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Efficient Handling of Complex Shift Parameters in
the Low-Rank Cholesky Factor ADI method.

Peter Benner, Patrick Kürschner, and Jens Saak

Abstract

The solution of large-scale Lyapunov equations is a crucial problem for several fields of modern applied
mathematics. The low-rank Cholesky factor version of the alternating directions implicit method (LRCF-ADI)
is one iterative algorithm that computes approximate low-rank factors of the solution. In order to achieve fast
convergence it requires adequate shift parameters, which can be complex if the matrices defining the Lyapunov
equation are unsymmetric. This will require complex arithmetic computations as well as storage of complex data
and thus, increase the overall complexity and memory requirements of the method. In this article we propose a
novel reformulation of LRCF-ADI which generates real low-rank factors by carefully exploiting the dependencies
of the iterates with respect to pairs of complex conjugate shift parameters. It significantly reduces the amount
of complex arithmetic calculations and requirements for complex storage. It is hence often superior in terms of
efficiency compared to other real formulations.

I. INTRODUCTION

Lyapunov matrix equations arise in numerous fields related to control theory. They are an important tool, for
instance, for stability analysis and stabilization [17], model order reduction [25] and in Newton type methods for
solving algebraic Riccati equations [21]. Here we investigate the Lyapunov equation

AP + PAT = −BBT (1)

with A ∈ Rn×n and B ∈ Rn×m. If A is Hurwitz, i.e., the spectrum Λ(A) lies in the open left complex half plane,
which is in the remainder denoted by C−, there exists a unique symmetric positive semidefinite solution P ∈ Rn×n.
We assume that the number of columns m of B is much smaller then the dimension n of A. For small to moderately
sized A the Lyapunov equation can be solved by direct methods such as, e.g., the Bartels-Stewart algorithm [2],
Hammerling’s method [20], the so called 2−solve schemes [33] of both, and the matrix sign function iteration [28].
Since we are interested in the case where A is large and sparse, we investigate an iterative algorithm based on the
alternating directions implicit (ADI) method which is capable of solving large-scale Lyapunov equations. There,
low-rank factors Z̃ ∈ Cn×r with r � n are computed such that Z̃Z̃H ≈ P . This is motivated by the observation
that the singular values of P decay quite rapidly in many applications [32], [19]. The ADI method, and its low-rank
version, need a number of shift parameters to achieve fast convergence. It can be shown that globally optimal shift
parameters are the solutions of a certain rational minimax problem and there are several approaches to compute, or
at least approximate, these optimal values. For unsymmetric A, the case we draw special emphasis to, it is likely
that complex shift parameters need to be applied, which will require complex arithmetics and produce complex
low-rank factors. This is our main concern in this paper and we propose a modification of the low-rank ADI that
allows the generation of real factors even if complex shift parameters have to be used. Furthermore, although the
method still employs complex core computations, their amount is reduced significantly, as well as the required
amount of memory due to complex data types.

The remainder of this paper is organized as follows. In Section II we review the low-rank Cholesky factor ADI
method as well as the required shift parameters. Section III shows previous approaches that deal with complex shift
parameters and introduces our new approach to this problem. This modification can also be implemented in the
ADI method for generalized Lyapunov equations and in the Newton type algorithms for algebraic Riccati equations,
as it is described in Section IV. The efficiency of the proposed approach for (generalized) Lyapunov and algebraic
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Algorithm 1 Low-rank Cholesky factor ADI iteration (LRCF-ADI)
Input: A and B as in (1) and shift parameters {µ1, . . . , µjmax

}.
Output: Z = Zjmax ∈ Cn×tjmax , such that ZZH ≈ P

1: for j = 1, 2, . . . , jmax do
2: if j = 1 then
3: Solve (A+ µ1In)V1 =

√
−2 Re (µ1)B for V1.

4: Z1 = V1.
5: else
6: Solve (A+ µjIn)Ṽ = Vj−1 for Ṽ .
7: Vj =

√
Re (µj)/Re (µj−1)

(
Vj−1 − (µj + µj−1)Ṽ

)
.

8: Update LRCF Zj = [Zj−1, Vj ].
9: end if

10: end for

Riccati equations with large and sparse matrices is illustrated in Section V. Section VI concludes and gives some
possible further related research perspectives.

We use the following notation in this paper: R and C denote the real and complex numbers, and R−, C− refer to
the set of strictly negative numbers and the open left half plane. In the matrix case, Rn×m, Cn×m denote n×m real
and complex matrices, respectively. For any complex quantity X = Re (X)+ Im (X), Re (X), Im (X) are its real
and imaginary parts, and  is the imaginary unit. The complex conjugate of X is denoted by X = Re (X)− Im (X).
The absolute value of ξ ∈ C is denoted by |ξ|. The matrix AT is the transpose of a real n×m matrix, and AH = A

T

is the complex conjugate transpose of a complex matrix. The identity matrix of dimension n is indicated by In.

II. THE LOW-RANK CHOLESKY FACTOR ADI METHOD

For (1) the ADI iteration [37] is given by

(A+ µjIn)Pj− 1

2
= −BBT − Pj−1(AT − µjIn)

(A+ µjIn)P Tj = −BBT − P Tj− 1

2

(AT − µjIn),

where Pj , j ∈ N0 denote the j-th approximations of P and µj ∈ C− are suitable shift parameters. Although
working with an initial guess P0 is possible, we use only P0 = 0 in the sequel. Rewriting the double step into
one single step and setting Pj = ZjZ

T
j leads after some basic manipulations (see, e.g., [30]) to the low-rank

Cholesky factor ADI method [26], [22], as given in Algorithm 1. We see that in each iteration m new columns
are added to the approximate low-rank factor, such that after J iterations we have Jm columns in ZJ . As stated
in the introduction, we assume that m is much smaller than n. The solution of the linear systems with the shifted
matrices A+ µjIn is the most expensive step in the (LRCF)-ADI, and we assume that we are able to solve these
systems by sparse direct [14], [13] or iterative solvers [29], [36]. If m is large, such that the linear systems have
many right hand sides, the use of iterative solvers is severely restricted.

A. Shift Parameters

For J iterations of (LRCF)-ADI, the optimal set of shift parameter can be related to a rational minimax problem
[38] which involves the complete set of eigenvalues of A. For large matrices the exact eigenvalues are not so easily
available, and therefore one uses a small number of approximate eigenvalues in the minimax problem. An often
used inexpensive approach is carried out by taking k+ � n Ritz values of A and, additionally, the reciprocals of
k− � n Ritz values of A−1. Both sets of Ritz values are obtained using an Arnoldi process. The shift parameters
generated using this approach are often referred to as heuristic shifts, or sometimes Penzl shifts in honor of the
author of the article [26], where their first appearance can be found.

In the context of model order reduction, some numerical results (e.g., in [30]) suggest to include some dominant
poles [23] in the set of shift parameters to achieve higher accuracies in the reduced order models. Dominant poles
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refer to the eigenvalues λ of A with corresponding right and left eigenvectors 0 6= x, y ∈ Cn, where the quantity
R̂ := ‖ (C

Tx)(yTB)
Re (λ) ‖2 is large compared to the other eigenvalues and -vectors. The matrix C ∈ Rp×n denotes the

output mapping of the processed dynamical system.
If A is unsymmetric some of its eigenvalues might be complex and come in conjugate pairs, and therefore it

is possible that the same happens for some of the shift parameters. This will of course lead to complex low-rank
factors, and since one complex multiplication involves three real multiplications the overall computational effort is
increased.

For some problems, for example balanced truncation model order reduction [25], one is intrinsically interested
in real LRCFs, and from a numerical point of view these should preferably be obtained by an algorithm whose
computations and storage requirements stay completely in real arithmetics. In the next part of this work we describe
different approaches to achieve this goal completely or at least partially. We propose a new approach which generates
real LRCFs and decreases the computational effort introduced by complex shift parameters significantly by reducing
the number of complex linear systems which need to be processed. All approaches require the natural and important
convention that the set of shift parameters is proper, i.e., it is closed with respect to complex conjugation and of
the form

{µ1, . . . , µJ} = {ν1, . . . , νL} ⊂ C−,

where νj is either a negative real number or a pair of complex conjugate numbers with negative real parts. This
structure automatically implies that ZZH ∈ Rn×Jm. Throughout the rest of this paper we also stick to proper
parameter sets. If the total number of iterations exceeds the number jmax of available shift parameters, then the
shift parameters are usually used in a cyclic manner, i.e., µj = µ(j mod jmax)+1, j ∈ N.

B. Stopping Criteria

There are several ways to terminate Algorithm 1, for example when a certain number jmax of iterations is reached
or the current approximation ZZH ≈ P is of a sufficient accuracy. In the latter case one can, e.g., check if the
normalized residual norm ∥∥AZZH + ZZHAT +BBT

∥∥
2

/
‖BBT ‖2 (2)

of the approximation is smaller than a prescribed tolerance 0 < εres � 1. Since the residual is a symmetric matrix,
it is suggested to use its largest eigenvalue, which is also its ‖ · ‖2-norm. This can be computed via a Lanczos-, or
Arnoldi method. However, if the norm of BBT is too small, it might be reasonable to choose another normalization
in (2), e.g., dividing by ‖BBT ‖2 + 2‖A‖2‖ZZH‖2.

Another stopping criterion is based on the relative change in the LRCF Zj . For a small constant 0 < εrc � 1,
the iteration stops if

‖Vj‖F /‖Zj‖F ≤ εrc, (3)

where it is not necessary to compute ‖Zj‖F every time, because ‖Zj‖2F = ‖Zj−1‖2F + ‖Vj‖2F allows to accumulate
it, leaving the computation of the Frobenius norm of Vj only.

C. Further Improvements

Although not further discussed in this paper, we mention a few strategies to increase the efficiency of LRCF-ADI
both with respect to convergence speed as well as memory usage.

1) Acceleration via Galerkin projection: Krylov subspace methods represent another class of iterative algorithms
for solving for large-scale Lyapunov equations (see, e.g., [31] and the references therein). If A is dissipative, i.e.,
A + AT is negative definite, those methods perform a Galerkin style projection to (1). In order to accelerate the
convergence of LRCF-ADI, this motivates to carry out a similar projection [30], [10] onto the column space of
the current LRCF approximation Z. For reasons of numerical stability an orthonormal basis for range (Z) is used
which requires an orthonormalization of Z. To reduce the induced extra amount of work this projection is usually
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only invoked after a couple of iterations. Let S contain the basis vectors as columns of this orthonormal base. The
projected Lyapunov equation is then

ÂP̂ + P̂ ÂT = −B̂B̂T

with Â := SHAS, P̂ := SHPS and B̂ := SHB and is small provided that Z has much fewer columns than
n. Hence, it can be solved with direct methods for small scale Lyapunov equations [2], [20], [33], [9] and the
improved LRCF is obtained by Z+ = ZR̂, where R̂ is a Cholesky factor of P̂ . For more information we refer to
[10].

2) Column Compression: As the iteration proceeds, the number of columns in Z will increase. This will in turn
not only increase the required memory for storing Z but also the computational effort for computing the residual
norm (2). One way to keep the LRCF as small as possible is to neglect nearly linearly dependent columns of Z. As
in [30, Ch. 4.4.1] this can be achieved by applying, e.g., a rank revealing QR decomposition [12] to Z and using
the numerical rank with a prescribed tolerance as truncation criterion. Note that when using the Galerkin projection
approach, this column compression can be received at almost no additional costs in the orthogonalization procedure
of Z.

D. Available Software Including LRCF-ADI

The “Lyapunov Package” [27] (LyaPack)1 is a MATLAB® toolbox that provides a variety of algorithms for
solving different numerical control theory problems, such as large and sparse Lyapunov and algebraic Riccati
equations, model order reduction and linear quadratic optimal control problems. There the LRCF-ADI method is
implemented in different versions and forms the backbone for solving the occurring large-scale matrix equations.

“Matrix Equations Sparse Solvers” (M.E.S.S.)2 is the upcoming successor of LyaPack. It includes several gener-
alized and in various ways improved implementations of the solvers for Lyapunov and algebraic matrix equations.
It will also provide algorithms for differential Riccati equations. M.E.S.S. will be available as MATLAB and
C-version.

III. REAL FORMULATIONS

Here we briefly describe two older approaches that deal with complex shift parameters before we present our
new one.

A. Previous Approaches

1) Real Formulation of LRCF-ADI: In [5], [26], a real formulation of Algorithm 1 is presented, which con-
catenates steps associated with a pair of complex conjugate shift parameters into one step. Let for this purpose
νj = {µj , µj+1 := µj} be such a pair and Vj , Vj+1 the iterates. For instance, if j > 2 and µj−1 was real, the
iterates Vj , Vj+1 can then be constructed via

Vj = 2
√
−Re (µj)|µj |Ṽj , Vj+1 = 2

√
−Re (µj)AṼj , where

Ṽj =
(
A2 + 2 Re (µj)A+ |µj |2In

)−1 (
(A− µj−1In)Ṽj−1

)
,

(4)

and Ṽj−1 is real due to the special treatment of complex operations in the previous iterations. A complete algorithm
is given by [5, Algorithm 4.] and referred to as LRCF-ADI-R, but unfortunately lacking derivations of the involved
formulas. Hence, we include them in the appendix.

This reformulation has the advantage that no complex arithmetic operations are required but the disadvantage
that linear systems with matrices of the form A2 + 2 Re (µj)A+ |µj |2In are encountered. For large scale matrices,
A2 might not be computable in an efficient way and even if, it will not preserve the original sparsity of A such
that the application of sparse direct solvers is derailed. Iterative solvers can still be applied since they work with
matrix-vector products only, such that the explicit construction of the operator is not needed. However, the condition
number can be increased due to the squaring which might deteriorate the efficiency of iterative solvers as well.

1Available at http://www.tu-chemnitz.de/sfb393/lyapack/ or http://www.netlib.org/lyapack/.
2See http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/wiki .

http://www.tu-chemnitz.de/sfb393/lyapack/
http://www.netlib.org/lyapack/
http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/wiki
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Algorithm 2 Augmentation of Z by real block columns

Input: LRCF approximation Zj−1 ∈ Rn×(j−1)m, iterates Vj , Vj+1 ∈ Cn×m w.r.t. νj = {µj , µj}
Output: Zj+1 ∈ Rn×(j+1)m, that is, Zj−1 augmented by 2m new real columns.

1: for ` = 1, . . . ,m do
2: Compute (thin) singular value decomposition (SVD)

UΣW T = [Re (Vj(:, `)), Im (Vj(:, `)),Re (Vj+1(:, `)), Im (Vj+1(:, `))] ∈ Rn×4

3: Partition U, Σ w.r.t. nonzero singular values

U =
[
u1, u2, u3, u4

]
, Σ = diag (σ1, σ2, 0, 0)

4: New real columns of LRCF

Z̃j(:, `) = σ1u1

Z̃j+1(:, `) = σ2u2

5: end for
6: Zj+1 = [Zj−1, Z̃j , Z̃j+1] ∈ Rn×(j+1)m.

2) LyaPack Approach: Another approach can be found in the latest implementations of the LRCF-ADI method
in LyaPack [27]. Unfortunately, it can not be found anywhere in the literature. The crucial point there is that again
for Vj , Vj+1 corresponding to νj = {µj , µj+1 := µj}, provided that Re (Vj), Im (Vj) have both full row rank m,
it holds

rank (G) = 2m, G := [Re (Vj), Im (Vj),Re (Vj+1), Im (Vj+1)] ∈ Rn×4m (5)

which will be derived in the next subsection. In LyaPack, the current LRCF iterate Z is expanded by real block
columns using Algorithm 2 which processes the imaginary and real parts of Vj , Vj+1 column wise. Hence, the
matrix G used there is of dimension n× 4 and has rank 2. To neglect the linearly dependent part, a thin singular
value decomposition (SVD) in Step 2 of Algorithm 2

G = UΣW T = [u1, u2, u3, u4]


σ1

σ2
0

0

 [w1 w2 w3 w4

]T
= [u1, u2]

[
σ1

σ2

] [
wT1
wT2

]
reveals the blocks corresponding to range (G). Adding G to the current LRCF will introduce the new blocks3

GGT = [u1, u2]

[
σ21

σ22

]
[u1, u2]

T = TT T

with T = [σ1u1, σ2u2] in the approximate solution of (1). This is carried out in Step 4 and ensures that only the
columns of U which correspond to the linearly independent part of G are added to the LRCF Zj−1. Obviously,
this approach generates a real LRCF Z after termination of Algorithm 1, but uses complex arithmetic and requires
the computation of m singular value decompositions of n × 4 matrices for each complex pair νj encountered.
Depending on the actual size of m this can be relatively cost intensive. The applicability of sparse direct solvers is
preserved since the complex linear systems are not changed in contrast to the approach before. In the next part we
propose a new way to generate real LRCFs and circumvent these drawbacks, as well as making the linear system
with A+ µj+1In = A+ µjIn redundant.

3We point out that in the original implementation a superfluous SVD QSZT = [w1, w2]
T [w1, w2] is used to get the new blocks via

[Z̃j(:, `), Z̃j+1(:, `)] = T = [σ1u1, σ2u2]QS.
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B. A New Approach Based on the Interconnection of ADI Iterates

Our new approach exploits (5) by using the correct linear combination of the linearly dependent part of G without
using a SVD. The following theorem states that Vj+1 is explicitly known once Vj has been computed.

Theorem 1. Assuming a proper set of shift parameters, for two subsequent block iterates Vj , Vj+1 of Algorithm 1
related to the pair of complex conjugated shifts νj = {µj , µj+1 := µj} it holds

Vj+1 = Vj + βj Im (Vj) (6)

with βj := 2Re (µj)
Im (µj)

. Furthermore, iterates associated to real shifts are always purely real.

Proof: We split the proof into three cases concerning different possible (sub)sequences of shift parameters in
the LRCF-ADI method.

Case 1: At first we consider a subsequence of LRCF-ADI iterates Vj−1, Vj , Vj+1 with j > 2 and associated
shift parameters µj−1, µj , µj+1 := µj . Let µj−1 ∈ R− generate a real iterate Vj−1 ∈ Rn×m, i.e., all previous shift
parameters are for the moment assumed to be real as well. According to Step 7 of Algorithm 1, the first complex
iterate Vj is calculated by

Vj =

√
Re (µj)

µj−1

(
In − (µj + µj−1)(A+ µjIn)−1

)
Vj−1

= γ1(A+ µjIn)−1(A− µj−1In)Vj−1

with γ1 :=
√

Re (µj)
µj−1

. Equivalently,

(A+ µjIn)Vj = γ1(A− µj−1In)Vj−1 =: W1 ∈ Rn×m

Now splitting µj and Vj into their real and imaginary parts reveals

(A+ Re (µj)In) Re (Vj)− Im (µj) Im (Vj) +  [(A+ Re (µj)In) Im (Vj) + Im (µj) Re (Vj)] = W1.

Since Im (W1) = 0, the same has to hold for the imaginary part of the left hand side, and therefore

Re (Vj) = − 1

Im (µj)
(A+ Re (µj)In) Im (Vj). (7)

The next iterate Vj+1 corresponding to µj is constructed via

Vj+1 = Vj − 2µj(A+ µjIn)−1Vj

= Re (Vj) +  Im (Vj)− 2µj
(
A+ µjIn)−1(Re (Vj) +  Im (Vj)

)
= Re (Vj) +  Im (Vj)− 2µj(A+ µjIn)−1

(
− 1

Im (µj)
(A+ Re (µj)In) Im (Vj) +  Im (Vj)

)
= Re (Vj) +  Im (Vj) +

2µj
Im (µj)

(A+ µjIn)−1
(

(A+ Re (µj)In) Im (Vj)−  Im (µj) Im (Vj)
)

= Re (Vj) +  Im (Vj) +
2µj

Im (µj)
(A+ µjIn)−1(A+ µjIn) Im (Vj)

= Re (Vj) +  Im (Vj) + 2

(
Re (µj)

Im (µj)
− 
)

Im (Vj)

= Vj + βj Im (Vj)

with βj := 2Re (µj)
Im (µj)

, which is the desired result for Case 1. Note that since B in (1) is real, it is not hard to show
that (7) and thus (6) hold also for the first two steps (j = 1, 2) of Algorithm 1 if the first shift parameter µ1 is
complex and µ2 = µ1.
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Case 2: Now we investigate what happens with the next iterates Vj+2, Vj+3 after Case 1, if the iteration is
continued with another complex pair µj+2, µj+3 := µj+2 of shift parameters. The equation for Vj+2 is then given
by

Vj+2 =

√
Re (µj+2)

Re (µj+1)

(
In − (µj+2 + µj+1)(A+ µj+2In)−1

)
Vj+1

= γ2(A+ µj+2In)−1(A− µj+1In)Vj+1,

where γ2 :=
√

Re (µj+2)
Re (µj+1)

. This is equivalent to

(A+ µj+2In)Vj+2 = γ2(A− µjIn)Vj+1 =: W2 ∈ Cn×m.

Since Vj+1 and Vj were constructed using µj+1 := µj and, respectively, µj as shift parameters, we use that (6),
(7) hold for Vj and Vj+1. Partitioning µj and Vj+1 into their real and imaginary parts in the right hand side W2

together with (6) leads to

W2 =γ2
(
A− Re (µj)In −  Im (µj)In

)(
Re (Vj+1) +  Im (Vj+1)

)
=γ2

(
A− Re (µj)In −  Im (µj)In

)(
Re (Vj) +

2 Re (µj)

Im (µj)
Im (Vj)−  Im (Vj)

)
=γ2

([(
A− Re (µj)In

)(
Re (Vj) +

2 Re (µj)

Im (µj)
Im (Vj)

)
− Im (µj) Im (Vj)

]
− 
[(
A− Re (µj)In

)
Im (Vj) + Im (µj) Re (Vj) + 2 Re (µj) Im (Vj)

])
.

Using (7) yields

Im (W2) = −
((
A+ Re (µj)In

)
Im (Vj) + Im (µj) Re (Vj)

)
= 0,

which leads to the same situation as in the case before and it follows that (7) holds also for Vj+2 and µj+2 and
thus (6) holds for Vj+3. Consequently, if the next shift parameters come also in complex conjugate pairs, (6) holds
for Vj+(2k+1), k = 1, 2 . . . which yields the statement of the theorem for this case.

Case 3: Finally, we investigate the situation when after one (or several) pair(s) of complex conjugate shift
parameters a real shift is introduced. Let µj+2 be this real shift following a pair of complex conjugate shifts
µj , µj+1 := µj . Then, using similar manipulations as in Case 2 and exploiting (6), (7) for Vj+1, one finds

(A+ µj+2In) (Re (Vj+2) +  Im (Vj+2)) = W2 ∈ Rn×m

which reveals that Vj+2 is purely real in this situation, regardless if the shift µj+1 before was a complex or a
real one. This is exactly the second statement of the theorem. Note that using a complex conjugate pair of shift
parameters after Case 3 will lead us back to Case 1. This completes the proof, because we have now covered all
possible situations in Algorithm 1.

The theorem reveals that in the case of a pair of complex conjugate shifts, an iterate Vj+1 corresponding to a
shift µj+1 := µj can be constructed entirely from the previous iterate Vj and shift µj without solving a second
complex linear system with A + µjIn, which reduces the costs for generating both iterates roughly by one half.
However, it is still required to solve one complex linear system.

Relation (6) shows moreover that for two subsequent iterates Vj , Vj+1 generated with a complex pair µj , µj of
shift parameters, statement (5) holds indeed, as it is also implicitly exploited in LyaPack using a singular value
decomposition, see Section III-A2. Hence, instead of adding Vj , Vj+1 to the current LRCF, it is sufficient to add
Re (Vj), Im (Vj) in the correct way as we will show next. This will also drastically reduce the amount of memory
required to store the complex data.

Let Ẑ denote the n × 2m block to be added to the current LRCF after computing Vj with an LRCF-ADI step
and Vj+1 using (6). Then

Ẑ =
[
Vj Vj+1

]
=
[
Re (Vj) Im (Vj)

]
T̂ , T̂ :=

[
Im Im
Im (βj − )Im

]
.
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With Z̃ :=
[
Re (Vj) Im (Vj)

]
∈ Rn×2m the contribution of Z to the low-rank solution of (1) is given by

ẐẐH = Z̃T̂ T̂HZ̃T = Z̃

[
2Im βjIm
βjIm (β2j + 2)Im

]
Z̃T .

The 2m× 2m matrix T̂ T̂H in the middle is always real symmetric and positive definite which can be shown using[
2Im βjIm
βjIm (β2j + 2)Im

]
= F̂ ⊗ Im, (8)

with

F :=

[
2 βj
βj (β2j + 2)

]
∈ R2×2.

The symmetric matrix F is, due to its construction, at least positive semidefinite and its eigenvalues are

λ1,2(F ) =
1

2
(β2j + 4)± 1

2

√
β4j + 4β2j .

Since βj ∈ R and therefore, (β2j + 4)2 > β4j + 4β2j holds, λ1,2(F ) are both strictly positive which provides the
positive definiteness of F . Using the spectral property of Kronecker products gives the positive definiteness of the
2m× 2m matrix in (8). Thus, it has a unique Cholesky factorization given by

T̂ T̂H = LLT , L :=

√
2

2

[
2Im 0

βjIm
√
β2j + 4 · Im

]
∈ R2m×2m.

Since

ẐẐH = Z̃LLT Z̃T = ŽŽT , Ž := Z̃L, (9)

we can add the real block Ž ∈ Rn×2m as new block to the LRCF iterate and hence generate a purely real LRCF
throughout the whole iteration. The resulting LRCF-ADI using this strategy is shown in Algorithm 3, where storing
complex data is only needed temporarily for the iterate Vj and the linear system A+ µjI (e.g. for the sparse LU
factors) associated to a complex shift µj . Compared to the standard LRCF-ADI (Algorithm 1) the memory required
for storing the LRCF Z is consequently reduced by a factor of two. Note that adding Re (Vj) if µj ∈ R− in
Step 9, although Vj is by Theorem 1 purely real in this case, ensures that no erroneous imaginary parts caused by
rounding errors are added to Zj−1. As shown in Step 14, it is not necessary to form L and compute the product
with Z̃L in (9) explicitly. Furthermore, in order to stay as much in real arithmetics as possible, stopping criteria
should be computed only after the complete complex pair is processed. Alternatively, if one is interested in the
intermediate residual (or relative change of the LRCF), it is advised to compute it using the appropriate new real
blocks

[
Zj−1,

√
2 Re (Vj) + β√

2
Im (Vj)

]
, since [Zj−1, Vj ] will include complex data.

IV. GENERALIZATIONS

A. Generalized Lyapunov Equation

The LRCF-ADI method can be easily generalized to solve large scale generalized Lyapunov equations

APET + EPAT = −BBT (10)

with an additional sparse matrix E ∈ Rn×n. For now we assume that E is regular and Λ(A, E) ⊂ C− which
ensures the existence of the unique solution P . In this case we can formally multiply (10) from the left by E−1 and
from the right by E−T to get a Lyapunov equation of the form (1) with N := E−1A and G := E−1B such that
Theorem 1 and Algorithm 3 can be applied. However, following the manipulations in [3],[30, Ch. 5.2.2.] shows
that the iteration steps can be rewritten to

V1 =
√
−2 Re (µ1)(A+ µ1E)−1B,

Vj =
√

Re (µj)/Re (µj−1)(Vi−1 − (µj + µj−1)(A+ µjE)−1EVi−1), j ≥ 2.
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Algorithm 3 LRCF-ADI with realification
Input: A and B as in (1) and shift parameters {µ1, . . . , µjmax

}.
Output: Z = Zjmax ∈ Rn×tjmax , such that ZZT ≈ P

1: for j = 1, 2, . . . , jmax do
2: if j = 1 then
3: Solve (A+ µ1In)V1 =

√
−2 Re (µ1)B for V1.

4: else
5: Solve (A+ µjIn)Ṽ = Vj−1 for Ṽ .
6: Vj =

√
Re (µj)/Re (µj−1)(Vj−1 − (µj + µj−1)Ṽ ).

7: end if
8: if Im (µj) = 0 then
9: Vj = Re (Vj).

10: Zj = [Zj−1, Vj ].
11: else
12: β = 2Re (µj)

Im (µj)
.

13: Vj+1 = Vj + β Im (Vj).

14: Zj+1 =

[
Zj−1,

√
2 Re (Vj) + β√

2
Im (Vj),

√
β2

2 + 2 · Im (Vj)

]
.

15: Set j = j + 1.
16: end if
17: end for

Inserting these formulas into Algorithm 1 leads to the generalized LRCF-ADI method (G-LRCF-ADI) [30], [11],
[3] which can be rewritten, using the new realification approach of the previous section, to a generalized version
of Algorithm 3. Of course, the other two strategies are applicable as well, but using the complete real formulation
of G-LRCF-ADI will result in linear systems involving the matrix

AE−1A+ 2 Re (µ)A+ |µ|2E. (11)

Since applying the inverse of E to A is not feasible in a large-scale setting this approach is rendered less preferable.

A similar argumentation holds if A, E and B are structured, e.g., in the form

E :=

[
In 0
0 M

]
, A :=

[
0 In
−K −D

]
∈ R2n×2n, B :=

[
0
B1

]
∈ R2n×m, (12a)

or

E :=

[
D M
M 0

]
, A :=

[
−K 0

0 M

]
∈ R2n×2n, B :=

[
B1

0

]
∈ R2n×m, (12b)

where M, D, K ∈ Rn×n are nonsingular matrices and B1 ∈ Rn×m. This is especially the case when M, D, K, B1

define a second order linear time invariant dynamical system [11] and E, A, B represent a transformation to a
first order generalized system. Note that there are other possible choices to carry out this transformation [34], but
all of those can be dealt with similarly. By assuming again that Λ(A, E) ⊂ C− and by exploiting the structure
of M, D, K, B, it is possible to solve (10) by a version of G-LRCF-ADI which works directly using the n× n
matrices M, D, K and the right hand side B1. This modified version is then called second order LRCF-ADI
(SO-LRCF-ADI) [30], [11] and can certainly be equipped with the realification strategy, too.

Now let the matrices defining (10) be of the structure

E =

[
E1 0
0 0

]
, A =

[
A1 A2

A3 A4

]
, B =

[
B1

B2

]
. (13)

with E1 ∈ Rnf×nf and A4 ∈ R(n−nf )×(n−nf ) nonsingular. All the other subordinate block matrices have appropriate
dimensions. The number nf < n refers to the number of finite eigenvalues in Λ(A, E), which are supposed to
be located in C− as in all cases before. Note that the special structure of E implies that the pair (A, E) is of
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index one, i.e., there are no Jordan chains of length greater than one belonging to the infinite eigenvalues. Since the
inverse of E does not exist, the formulation of an associated Lyapunov equation and G-LRCF-ADI method is not
as straightforward as before. In [16] an approach is presented which works on the generalized Lyapunov equation
ÂP̂ ÊT + ÊP̂ ÂT = −B̂B̂T with

Ê := E1, Ã := A1 −A2A
−1
4 A3 ∈ Rnf×nf (14)

and the right hand side factor B̂ := B1 − A2A
−1
4 B2 ∈ Rnf×m. Solving this generalized Lyapunov equation with

G-LRCF-ADI of course allows the use of the new realification approach, too. However Â will in general be a dense
matrix which prohibits the use of sparse solvers for the linear systems, for example, (Â+µ1Ê)V1 = B̂ in the first
iteration. The main idea in [16] is to solve V1 from the sparse linear system of equations[

A1 + µ1E1 A2

A3 A4

] [
V1
Γ

]
=

[
B1

B2

]
,

where Γ ∈ R(n−nf )×m is an auxiliary variable of no further use. For all other iterations the right hand side is
[V T
j−1E

T
1 , 0T ]T . These augmented linear systems can now be treated efficiently by sparse techniques, and the

resulting modification of the LRCF-ADI is called sparse LRCF-ADI (SLRCF-ADI). Furthermore, they do not
hinder the application of our novel realification approach since the method still works and continues only with the
Vj blocks. In [15] it is shown that this framework can be generalized to a special class of index-2 matrix pairs
resulting from an application concerning RLC circuit models.

Remark. Note that it is claimed in [16] that the columns in the LRCF Z which where generated using µj and µj
are complex conjugate to each other and hence, Z can be transformed into a real form by applying

T =

√
2

2

[
1 
1 −

]
to these columns. As Theorem 1 shows, only the imaginary parts of these columns are complex conjugate versions
of each other, rendering the above claim and the transformation incorrect.

For matrix pairs of arbitrary index, i.e., the infinite eigenvalues have Jordan chains of length greater than one,
the authors in [24] propose to solve generalized projected Lyapunov equations

APET + EPAT = −Π`BB
TΠT

` , P = ΠrPΠT
r ,

where Π`,Πr ∈ Rn×n are spectral projectors onto the left and right deflating subspaces of (A, E). With P ≈ ZZT
as before, these equations can again be solved by G-LRCF-ADI using the projected right hand side Π`B ∈ Rn×m,
interchanging the roles of A and E, and using the reciprocals τj = µ−1j of the shift parameters:

Z1 =
√
−2 Re (τ1)(E + τ1A)−1Π`B,

Zj =

√
Re (τj)

Re (τj−1)

(
In − (τj + τj−1)(E + τjA)−1Zj−1

)
.

Since all other assumptions remain, the new realification approach as in Algorithm 3 is also applicable here.

B. Algebraic and Differential Riccati Equations

In this section we briefly review algebraic Riccati equations (AREs) and the low-rank Newton method for their
solution as we will later test the performance of the realification strategy within this approach. An ARE is given
by

ATX +XA−XBR−1BTX +Q = 0 (15)

with A ∈ Rn×n, B ∈ Rn×m similar to (1), R ∈ Rm×m positive definite and Q ∈ Rn×n positive semidefinite.
Equations of the form (15) play an important role in optimal control problems for linear time invariant control
systems, where the right hand side matrix is often given as Q := CT Q̂C with C ∈ Rp×n and Q̂ = Q̃Q̃T ∈ Rp×p
positive definite. There, a stabilizing solution of (15), or respectively a stabilizing feedback matrix G := XBR−1
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Algorithm 4 Low-Rank Cholesky Factor Newton Method (LRCF-NM) for AREs

Input: A, B, Q = CT Q̃T Q̃C, R = R̃R̃T as in (15) and initial stabilizing feedback G0.
Output: Stabilizing solution X of (15) and feedback matrix G = XBR−1.

1: for k = 1, 2, . . . do
2: Compute ADI shift parameters for AT −Gk−1BT .
3: Set Lk = [CT Q̃, Gk−1R̃].
4: Solve

(AT −Gk−1BT )Xk +Xk(A−BGk−1T ) = −LkLTk
for a LRCF ZkZ

H
k ≈ Xk, e.g., with Algorithm 1 or 3.

5: Update feedback matrix Gk = Zk
(
ZHk BR

−1).
6: end for

is sought, such that A − BGT is Hurwitz. Under the present properties of the involved matrices the stabilizing
solution is unique and symmetric if in addition (A, BR−1BT ) is stabilizable and (A, Q) is detectable. One widely
used approach to solve AREs is using a Newton method which will require the solution of a Lyapunov equation
in every iteration step. The Newton-Kleinman iteration for AREs [21] is one version of such methods. Displayed
in Algorithm 4 is the Low-Rank Cholesky Factor Newton Method which exploits the special structure of the inner
Lyapunov equations. By assuming p, m� n it is possible to solve the Lyapunov equation in Step 4 for a LRCF
Zk such that ZkZkT ≈ Xk. This can be carried out with LRCF-ADI and thus, with our modification given in
Algorithm 3 concerning complex shift parameters. Of course, the other two strategies are also applicable here. The
shift parameters are now related to the matrix AT − Gk−1BT and may be updated in each iteration. Since this
matrix will in general be dense but is decomposed into a sparse part and a low-rank term, it is advised to solve the
shifted linear systems involving AT −Gk−1BT + µjIn with the help of the Sherman-Morrison-Woodbury formula
(e.g. [18]). This is still the case for the completely real formulation as in Section III-A1. The matrix of the double
step corresponding to a complex pair µ can be rewritten into (skipping the inner and outer iteration indices j and
k) (

AT −GBT + µIn
) (
AT −GBT + µIn

)
= AS − UW T

with

AS := AT
2

+ 2 Re (µ)AT + |µ|2In, U :=
[
ATG, G, G

]
, W :=

[
B, AB,

(
2 Re (µ)B −B(GTB)

)]
.

The matrix AS is sparse and U, W ∈ Rn×3m are of low-rank, such that Sherman-Morrison-Woodbury still applies.
It is furthermore possible to rewrite Algorithm 4 to take the low-rank structure of Xk fully into account and

avoid the explicit construction of ZkZHk which leads to the Implicit Low-Rank Cholesky Factor Newton Method
(LRCF-NM-I). See, for instance, [30], [1], [27], [5] for details.

Algorithm 4 can, for instance, be terminated if the normalized ARE residual

‖ATXk +XkA−XkBR
−1BTXk + CTC‖2 / ‖CTC‖2 < ε ARE, (16)

or if the relative change of the ARE’s LRCF

‖ZkZHk − Zk−1ZHk−1‖2
‖ZkZHk ‖2

(17)

drops below a prescribed tolerance, as well. The relative change of the computed feedback matrix can also be used
as stopping criterion which is especially important for LRCF-NM-I.

Acceleration techniques via Galerkin projections similar to the one in LRCF-ADI for Lyapunov equations are
also applicable. The projection can be carried out to the ARE to be solved as well as in the LRCF-ADI iterations
for the inner Lyapunov equations [10].

All these Newton style methods extend in a straightforward way to generalized AREs

ATXE + ETXA− ETXBR−1BTXE +Q = 0.
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TABLE I
THE PARAMETERS FOR THE LRCF-ADI METHOD AND ITS GENERALIZATIONS.

Parameter Meaning
k+ number of Ritz values of A (or E−1A)
k− number of Ritz values of A−1 (or A−1E)
J = JR + 2JC number of shift parameters (real ones plus complex pairs)
jmax maximal number of ADI iterations
kmax maximal number of (outer) Newton iterations
εres tolerance for normalized Lyapunov residual (2)
εARE tolerance for the normalized ARE residual
εrc tolerance for relative change (3) of LRCF

Differential Riccati equations (DREs)

Ẋ(t) = ATX(t) +X(t)A−X(t)BR−1BTX(t) +Q (18)

are also an important tool in control theory. Recent developments concerning their solution in the large-scale case
use, e.g., BDF methods [7] which require the solution of an ARE in each step, or Rosenbrock type methods [8]
involving the solution of a Lyapunov equation in each step. Both ways involve either implicitly or explicitly large-
scale Lyapunov equation, such that LRCF-ADI can be applied. Hence, if complex parameters are involved, they
can also benefit from our novel approach for generating real LRCF.

V. NUMERICAL EXAMPLES

In this section we test the different ways to generate real LRCFs with the LRCF-ADI method. We employ the
following methods

M1 LRCF-ADI (Algorithm 1),
M2 LRCF-ADI-R (cf. Section III-A1, [5, Algorithm 4.]),
M3 LRCF-ADI with LyaPack realification (Algorithm 2 in Section III-A2),
M4 novel approach given in Algorithm 3 in Section III-B

for solving standard (1) and generalized (10) Lyapunov equations, where we used the associated generalized versions
of the above algorithms for the latter case. We also test the different approaches with matrices having the structures
(12) and (13) using SO-LRCF-ADI and SLRCF-ADI, respectively, although we do not consider the M2 version
there. Later on we briefly investigate the use of the different realification approaches within LRCF-NM (Algorithm
4) to solve AREs.

Table I summarizes the parameters needed for one run of LRCF-ADI, including the ones for the heuristic shift
parameter computation. Most oft the parameters are equally used in the generalizations of LRCF-ADI, where others
only play a role for a Newton style method to solve AREs. Note that in the remainder JR denotes the number of
real shifts, and respectively JC the number of pairs of complex conjugate shifts.

All experiments have been carried out in MATLAB 7.11.0 on an Intel®Xeon®W3503 CPU with 2.40 GHz and 6
GB RAM. If not stated otherwise, the occurring linear systems were solved with the MATLAB backslash operator
which employs sparse direct techniques.

A. Standard and Generalized Lyapunov Equations

We consider the following test examples, starting with two standard Lyapunov equations (1).

Example 1. A standard Lyapunov equation, where the matrix A comes from a finite difference discretization of
the parabolic partial differential equation

dx

dt
= 4x− 10ξ1

∂x

∂ξ1
− 1000ξ2

∂x

∂ξ2
on Ω = (0, 1)2,

where x = x(ξ1, ξ2, t) and homogeneous Dirichlet boundary conditions are imposed. Using 50 equidistant grid
points for each spatial dimension results in a stable and sparse matrix A ∈ Rn×n with n = 2500. The matrix B is
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chosen as random vector of length n, i.e., m = 1. Using these settings this example is very close to [26, Example
6.3.] and to example_l1.m in LyaPack.

Example 2. The next example is a 3-d variant of the previous example from [31] with n = 10648 and m = 10.

The next two text examples represent generalized Lyapunov equations (10) and are part of the Oberwolfach
Model Reduction Benchmark collection4. Both models belong the the Oberwolfach Benchmark ID 38867.

Example 3. The coefficient matrices with n = 9669, m = 1 of this generalized Lyapunov equation come from
a spatial finite element discretization of the partial differential equation describing the convective heat flow in a
two-dimensional anemometer like structure involving both a solid body and a liquid fluid.

Example 4. A similar example as above but now the underlying structure is modeled in three spatial dimensions
and represents a chip cooled by a convective flow. The dimensions of the resulting generalized Lyapunov equation
are n = 20082 and m = 1.

We continue with two generalized problems where the matrices stem from a linearization of a second order
dynamical system and have a structure of the form (12b).

Example 5. The scalable triple chain oscillator [35] describes three coupled chains of masses interlinked with
springs and dampers. The mass and stiffness matrices M and K are symmetric and of dimension n = 1501,
whereas the damping matrix D is modeled as D = α1M +α2D, α1 = 0.02, α2 = 0.05 and B is a random matrix
of dimension Rn×5. The resulting generalized Lyapunov equation has then a dimension of 3002.

Example 6. The Butterfly Gyro is also taken from the Oberwolfach Collection3 and models a vibrating mechanical
gyro for the use in an inertia sensor. The original matrices arise from a finite element discretization and are of
dimension n = 17361. The damping matrix is D = α1M+α2D, α1 = 10−5, α2 = 10−6. The equivalent first order
matrices are of dimension 34722. The system comes with an output matrix C ∈ R12×n and we use B = [C, 0]T in
the right hand side.

The Brazilian interconnected power system models5 provide a number of test-systems which have the structure
(13) with E1 = Inf

(see also [16] for more information). The corresponding Lyapunov equations can be solved
with SLRCF-ADI.

Example 7. As first example of this class we choose system bips98 606 which has dimension n = 7135, where
nf = 606 and m = 4.

Example 8. System bips07 3078 with n = 21128, nf = 3078 and m = 4.

All four variants of (G-)LRCF-ADI are tested with Examples 1 – 4. The normalized (generalized) residual norm
(2) is computed in every step and used as stopping criterion. The norms of the residual are computed with a
Lanczos process which is initialized by a random vector. The heuristic shift parameters are computed with two
Arnoldi processes using Bê as starting vector, where ê := (1, . . . , 1)T ∈ Rm.

For the first example Figure 1 illustrates the normalized residual norm against the iteration number, where we
also included one run of LRCF-ADI using only the real parts of the shift parameters used. The four runs using
also complex shift parameters show almost the same residual norms during the iteration and converge after 98
iterations to the desired accuracy of εres = 10−10. This illustrates the proven mathematical equivalence of the
different approaches. The small deviations in the residuals occur exactly at the iterations which work with a pair of
complex shifts, since the intermediate residual after the first complex shift parameter consists of a slightly different
new block in the LRCF for each variant. After the conjugate shift has been processed, too, the residual norms
coincide again.

In this example we also like to emphasize the need for complex shift parameters in the unsymmetric case. As
it can be clearly observed in the corresponding curve in Figure 1, using only the real parts of the shift parameters
seems to slow down the convergence speed remarkably.

4Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark.
5Available at http://sites.google.com/site/rommes/software.

 http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
http://sites.google.com/site/rommes/software
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M1 – LRCF-ADI (Algorithm 1)
M2 – LRCF-AFI-R [5, Algorithm 4.]
M3 – LRCF-ADI (Algorithm 1 + Algorithm 2)
M4 – LRCF-ADI as in Algorithm 3
LRCF-ADI using only Re (µ)

Fig. 1. History of the normalized residual norms obtained with LRCF-ADI and its variants generating real LRCFs for Example 1. The
dashed thin black line indicates the chosen tolerance εres.

Now we compare the different variants in terms of the computation times needed until termination. The results
and the used parameters are summarized in Table II. For Example 1 the novel approach (M4) needs less time than
the other versions, where the run of LRCF-ADI without any special treatment of complex shift parameters (M1)
has not surprisingly the largest computation time followed by the SVD-based approach (M3). However, (M4) is
only slightly better compared to the completely real variant LRCF-ADI-R (M2) since the matrix in this example
is multidiagonal with a low bandwidth, such that forming A2 does not take much computational effort and neither
introduces much fill-in.

All four version perform similarly for the next example, but here M4 outperforms the other approaches signif-
icantly. It needs approximately 55 percent of the computation time of both M2 and M3, and respectively 45 per
cent of the time of M1. Despite the larger dimensions of this example and the presence of m = 10 right hand sides
in the linear systems, there are also other reasons for this greater difference compared to the example before. On
the one hand, A has a greater bandwidth and thus, solving the two shifted linear systems in M2, M3 or the one
involving A2 in M2 increases the computation time by a considerably larger ratio than in Example 1. This can be
clarified by comparing the computation times needed for solving the linear system(s) in each method for a pair of
complex conjugate shift parameters. Let µ, µ be an arbitrary pair of complex conjugated numbers from the set of
shift parameters. Solving one shifted linear system involving µ and an arbitrary right hand side of appropriate size
requires about 1.272 seconds. This is the main computation effort in M4, whose time is roughly doubled in M1 and
M3 to 2.51 seconds, where in the latter case the application of Algorithm 2 computing 10 SVDs takes additional
0.022 seconds. For the solution of the linear system with A2 + 2 Re (µ)A + |µ|2In approximately 2.49 seconds
elapse including 0.013 seconds for forming A2. Note that this matrix has 246136 nonzero entries in contrast to the
original 71632 of A.

Comparable observations can be made for the generalized Lyapunov equations of Examples 3 and 4. All four
variants of G-LRCF-ADI converge in the same manner and show the same ranking with respect to the computation
time: the novel approach M4 requires the least time, followed by M2, M3 and finally the original LRCF-ADI M1.
One exception is approach M2 in Example 3 which did not converge to the desired accuracy within 50 iterations.
In fact, the final normalized residual was of order 106. One explanation might be that forming AE−1A in (11)
induces for this example enough rounding errors to render the overall process inapplicable.

Examples 5 and 6 are treated with the associated formulation SO-LRCF-ADI which takes the present structure
into account. We do not consider the approach M2 for these problems. Comparing the runtimes confirms again that
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TABLE II
PARAMETERS AND COMPUTATION TIMES FOR EXAMPLES 1 – 6. IF THE TIME IS WRITTEN WITHIN BRACKETS THE METHOD DID NOT

CONVERGE WITHIN jmax ITERATIONS. OTHERWISE CONVERGENCE OCCURRED FOR ALL VARIANTS AT jITER ITERATIONS.

Parameters Computation time in seconds

Example n m k+ k− J, (JR, JC) εres jmax jiter M1 M2 M3 M4

1 2500 1 40 20 10, (2, 4) 10−10 100 98 3.942 2.671 3.314 2.122

2 10648 10 60 40 41, (3, 19) 10−10 100 78 143.654 118.539 119.390 65.967

3 9669 1 50 40 40, (26, 7) 10−10 50 37 5.777 (6.575) 5.532 4.057

4 20082 1 20 50 31, (21, 5) 10−10 50 27 88.789 71.542 79.992 61.020

5 1501 5 60 60 51, (9, 21) 10−8 150 146 17.473 – 7.769 7.060

6 17361 12 100 110 64, (12, 26) 10−6 100 50 288.875 – (460.531) 138.835

TABLE III
PARAMETERS AND COMPUTATION TIMES FOR EXAMPLES 7 AND 8.

Parameters Computation time in seconds

Example n nf m k+ k− J, (JR, JC) εres α jmax M1 M3 M4

7 7135 606 4 90 60 70, (10, 30) 10−8 0.05 161 14.394 14.676 8.360

8 21128 3078 4 50 60 45, (7, 19) 10−6 0.08 194 43.178 42.599 23.952

using the novel approach is superior in terms of the computation time. Note that for Example 6 all shift parameters
with |µ| > 1√

εmach
were neglected from the originally computed 100 since they lead to severe numerical problems

which prevented convergence. This effect might be caused by the µ2M − µD + K matrices in SO-LRCF-ADI.
If a shift parameter is too large, its square can easily overwhelm any influence of the matrices D and K. Still,
the SVD-based variant M3 did not fully achieve the desired accuracy after the maximum number of iterations, but
ended in a stagnation phase and a final normalized residual norm of order 10−5.

For the Examples 7 and 8 the SLRCF-ADI method is used including the different strategies, but also without M2.
The residual norm is not computed for these examples since this would require matrix-vector multiplications with
the matrices Ẽ, Ã and B̃ in (14) and therefore involving the solution of a linear system with A4 in each Lanczos
step. The computation of the residual norm would then clearly be the dominant factor in the runtime. Instead we
choose to terminate the algorithms after jmax iterations which corresponds to the number of iterations required to
achieve a relative residual norm below εres in an experiment where the residual norm was really monitored. The
matrices Ã often involve eigenvalues very close to the imaginary axis. To reduce possible numerical difficulties
resulting from nearly unstable eigenvalues, we use – similar to [16, Appendix B] – the shifted matrix Ã − αInf

with α > 0 instead, such that the spectrum of the used matrix is moved farther into the left half plane. The used
parameters and runtimes are summarized in Table III. Note that the chosen values of k+, k−, J, α are the same as
in the numerical experiments in [16]. Again the novel approach requires significantly less time for the computations
than M1 and M3.

To conclude, in all examples LRCF-ADI equipped with the new approach which exploits the interconnection
between the iterates associated to complex shifts has a lower runtime than the other strategies dealing with this
issue. Similar numerical tests (not reported here) revealed that if applicable (AET + EAT < 0) and properly
implemented, this runtime can be even further reduced by using a Galerkin projection after a couple of LRCF-ADI
steps. This projection, as well as column compression using an RRQR, naturally benefit from real LRCFs which
reduce their computational effort, too.

B. Algebraic Riccati Equations

Now we test how LRCF-NM performs with the different strategies employed in the inner LRCF-ADI iterations
for the inherent Lyapunov equation in each Newton iteration. As test problems we choose the matrices of Example
1 and 2 with Q = In, R = Im and C = BT in both cases. In each Newton iteration new shift parameters with
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TABLE IV
PARAMETERS, NUMBER OF NEWTON ITERATIONS, COMPUTATION TIMES AND MAXIMAL NUMBER OF REQUIRED LRCF-ADI

ITERATIONS jmax FOR LRCF-NM WITH DIFFERENT REALIFICATION METHODS.

Parameters Computation time in seconds

Example n m k+ k− J ≈ εARE ε res kiter jmax M1 M2 M3 M4

1 2500 1 50 25 15 5.5 · 10−13 10−10 4 86 23.854 14.233 17.257 12.541

2 10648 10 60 40 40 2.3 · 10−12 10−10 6 66 1709.134 1231.140 1099.657 658.539

respect to A−Gk−1BT were computed with the heuristic approach using the same values of k+, k− and J each
time. Both examples involve a stable matrix A and thus the initial stabilizing solution G0 could be set to zero. We
terminate LRCF-NM if the normalized ARE residual (16) or the relative change (17) drops below εARE := nεmach.
The inner LRCF-ADI iteration stops if the relative residual norm (2) drops below 10−10. As before, all 2-norms
were computed with a Lanczos process.

Table IV summarizes for each example the parameters used and the computation times achieved together with
the maximum number of required ADI iterations. Apparently, the savings with respect to the runtime obtained with
M4 for the Lyapunov equations decrease the timings for LRCF-NM as well for both examples. For all variants
and for both examples the stopping criterion (17) terminated LRCF-NM after kiter Newton iterations. The histories
of (16) and (17) of all four strategies were visually barely distinguishable from each other and are hence omitted.
The final obtained normalized residual norm was of order 10−11 for both examples.

Not shown in Table IV is that using M1, i.e., by not handling complex parameters at all, resulted in a higher
number of the maximum required LRCF-ADI iterations: 96 in Example 1 and, respectively, 72 for Example 2. For
an explanation consider Step 5 in Algorithm 4, where the approximate low-rank solution ZkZHk of the Lyapunov
equation enters the new feedback matrix Gk. Without any care of complex shift parameters, rounding errors might
induce complex data into ZkZHk and thus into Gk, even if a proper set of shift parameters is used. Since Gk enters
in Step 3 the right hand side Lk+1 of the Lyapunov equation of the next Newton iteration, this might alter the
behavior of the next run(s) of LRCF-ADI. This could also be observed in the examples where these differences
in the ADI iterations started occurring with the second Newton iteration. There, due to the zero initial solution, a
computed feedback Gk enters for the first time the computations. The very first iteration of LRCF-NM including
the run of LRCF-ADI were the same for each variant, neglecting the minor differences in the Lyapunov residual
norms with respect to complex shift parameters as described in the Lyapunov examples (see Figure 1).

VI. CONCLUSIONS

We investigated the LRCF-ADI method for large-scale Lyapunov equations involving unsymmetric matrices and
thus introducing complex shift parameters. After reviewing two older strategies to handle these complex shifts and
generating real low-rank factors, we derived a novel approach which exploits the interconnection of the iterates.
The resulting big advantage is that only one linear system has to be solved for each pair of complex conjugate
parameters. This decreases the amount of computational work and storage needed roughly by one half. Although
a part of the computations still employs complex arithmetics, the obtained LRCF is real and the overall algorithm
is superior in terms of the runtime compared to the other real formulations, as our numerical tests confirm. There,
the novel approach was also tested within generalized versions of LRCF-ADI for solving generalized Lyapunov
equations of different nature. Furthermore, it was implemented in the LRCF-NM for solving AREs. In both cases
the solution of the considered matrix equations required less computation time than with the other approaches.
We point out that on architectures which are not able to handle complex data and computations efficiently, the
completely real approach is to be preferred.

Future research perspective could include similar investigations concerning low-rank ADI based methods for
large-scale Sylvester equations [6], as well as for discrete (generalized) Lyapunov and algebraic Riccati equations
[4].
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APPENDIX A
DERIVATION OF THE COMPLETE REAL LRCF-ADI

Here we present the derivation of the formulas in LRCF-ADI-R which was mentioned in Section III-A1 since
these derivations were not shown in the original paper [5].

If the very first shift parameters come as complex conjugate pair, we plug the result of the first iteration of
Algorithm 1

V1 = γ1 (A+ µ1In)−1B,

with γ1 :=
√
−2 Re (µ1) into the second iteration

V2 = (V1 − (µ2 + µ1)(A+ µ2In)−1V1)

= (A+ µ1In)−1(A− µ1In)V1

= γ1(A+ µ1In)−1(A− µ1In) (A+ µ1In)−1B

= γ1(A− µ1In)(A+ µ1In)−1 (A+ µ1In)−1B,

where we used that (A−µ1In) commutes with (A+µ1In). Since (A±µIn) (A± µIn) = A2±2 Re (µ1)A+ |µ|2In
for all µ ∈ C, the above equation becomes

V2 = γ1(A− µ1In)
(
A2 + 2 Re (µ1)A+ |µ|2In

)−1
B

= γ1

(
−µ1Ṽ1 + Ṽ2

) (19)

with Ṽ1 :=
(
A2 + 2 Re (µ1)A+ |µ|2In

)−1
B and Ṽ2 := AṼ1. Using these definitions it is not hard to see that the

first iterate V1 can also be expressed in terms of Ṽ1 and Ṽ2 as well:

V1 = γ1(A+ µ1In)Ṽ1 = γ1

(
µ1Ṽ1 + Ṽ2

)
. (20)

Using both iterates the LRCF is given by

Z = [V1, V2] = [Ṽ1, Ṽ2]

[
γ1µ1Im −γ1µ1Im
γ1Im γ1Im

]
.

Now with Z̃ := [Ṽ1, Ṽ2] the approximate solution of (1) after these two initial steps is

ZZH = Z̃

[
γ1µ1Im −γ1µ1Im
γ1Im γ1Im

][
γ1µ1Im γ1Im

−γ1µ1Im γ1Im

]
Z̃T = Z̃

[
2γ21 |µ1|2Im 0

0 2γ21Im

]
Z̃T ,

such that Z can be constructed as

Z = Z̃

[√
2γ1|µ1|Im 0

0
√

2γ1Im

]
=
[
2
√
−Re (µ1)|µ1|Ṽ1, 2

√
−Re (µ1)Ṽ2

]
.

Together with (19), (20) this results in Step 2 of [5, Algorithm 4.].

Next, we reformulate the equations defining the iteration in the case when after a pair of complex conjugate
shifts parameters νj−2 = {µj−2, µj−1 := µj−2} a real one µj occurs. Similar to the manipulations above, we
concatenate the iterates belonging to νj−2:

Vj−2 = γj−2(A+ µj−2In)−1(A− µj−3In)Vj−3,
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where γj−2 :=
√

Re (µj−2)
Re (µj−3)

, and thus

Vj−1 = (A+ µj−2In)−1(A− µj−2In)Vj−2

= γj−2(A+ µj−2In)−1(A− µj−2In)(A+ µj−2In)−1(A− µj−3In)Ṽj−3

= γj−2(A− µj−2In)(A+ µj−2In)−1(A+ µj−2In)−1(A− µj−3In)Ṽj−3

= γj−2(A− µj−1In)
(
A2 + 2 Re (µj−1) + |µj−1|2In

)−1
(A− µj−3In)Ṽj−3

= γj−2(A− µj−1In)Ṽj−2 = γj−2

(
Ṽj−2 − µj−1Ṽj−1

)
(21)

with

Ṽj−2 :=
(
A2 + 2 Re (µj−1) + |µj−1|2In

)−1
(A− µj−3In)Ṽj−3, Ṽj−1 := AṼj−2.

Note that we assumed that Ṽ3 is constructed using the appropriate equations in LRCF-ADI-R leading to real data
only. This result is merged with the iterate associated to the current shift µj

Vj = γj(A+ µjIn)−1(A− µj−1In)Vj−1,

where γj :=
√

µj

Re (µj−1)
, so that

Vj = γjγj−2(A+ µjIn)−1(A− µj−1In)(A− µj−1In)Ṽj−2

= γjγj−2
(
I − (µj + µj−1)(A+ µjIn)−1)

)
(A− µj−1In)Ṽj−2

= γjγj−2

(
(A− µj−1In)Ṽj−2 − (µj + µj−1)(A+ µjIn)−1(A− µj−1In)

)
Ṽj−2

= γjγj−2

(
(A− µj−1In)Ṽj−2 − (µj + µj−1)(I − (µj + µj−1)(A+ µjIn)−1

)
Ṽj−2

= γjγj−2

(
Ṽj−1 − µj−1Ṽj−2 − (µj + µj−1)Ṽj−2 − (µj + µj−1)(µj + µj−1)(A+ µjIn)−1

)
Ṽj−2

= γjγj−2

(
Ṽj−1 − (2 Re (µj−1) + µj)Ṽj−2 − (|µj−1|2 + 2µj Re (µj−1) + µ2j )(A+ µjIn)−1

)
Ṽj−2

6

= γjγj−2Ṽj (22)

with

Ṽj :=
(
Ṽj−1 − (2 Re (µj−1) + µj)Ṽj−2 − (|µj−1|2 + 2µj Re (µj−1) + µ2j )(A+ µjIn)−1

)
Ṽj−2.

Note that the denominator in

γjγj−2 =

√
µj Re (µj−2)

Re (µj−1) Re (µj−3)
=

√
−2µj

−2 Re (µj−3)

will cancel out due to the scalar factor in front of the iterate Vj−3. Hence, the new LRCF becomes Zj =
[Zj−1,

√
−2µj Ṽj ] and we have eventually obtained the equations of Step 4 in [5, Algorithm 4.].

Now we address the opposite case when after a real shift µj−1 a pair of complex conjugated ones νj :=
{µj , µj+1 := µj} follows.

Merging again both iterates Vj , Vj+1 with respect to νj leads with γj :=
√

Re (µj)
µj−1

to

Vj = γj(A+ µjIn)−1(A− µj−1)Ṽj−1
Vj+1 = (A+ µjIn)−1(A− µjIn)Vj

= γj(A+ µjIn)−1(A− µjIn)(A+ µjIn)−1(A− µj−1)Ṽj−1
= γj(A− µjIn)

(
A2 + 2 Re (µj) + |µj |2In

)−1
(A− µj−1)Ṽj−1,

= −µjγj Ṽj + γj Ṽj+1 (23)

with Ṽj :=
(
A2 + 2 Re (µj) + |µj |2In

)−1
(A− µj−1)Ṽj−1, Ṽj+1 := AṼj ,

6We note that the 2 in front of Re (µj−1) appears to be in the wrong position in Step 4 of [5, Algorithm 4.]
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and Ṽj−1 being the real result of Steps 3. or 4. of LRCF-ADI-R. As before, Vj can be expressed as

Vj = γj(A+ µjIn)Ṽj = µjγj Ṽj + γj Ṽj+1. (24)

These are the same relations as (19), (20) in the situation investigated first and thus, the updated LRCF is

Zj+1 =

[
Zj−1, 2

√
−Re (µj)|µj |Ṽj , 2

√
−Re (µj)Ṽj+1

]
which directly reveals Step 6 of [5, Algorithm 4.].

Finally, we look into the situation of two subsequent pairs of complex conjugated iterates. Let the first pair be
µj−2, µj−1 := µj−2 and µj , µj+1 := µj the second one. Following the same steps as in the previous discussed
case, the iterates for the first pair satisfy

Vj−1 = γj−2(A− µj−1In)Ṽj−2 = −γj−2µj−1Ṽj−1 + γj−2Ṽj−2,

where Ṽj−1, Ṽj−2 are defined by (21) and γj−2 :=
√

Re (µj−2)
Re (µj−3)

. The iterates using the second pair obey with

γj :=
√

Re (µj)
Re (µj−1)

Vj = γj(A+ µjIn)−1(A− µj−1In)Vj−1,

Vj+1 = (A+ µjIn)−1(A− µjIn)Vj

= γj(A+ µjIn)−1(A− µjIn)(A+ µjIn)−1(A− µj−1In)Vj−1

= γj(A− µjIn)(A2 + 2 Re (µj)A+ |µj |2In)−1(A− µj−1In)Vj−1

= γjγj−2(A− µjIn)(A2 + 2 Re (µj)A+ |µj |2In)−1(A− µj−1In)(A− µj−1In)Ṽj−2

= −γjγj−2µj Ṽj + γjγj−2Ṽj+1 (25)

using

Ṽj := (A2 + 2 Re (µj)A+ |µj |2In)−1(A− µj−1In)(A− µj−1In)Ṽj−2, Ṽj+1 := AṼj .

Now we invoke to following reformulations

(A− µj−1In)(A− µj−1In) = (A+ (µj − µj − µj−1)In) (A+ (µj − µj − µj−1)In)

= (A− µjIn)(A− µjIn)− [µj + µj−1 + µj + µj−1]A

− µj(µj + µj−1)In − µj(µj + µj−1)In + (µj + µj−1)(µj + µj−1)In

= (A2 + 2 Re (µj)A+ |µj |2In)− 2 Re (µj + µj−1)A+ (|µj−1|2 − |µj |2)In

which lead to

Ṽj = Ṽj−2 + (A2 + 2 Re (µj)A+ |µj |2In)−1
[
(|µj−1|2 − |µj |2)Ṽj−2 − 2 Re (µj + µj−1)Ṽj−1

]
. (26)

Similar as in the cases before, we have relation (25) and

Vj = γjγj−2µj Ṽj + γjγj−2Ṽj+1. (27)

Using the same argumentation concerning the scalar factors γj , γj−2 as above, we are able to find the correct
augmentation of the LRCFs

Zj+1 =

[
Zj−1, 2

√
−Re (µj)|µj |Ṽj , 2

√
−Re (µj)Ṽj+1

]
. (28)

Together with (26), (25), (27) this results exactly in Steps 7 and 8 of [5, Algorithm 4.].
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