S. Quintana-Ort́ı, and
A. Remón. A mixed-precision algorithm for the solution of Lyapunov
equations on hybrid CPU-GPU platforms. Parallel Computing, 37:439–
450, 2011.

[5] P. Benner, P. Ezzatti, H. Mena, E. S. Quintana-Ort́ı, and A. Remón.
Solving differential Riccati equations on multi-GPU platforms. In 10th

International Conference on Computational and Mathematical Methods

in Science and Engineering – CMMSE 2011, pages 178–188, 2011.

[6] P. Benner, P. Ezzatti, E. S. Quintana-Ort́ı, and A. Remón. Using hybrid
CPU-GPU platforms to accelerate the computation of the matrix sign
function. In H.X. Lin, M. Alexander, M. Forsell, A. Knüpfer, R. Pro-
dan, L. Sousa, and A. Streit, editors, 7th Int. Workshop on Algorithms,

Models and Tools for Parallel Computing on Heterogeneous Networks,
Lecture Notes in Computer Science, Vol. 6043, pages 132–139. Springer-
Verlag, 2009.

[7] P. Benner, P. Ezzatti, E. S. Quintana-Ort́ı, and A. Remón. Accelerat-
ing BST methods for model reduction with graphics processors. In 9th

Int. Conference on Parallel Processing and Applied Mathematics, 2011.
Submitted.

[8] P. Benner, E. S. Quintana, and G. Quintana. Solving linear-quadratic
optimal control problems on parallel computers. Optimization Methods

& Software, 23(6):879–909, 2008.

[9] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. State-space
truncation methods for parallel model reduction of large-scale systems.
29:1701–1722, 2003.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
1997.

[11] Jack J. Dongarra, Robert A. van de Geijn, and R. Clint Whaley. Two di-
mensional basic linear algebra communication subprograms. In Proceed-

ings of the Sixth SIAM Conference on Parallel Processing for Scientific

Computing, March 1993.

14

[12] P. Ezzatti, E. S. Quintana-Ort́ı, and A. Remón. High performance ma-
trix inversion on a multi-core platform with several GPUs. In 19th Int.

Euromicro Conf. on Parallel, Distributed and Network-Based Process-

ing, pages 87–93, 2011.

[13] P. Ezzatti, E. S. Quintana-Ort́ı, and A. Remón. Using graphics proces-
sors to accelerate the computation of the matrix inverse. The Journal

of Supercomputing, 2011. To appear.

[14] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, 2nd edition, 1989.

[15] H. Mena. Numerical Methods for Large-Scale DIfferential Riccati Equa-

tions with Applications in Optimal of Partial Differential Equations.
PhD thesis, Escuela Politécnica Nacional, Quito, Ecuador, 2007.

[16] H. Mena and P. Benner. Numerical solution of large scale differential
Riccati Equations arising in optimal control problems. Technical report,
Max Planck Institute Magdeburg. In preparation.

[17] J.D. Roberts. Linear model reduction and solution of the algebraic Ric-
cati equation by use of the sign function. 32:677–687, 1980. (Reprint of
Technical Report No. TR-13, CUED/B-Control, Cambridge University,
Engineering Department, 1971).

15

	cover-jos
	JOS_plain

