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Abstract

In this paper, we will discuss some optimality results for the approxi-
mation of large-scale matrix equations. In particular, this will include
the special case of Lyapunov and Sylvester equations, respectively. We
show a relation between the iterative rational Krylov algorithm and
a Riemannian optimization method which recently has been shown to
locally minimize a certain energy norm of the underlying Lyapunov
operator. Moreover, we extend the results for a more general setting
leading to a slight modification of IRKA. By means of some numerical
test examples, we will show the efficiency of the proposed methods.
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1 Introduction

In this note, we will discuss some optimality results for low rank approxi-
mations of solutions of large-scale matrix equations of the form

AXE + FXB + CD = 0, (1)

with A,F ∈ Rn×n, B,E ∈ Rm×m, C ∈ Rn×p and D ∈ Rp×m. As is well-
known, these types of equations play an important role in analyzing the
structure of dynamical systems. For example, in case of A = BT , E = F T

and C = DT , the resulting Lyapunov equation characterizes the stability
properties of the associated dynamical system

Eẋ(t) = Ax(t) + Cu(t), y(t) = Dx(t). (2)

Throughout the paper we will assume the matrix pencils (A,F ) and (B,E)
to be stable, i.e. all eigenvalues are included in the open left complex plane.
While for small-to-medium scale equations the exact solution can be com-
puted explicitly by means of the Bartels-Stewart algorithm (see [3]) or Ham-
marlings method (see [16]), for n exceeding O(105), this will no longer be
possible. However, in a lot of interesting real-life applications it holds true
that rank (CD) � n,m which often induces a strong singular value decay
of the solution matrix X. For a detailed discussion on this topic, we refer
to, e.g., [2, 14, 21, 24]. The fact that X can be well approximated by low
rank matrices, i.e. X ≈ UV T with U, V ∈ Rn×k, k � n, has caused the
development of several numerically efficient low rank methods for solving
(1). Here, the most prominent ones are the alternating direction implicit
(ADI) iteration as well as the Krylov-plus-inverted-Krylov method (KPIK),
see e.g. [6, 27, 22]. Recently, for the case of the Lyapunov equation, a
rather different approach has been proposed in [25] which relies on Rieman-
nian optimization and minimizes a certain energy norm associated with the
underlying Lyapunov operator. The main result of this paper will be to
reveal a connection between this method and the iterative rational Krylov
algorithm (IRKA), a well-established approach in the context of model or-
der reduction of dynamical systems of the form (2), see [15]. The structure
now will be as follows. In Section 2, we will briefly review the problem of
H2-model reduction of large-scale dynamical systems as well as IRKA. In
Section 3, we will then discuss the special case of A = BT , E = F T and
C = DT . Starting with symmetric state space systems, we will explain how
to generalize the concepts for the unsymmetric case and point out some diffi-
culties. Subsequently, Section 4 deals with more general Sylvester equations
of the form (1). Here, we will introduce an appropriate objective function
whose minimization will automatically yield certain optimality results con-
cerning low rank approximations. As it will turn out, the approach is a direct
extension of IRKA and thus can be implemented in a stable and efficient
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projection framework. We will show the efficiency of our results by means of
some standard test examples in Section 5 and conclude with a short review
as well as some related topics of further research in Section 6. However, it
should be noted at this point that all our results are primarily of theoretical
interest and hopefully lead to new insight and better understanding of the
relations between the currently most popular methods for solving large-scale
Lyapunov and Sylvester equations. In a certain sense, the approximations
we propose are optimal and we will provide numerical algorithms which will
converge to these optimal approximations. Nevertheless, since all of them
are of iterative nature, they strongly depend on the convergence rate and
the cost per iteration. At this point they will in most cases be not compet-
itive in terms of numerical efficiency when compared to methods like, e.g.,
the ADI method and rational Krylov, but we expect that our findings will
be helpful in further optimizing these methods and possibly arriving at a
hybrid method aggregating the best features of them.

Throughout the paper, In ∈ Rn×n and In̂ ∈ Rn̂×n̂ will denote the iden-
tity. With ⊗ we denote the Kronecker product of two matrices and vec (·)
will be understood as the vectorization of a matrix into a long vector. Fi-
nally, tr () denotes the trace of a matrix, i.e. the sum of its diagonal entries
while Â ∈ Rn̂×n̂ will always indicate that the matrix is related to a reduced-
order model, meaning that n̂� n.

2 Optimal H2-model reduction

In this section, we will briefly introduce the topic of model order reduction
of a dynamical system. Basically, the goal is to replace a system of the form
(2) by another system with the same structure but much fewer states, i.e.

Ê ˙̂x(t) = Âx̂(t) + Ĉu(t), ŷ(t) = D̂x̂(t), (3)

where Ê, Â ∈ Rn̂×n̂, Ĉ ∈ Rn×p, D̂ ∈ Rq×n and n̂� n. We will abbreviate the
above structure by using the notation Σ̂ = (Ê; Â, Ĉ, D̂). Since (3) should ap-
proximate (2) in some sense, one usually demands y ≈ ŷ. For linear systems,
the deviation from a reduced system to the original one can be measured in
terms of different system norms. Besides the H∞-norm, a common way for
this is to use the H2-norm which, for a dynamical system Σ, is defined as
follows:

||Σ||H2 :=

(
1

2π

∫ ∞
−∞

tr
(
H(−iω)HT (iω)

)
dω

) 1
2

,

where H(s) = D(sIn − A)−1C is called the transfer function of Σ. In the
following, it will be important to recall that theH2-norm alternatively can be
characterized in terms of the solution of the Lyapunov equations associated
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with the system. In more detail, we have

||Σ||2H2
= tr

(
DXDT

)
= tr

(
CTY C

)
,

where

AXET + EXAT + CCT = 0, ATY E + ETY A+DTD = 0.

In order to compute the approximation of a reduced model with respect to
the H2-norm, one can now define an error system as[

E 0

0 Ê

]
,

[
A 0

0 Â

]
,

[
C

Ĉ

]
,
[
D −D̂

]
. (4)

Finally, based on the above definitions and properties, it is possible to de-
rive first-order necessary conditions for H2-optimality of a reduced system.
Although this has already been done in [20], until recently in [15], there has
not been an efficient way of computing such a reduced order model. For sim-
plicity, recall that in case of a single input and single output (SISO) system,
these conditions imply that the reduced transfer function Ĥ is a Hermite
interpolant of the original transfer function H at the mirror images of its
own system poles, i.e.

Ĥ(−λi) = H(−λi), Ĥ ′(−λi) = H ′(−λi), (5)

with λi being the i-th eigenvalue of the pencil (Â, Ê). Though obviously
these poles are not known a priori, the iterative rational Krylov algorithm
proposed in [15] has largely resolved this problem. A pseudocode for the
SISO case is depicted in Algorithm 1.

Algorithm 1 Iterative rational Krylov algorithm (IRKA) for SISO case

Input: A, E, c, d, Â, Ê, ĉ, d̂
Output: Âopt, Êopt, ĉopt, d̂opt

1: while (change in Λ > tol) do
2: ÂQ = ÊQΛ
3: Vi = (−λiE −A)−1c, Wi = (−λiE −A)−TdT ,
4: V = orth (V ), W = orth (W )
5: Â = W TAV , Ê = W TEV, ĉ = W T c, d̂ = dV
6: end while
7: Âopt = Â, Êopt = Ê, ĉopt = ĉ, d̂opt = d̂

3 The Lyapunov equation

In this section, we will analyze the case of Lyapunov equations. Once more,
for the matrix equation (1), this means A = BT and E = F T . We start with
a detailed discussion for the symmetric case including a very brief review of
the method proposed in [25] and will then successively transfer some results
to the unsymmetric case.
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The symmetric case

In the following we will use the setting specified in [25]. Hence, let us assume
that E = ET � 0 is symmetric positive definite (s.p.d.) and A = AT ≺ 0
is symmetric negative definite. Resulting from the vectorization of equation
(1) we define L := −E ⊗ A − A ⊗ E to be the Kronecker representation of
the associated Lyapunov operator. Note that due to the assumption on the
pencil (A,E), we automatically have that σ(L) ⊂ R+. Moreover, since we
are dealing with symmetric matrices, it makes sense to define the energy
norm

|| · ||L =
√
〈·, ·〉L with 〈u, v〉L = 〈u,Lv〉.

In [25], the authors construct a method based on Riemannian optimization
that computes a low rank approximation Xk by minimizing the objective
function

f :M→ R, X 7→ tr (XAXE) + tr
(
XCCT

)
on the manifold M of symmetric positive semi-definite matrices of rank k,

M = {X : X ∈ Ssym
n , X ≥ 0, rank (X) = k}.

The specific function f is motivated by the fact that it holds

|| vec (X −Xk) ||2L = 2 tr (XkEXkA) + 2 tr
(
XkCC

T
)

+ 2 tr (XEXA)

= 2f(Xk) + 2 tr (XEXA) .

Since the second term depends only on the true solution X it is constant and
it thus suffices to minimize f. The first step now is to realize that there is a
close relationship between the elements inM and approximants constructed
by a projection-based approach. This is seen as follows. Let Xk ∈M. Hence
it can be written as V X̂V T , where V ∈ Rn×k is an orthogonal matrix and
X̂ = X̂T ∈ Rk×k. In order to minimize the objective function f, we compute
the derivative of f with respect to X̂ and obtain (see [10]):

∂f

∂X̂
=

∂

∂X̂

(
tr
(
V X̂V TEV X̂V TA

)
+ tr

(
V X̂V TCCT

))
= ÂX̂Ê + ÊX̂Â+ ĈĈT .

Consequently, as a necessary optimality condition we obtain that X̂ has
to be the solution of the Lyapunov equation associated with the projected
system matrices Ê = V TEV, Â = V TAV and Ĉ = V TC. For this reason,
instead of using the Riemannian optimization approach, we want to con-
struct an approximation by projecting onto a suitable subspace V. In the
following, we will now point out a crucial link between the iterative rational
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Krylov algorithm and the Riemannian optimization method. The most im-
portant observation is that the energy norm of every low rank approximant
is bounded below by the H2-norm of an associated error system. For this,
we need the following result.

Lemma 3.1. Let Σ = (E;A,C,CT ) denote a symmetric dynamical system
with E and −A being s.p.d. Further assume that Σ̂ = (Ê; Â, Ĉ, ĈT ) is
a reduced order system obtained by a Galerkin-type projection P = V V T .
Then it holds

||Σ− Σ̂||2H2
≤ ||Σ||2H2

− ||Σ̂||2H2
,

with equality in case of Σ̂ being a locally H2-optimal reduced order system.

Proof. By the definition of the H2-inner product, we know that it holds:

〈Σ− Σ̂,Σ− Σ̂〉H2 = 〈Σ,Σ〉H2 − 2〈Σ, Σ̂〉H2 + 〈Σ̂, Σ̂〉H2

= 〈Σ,Σ〉H2 − 2〈Σ− Σ̂, Σ̂〉H2 − 〈Σ̂, Σ̂〉H2 .

Note that we have

〈Σ− Σ̂, Σ̂〉H2 = tr
(
CT
e PĈ

)
= vec

(
CeĈ

T
)T

vec (P ) ,

where Ce =
[
CT −ĈT

]
and P is the solution of the Sylvester equation

AePÊ + EePÂ
T + CeĈ

T = 0,

with Ae =

[
A 0

0 Â

]
and Ee =

[
E 0

0 Ê

]
. Using the vectorization of the above

line, we obtain

vec (P ) =
(
−Ê ⊗Ae − Â⊗ Ee

)−1
vec
(
BeB̂

T
)
.

However, since Ee, Ê � 0 and Ae, Â ≺ 0, respectively, we can conclude that
the previous inverse is s.p.d. Hence, 〈Σ − Σ̂, Σ̂〉H2 ≥ 0. Assume now that

P :=

[
P1

P2

]
. Then, it follows

AP1Ê + EP1Â
T + CĈT = 0, ÂP2Ê + ÊP2Â

T + ĈĈT = 0

and

〈Σ− Σ̂, Σ̂〉H2 = tr
(
CTP1Ĉ − ĈTP2Ĉ

)
.

Finally, due to the Wilson conditions for H2-optimality, a locally optimal
reduced order model satisfies CTP1−ĈTP2 = 0 which proves the statement.
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Remark 3.1. Note that the above statement also follows from the pole-
residue expression for the H2-error and results on the residues of symmetric
state space systems as well as on the difference of the transfer functions
which have been shown in [12].

However, it now easily follows that for symmetric state space systems,
IRKA yields low rank approximations Xk that minimize the distance of the
true solution X and Xk with respect to the L-norm.

Theorem 3.1. Let Σ = (E;A,C,CT ) denote a symmetric dynamical system
Σ with E and −A being s.p.d. and V denote a projection matrix correspond-
ing to a reduced order model Σ̂ with system matrices Ê, Â and Ĉ. Let further
X and X̂ denote the solution of the associated Lyapunov equations. Then

〈X − V X̂V T , X − V X̂V T 〉L ≥ ||Σ− Σ̂||2H2
, (6)

with equality in case of Σ̂ being a locally H2-optimal reduced order system.

Proof. Let X̃ = V X̂V T . First, note that the vectorized solutions of the
original and reduced Lyapunov equations are obtained as follows

vec (X) = (−E ⊗A−A⊗ E)−1︸ ︷︷ ︸
L−1

vec
(
CCT

)
,

vec
(
X̂
)

= (−Ê ⊗ Â− Â⊗ Ê)−1︸ ︷︷ ︸
L̂−1

vec
(
ĈĈT

)
.

Hence, it now subsequently follows

〈X − X̃,X − X̃〉L = vec
(
X − X̃

)T
L vec

(
X − X̃

)
= ||Σ||2H2

− vec
(
X̃
)T
L vec (X)− vec (X)T L vec

(
X̃
)

+ vec
(
X̃
)T
L vec

(
X̃
)

= ||Σ||2H2
− vec

(
X̂
)T (

V T ⊗ V T
)
L vec (X)− vec (X)T L (V ⊗ V ) vec

(
X̂
)

+ vec
(
X̂
)T (

V T ⊗ V T
)
L (V ⊗ V ) vec

(
X̂
)

= ||Σ||2H2
− vec

(
ĈĈT

)T
L̂−1

(
V T ⊗ V T

)
L vec (X)

− vec (X)T L (V ⊗ V ) L̂−1 vec
(
ĈĈT

)
+ vec

(
ĈĈT

)T
L̂−1L̂L̂−1 vec

(
ĈĈT

)
= ||Σ||2H2

− vec
(
ĈĈT

)T
L̂−1

(
V T ⊗ V T

)
vec
(
CCT

)
− vec

(
CCT

)T
(V ⊗ V ) L̂−1 vec

(
ĈĈT

)
+ vec

(
ĈĈT

)T
L̂−1L̂L̂−1 vec

(
ĈĈT

)
= ||Σ||2H2

− ||Σ̂||2H2

The assertion follows with the previous Lemma.
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Remark 3.2. At this point we want to emphasize the implication of the
previous result since it might not be too obvious at a first glance. Theorem 3.1
states that the energy norm error of each low rank approximation obtained
by orthogonally prolongating the solution of a reduced Lyapunov equation is
bounded below by the H2-norm of its associated error system. Since for the
iterative rational Krylov algorithm this lower bound is not only minimized
but at the same time equality is attained, we thus know that the left-hand
side of (6) is automatically minimized as well. However, this means that
the corresponding low rank approximation to the solution of the Lyapunov
equation is optimal w.r.t. the energy norm.

The unsymmetric case

Next, we want to consider the more difficult case of A being unsymmetric.
However, as it will turn out, for the general case of unsymmetric dynamical
systems, defining an energy norm will no longer be possible. Thus we begin
with the assumption that the system (A, c, dT ) is equivalent to a symmetric
state space system, i.e. there exists a state space transformation x = Tz
such that (T ;AT, c, dTT ) is a symmetric realization as in Theorem 3.1. Let
us further assume that instead of one we now want to solve the two dual
Lyapunov equations

AX +XAT + ccT = 0, ATY + Y A+ ddT = 0, (7)

with rank one right hand sides, i.e. c, d ∈ Rn. A crucial tool now is the
symmetrizer of A, i.e. a matrix J which fulfills J = JT and AJ = JAT .
Here, we look for a special choice of J which has the additional property
dTJ = cT . As has been shown in [23], under the reasonable assumption of
(A, c, dT ) being a stable dynamical system that is reachable and observable,
it is always possible to construct J by means of the reachability matrix

Kc :=
[
c Ac A2c . . . An−1c

]
(8)

and the observability matrix

Kd :=
[
d ATd (AT )2d . . . (AT )n−1d

]T
, (9)

respectively. For this, simply define J := Kc K−Td . Due to the above as-
sumption that the system should be equivalent to a symmetric state space
realization, we have that J � 0. Instead of the above Lyapunov equations,
the idea now is to slightly change the situation by looking at the transformed
equations

AJX̄J + JX̄JAT + ccT = 0, JAT Ȳ J + JȲ AJ + JddTJ = 0. (10)

Obviously, the solution Ȳ of (10) is also the solution to the standard Lya-
punov equation (7). On the other hand, we have X = JX̄J and we thus have
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a nice connection between the Lyapunov equations (7) and (10). Note that
it also holds Ȳ = X̄. The main advantage now is that for the transformed
equations it again makes sense to define an energy norm by

|| · ||L̄ =
√
〈·, ·〉L̄ with 〈u, v〉L̄ = 〈u, L̄v〉

and

L̄ := −J ⊗AJ −AJ ⊗ J. (11)

A crucial observation is the fact that the unsymmetric iterative rational
Krylov algorithm implicitly is related to the problem of finding the opti-
mal rank k approximation to the solution of the symmetrized Lyapunov
equations with respect to the above norm. In more detail, we obtain.

Theorem 3.2. Let (Â, ĉ, d̂T ) be a reduced model constructed by the iterative
rational Krylov algorithm applied to the original system (A, c, dT ) which is
assumed to be equivalent to a symmetric state space system. Moreover, let
V and W denote the projection matrices associated with the final reduction
step. Then Ỹ = W (V TW )−1Ŷ (W TV )−1W T , with Ŷ being the solution of
ÂT Ŷ + Ŷ Â+ d̂d̂T = 0, is a local minimizer of

min
Yk∈M

{(vec
(
Ȳ − Yk

)
)T L̄ vec

(
Ȳ − Yk

)
}.

Furthermore, X̃ = J−1V X̂V TJ−1, with X̂ solving ÂX̂ + X̂ÂT + ĉĉT = 0, is
a local minimizer of

min
Xk∈M

{(vec
(
X̄ −Xk

)
)T L̄ vec

(
X̄ −Xk

)
}.

Proof. First of all, note the following useful relation between V and W.

V =
[
(σ1I −A)−1c, . . . , (σkI −A)−1c

]
=
[
(σ1I − JATJ−1)−1c, . . . , (σkI − JATJ−1)−1c

]
=
[
(J(σ1I −AT )J−1)−1c, . . . , (J(σkI −AT )J−1)−1c

]
=
[
J(σ1I −AT )−1J−1c, . . . , J(σkI −AT )−1J−1c

]
=
[
J(σ1I −AT )−1d, . . . , J(σkI −AT )−1d

]
= JW.

Thus, we obtain Z = W (V TW )−1 = W (W TJW )−1︸ ︷︷ ︸
Ĵ−1

. Now we can proceed
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by rewriting Ỹ in vectorized notation, i.e.

vec
(
Ỹ
)

= (Z ⊗ Z)
(
−ÂT ⊗ I − I ⊗ ÂT

)−1 (
V Td⊗ V Td

)
= (Z ⊗ Z)

(
−V TATZ ⊗ I − I ⊗ V TATZ

)−1 (
W TJd⊗W TJd

)
= (Z ⊗ Z)

(
−W TJATWĴ−1 ⊗ I − I ⊗W TJATWĴ−1

)−1 (
W T c⊗W T c

)
=
(
WĴ−1 ⊗WĴ−1

)(
−W TJATWĴ−1 ⊗ I − I ⊗W TJATWĴ−1

)−1 (
W T c⊗W T c

)
= (W ⊗W )

(
−W TJATW ⊗ Ĵ − Ĵ ⊗W TJATW

)−1 (
W T c⊗W T c

)
.

Finally, we note that

W =
[
(σ1I −AT )−1d, . . . , (σkI −AT )−1d

]
=
[
(σ1I −AT )−1J−1c, . . . , (σkI −AT )−1J−1c

]
=
[
(σ1J − JAT )−1c, . . . , (σkJ − JAT )−1c

]
.

Hence, we can conclude that Ỹ is the approximation which one would have
obtained after applying the symmetric IRKA to the system (J ; JAT , c, dTJ).
However, by Theorem 3.1, we know that this implies that Ỹ is a local min-
imizer. Similarly, for the vectorized solution X̃, we have

vec
(
X̃
)

=
(
J−1V ⊗ J−1V

) (
−Â⊗ I − I ⊗ Â

)−1
(ĉ⊗ ĉ)

=
(
J−1V ⊗ J−1V

) (
−ZTAV ⊗ I − I ⊗ ZTAV

)−1 (
ZT c⊗ ZT c

)
= (W ⊗W )

(
−Ĵ−1W TAJW ⊗ I − I ⊗ Ĵ−1W TAJW

)−1 (
Ĵ−1W T c⊗ Ĵ−1W T c

)
= (W ⊗W )

(
−W TJATW ⊗ Ĵ − Ĵ ⊗W TJATW

)−1 (
W T c⊗W T c

)
.

Remark 3.3. Note that Theorem 3.2 yields an explanation why one can ex-
pect V X̂V T and ZŶ ZT to be good low rank approximations for the solutions
to the unsymmetric Lyapunov equations.

Before we turn our attention to more general unsymmetric dynamical
systems, we will now show that the interpolation points resulting from IRKA
are also optimal parameters for the ADI iteration w.r.t. the energy norm.
For this we need the following result.

Lemma 3.2. Let A ∈ Rn×n, c ∈ Rn and S = {σ1, . . . , σk} ∈ C+ denote
a set of shift parameters. Let Kk(A, c, S) be the associated rational Krylov
subspace, i.e.,

Kk(A, c, S) =
[
(σ1I −A)−1c, . . . , (σkI −A)−1c

]
.
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Assume that V is an orthonormal basis for Kk(A, c, S) and let Z ∈ Rn×k be
arbitrary with ZTV = Ik. Then

Kk(A, c, S) = Kk(V ZTA, V ZT c, S).

Moreover, let Zadi denote the approximation obtained by applying −S in k
steps of the LRCF-ADI iteration for (A, c), and let Z̃adi be the approximation
obtained by applying −S in k steps of the LRCF-ADI iteration applied to
(V ZTA, V ZT , c). Then

Zadi = Z̃adi.

Proof. Let P = V ZT . Hence, we have P2 = P and, since V is an orthonor-
mal basis for Kk(A, c, S), it follows that P(σiI − A)−1c = (σiI − A)−1c.
Thus, for each shift σi we obtain

(σiI − PA)−1Pc = (σiI − PA)−1P(σiI −A)(σiI −A)−1c

= (σiI − PA)−1P(σiI −A)P(σiI −A)−1c

= (σiI − PA)−1(σiP − PAP)(σiI −A)−1c

= (σiI − PA)−1(σiI − PA)P(σiI −A)−1c

= P(σiI −A)−1c = (σiI −A)−1c

Consequently, Kk(A, c, S) = Kk(PA,Pc, S). The statement on the ADI ap-
proximations follows with the exact same argument and the fact that Zadi

can be written as Zadi = VadiMadiDadi, where

Vadi =
[
(σ1I −A)−1c, . . . , (σkI −A)−1c

]
,

and Madi as well as Dadi are independent of A and c, see [19].

Next, we need the following result from [11, 13]. For a similar statement,
we also want to refer to [9].

Theorem 3.3. Suppose S = {σ1, . . . , σk} ⊂ C+ are points that satisfy
λ(V TAV ) = −{σ1, . . . , σk}, where V is an orthonormal basis for the rational
Krylov subspace Kk(A, c, S). Let Xk ∈ Rk×k solve

V TAVXk +XkV
TATV + V T ccTV = 0

and assume X̃k to be computed by employing −{σ1, . . . , σk} in exactly k
steps of the ADI iteration. Then X̃k = V XkV

T .

For our main result on the ADI iteration, it is crucial to note that the
proof given in [13], does not use that A is invertible. As long as the reduced
Lyapunov equation is uniquely solvable, the above equality still holds true.
This now allows to show the optimality of the IRKA points applied in the
ADI iteration.

11



Theorem 3.4. Let S = {−λ1, . . . ,−λk} denote the set of interpolation
points obtained by the iterative rational Krylov algorithm applied to the orig-
inal system (A, c, dT ) which is assumed to be equivalent to a symmetric state
space system. Let further Xadi = ZadiZ

T
adi and Yadi = Z̄adiZ̄

T
adi be the ap-

proximations obtained by applying −S in exactly k steps of the ADI iteration
applied to the system (A, c, dT ). Then J−1XadiJ

−1 and Yadi are local mini-
mizers of

min
Xk∈M

{(vec
(
X̄ −Xk

)
)T L̄ vec

(
X̄ −Xk

)
},

and

min
Yk∈M

{(vec
(
Ȳ − Yk

)
)T L̄ vec

(
Ȳ − Yk

)
}.

respectively.

Proof. Let us take a closer look at the reduced Lyapunov equation from
Theorem 3.2, i.e.,

ÂX̂ + X̂ÂT + ĉĉT = 0.

In more detail, the above means

ZTAV X̂ + X̂V TATZ + ZT ccTZ = 0,

with ZT = (W TV )−1W T . Since V is orthonormal, this is equivalent to
solving

V TV ZTAV X̂ + X̂V TATZV TV + V TV ZT ccTZV TV = 0

which, using Ã = V ZTA and c̃ = V ZT c, can be interpreted as

V T ÃV X̂ + X̂V T ÃTV + c̃c̃T = 0.

From Lemma 3.2 we know that the rational Krylov subspace as well as the
ADI iteration produce the same results if we use (Ã, c̃) instead of (A, c).
Finally, due to the H2-optimality conditions, it holds

σ(V TAV ) = σ(V TV ZTAV ) = σ(ZTAV ) = σ(Â) = −S

and we can apply Theorem 3.3.
For the dual result, let Y = (V TW )−1Ŷ (W TV )−1 be defined as in Theo-

rem 3.2, i.e. Ỹ = WYW T . A similar reformulation of the reduced Lyapunov
equation leads to solving

V TAWY(W TV ) + (V TW )YW TAV + V TddTV = 0,
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which, by pre- and postmultiplication, can be rewritten as

(V TW )−1V TATWY + YW TAV (W TV )−1 + (V TW )−1V TddT (W TV )−1 = 0.

From here, the procedure is completely analogue to the previous case. One
can make use of the orthonormality of W and then simply apply the pre-
ceding statements in order to show that WYW T = Yadi.

So far, we have assumed that the system under consideration (A, c, dT )
is at least equivalent to a symmetric state space system. This is an essen-
tial property which ensures that the symmetrizer J and thus the Lyapunov
operator L̄ is positive definite and we can define an energy norm. However,
these assumptions characterize a very limited class of dynamical systems.
For example, let us consider the following simple two-dimensional system

E =

[
2 0
0 −1

]
, A =

[
−1 0
0 1

]
, c =

[
1
1

]
= dT .

Although the above system is stable, dissipative and has only real eigenval-
ues, it can be trivially shown that we can never transform it into a symmetric
state space system which allows the definition of an energy norm with equal
inputs and outputs. This is due to the fact that the spectra of E and A will
always lie on both sides of the imaginary axis and thus L = −E⊗A−A⊗E
will be indefinite. Otherwise, if it is transformed into a definite matrix the
inputs and outputs will no longer be equal.

Moreover, all systems with complex poles automatically exclude the pos-
sibility of an induced energy norm of the form −E ⊗ A − A ⊗ E. This is
seen as follows. Assume that an unsymmetric dynamical system (A, c, dT )
is given, with A having complex eigenvalues. Assume now that the system
can be transformed into a generalized symmetric state space system of the
form (Ẽ; Ã, c̃, c̃T ) and that the operator L̃ = −Ẽ ⊗ Ã − Ã ⊗ Ẽ is positive
definite. Due to the Theorem of Stephanos, see e.g. [18], the eigenvalues of
Ẽ and Ã must all have equal or opposite sign since otherwise L̃ would be
indefinite. Next, w.l.o.g we assume that σ(Ẽ) ⊂ C+. This means that Ẽ is
symmetric positive definite and the eigenvalue problem for the pencil (Ã, Ẽ)
can be transformed into a symmetric one. However, this would imply that
all eigenvalues of (Ã, Ẽ) are real. Since the poles of a dynamical system
are invariant under state space transformations, this would mean that all
eigenvalues of A are real which is a contradiction to our assumption. Thus
we cannot define the desired energy norm in a straightforward way.

Nevertheless, it remains the question if low rank Lyapunov approxima-
tions obtained by an IRKA reduced order model still can be expected to
be accurate even if the underlying dynamical system is unsymmetric and
exhibits complex poles. For this, it might be an interesting observation that
the H2-norm of the error system vanishes if and only if the corresponding
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Lyapunov approximations that are generated by the reduced system are
exact.

Theorem 3.5. Let (A,C,D) denote a minimal stable dynamical system
with A ∈ Rn×n, C ∈ Rn×p and D ∈ Rp×n. Assume that a stable reduced
order model (Â, Ĉ, D̂) is constructed by a Petrov-Galerkin projection P =
V (W TV )−1W T︸ ︷︷ ︸

ZT

with V,W ∈ Rn×k and V TV = I. Let further Xk = V X̂V T

and Yk = ZŶ ZT be obtained by solving the projected Lyapunov equations

ÂX̂ + X̂ÂT + ĈĈT = 0, ÂT Ŷ + Ŷ Â+ D̂T D̂ = 0.

Then the H2-norm of the error system, cf. (4), is zero if and only if Xk = X
and Yk = Y, where X and Y are the exact solutions of the original Lyapunov
equations

AX +XAT + CCT = 0, ATY + Y A+DTD = 0. (12)

Proof. Let us assume that ||Σe|| = ||Σ− Σ̂||H2 = 0. By the definition of the
H2-norm this means that∫ ∞

0
||Dee

AetCe||Fdt = 0.

Hence, since Dee
AetCe is continuous it has to be the constant zero func-

tion and thus its derivatives evaluated at zero have to be zero as well, i.e.
DeA

i
eCe = 0, i ≥ 0. Due to the structure of the error system this means

DAiC = D̂ÂiĈi, i ≥ 0. Thus, the Markov parameters of Σ and Σ̂ coincide.
Since we assumed Σ to be a minimal realization, from [1], it follows that
k = n. Consequently, the projection matrices V and Z = W (V TW )−1 are
orthogonal. Let us now have a look at the transformed Lyapunov equation

ÂX̂ + X̂ÂT + ĈĈT = 0.

Inserting the definition of Σ̂, we have

ZTAV X̂ + X̂V TATZ + ZTCCTZ = 0.

Multiplying from the left with Z−T and from the right with V T , we see that
Xk solves the original Lyapunov equation. Similarly, one can show that
Yk = Y.

Conversely, let us assume that the approximation is exact, i.e. Xk = X.
As we have seen in the proof of Lemma 3.1, for the H2-norm of the error
system, it holds

〈Σ− Σ̂,Σ− Σ̂〉H2 = 〈Σ,Σ〉H2 − 2〈Σ− Σ̂, Σ̂〉H2 − 〈Σ̂, Σ̂〉H2 .
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Since Xk = X, it follows that

〈Σ̂, Σ̂〉H2 = D̂X̂D̂T = DV X̂V TDT = DXkD
T = DXDT = 〈Σ,Σ〉H2 .

Hence, in order to prove the assertion, it remains to show that it holds
〈Σ− Σ̂, Σ̂〉H2 = 0. Once again, analog to the proof of Lemma 3.1, we know
that

〈Σ− Σ̂, Σ̂〉H2 = tr
(
DMD̂T − D̂X̂D̂T

)
,

where M is the solution of AM + MÂT + CĈT = 0. Since A and Â are
assumed to be stable, the solution M is unique. However, since Xk is the
exact solution of eq. (12), we have

AV X̂V T + V X̂V TAT + CCT = 0.

Multiplying from the right with Z, it follows

AV X̂ + V X̂ÂT + CĈT = 0.

Thus, it holds V X̂ = M and also 〈Σ− Σ̂, Σ̂〉H2 = 0.

Remark 3.4. Note that Theorem 3.5 shows that the H2-norm of the error
system is an objective function which is zero if and only if the low rank Lya-
punov approximations are the exact solutions. Hence, it seems reasonable
to minimize this objective function in order to obtain approximations which
are close to the exact solutions. However, this is exactly what the iterative
rational Krylov algorithm aims at.

To sum up, we have seen that the previous results yield a theoretical
explanation for the often very accurate low rank approximations obtained
by orthogonally prolongating the solution corresponding to an IRKA re-
duced order model. More precisely, for the special case of systems that are
equivalent to symmetric state space systems, we have shown that locally
H2-optimal reduced order models lead to approximations that implicitly
minimize the energy norm induced by a symmetrized Lyapunov operator of
the form (11), which is given by the controllability and observability matri-
ces (8) and (9), respectively. Moreover, we have seen that in this case we
can obtain the exact same result by employing the corresponding interpo-
lation points within the ADI iteration, generalizing the existing results for
one-sided projections specified in [9, 11, 13]. Since this equivalence does not
require that the poles of the system are real, we know that H2-optimal in-
terpolation points are in a certain sense also optimal parameters for the ADI
iteration which, in contrast to the parameters derived in [26], can be com-
puted even if the matrices exhibit complex spectra. Thus, we can finally
state that if one uses appropriate shifts, the ADI iteration, the rational
Krylov framework and, at least for state space symmetric systems, the Rie-
mannian optimization approach from [25], are all equivalent and minimize
the naturally induced energy norm.
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4 Sylvester equations

In this section, we will generalize the situation and study Sylvester equa-
tions of the form (1). As in the previous section, we begin with a detailed
analysis of the symmetric case before we briefly sketch the extension to the
unsymmetric case which is quite similar to what we have presented before.

The symmetric case

We will now subsequently develop a more general approach which relies on
the idea of the iterative rational Krylov algorithm, but is not restricted to
linear dynamical systems and hence Lyapunov equations. Again, we assume
that all involved square matrices are symmetric and have eigenvalues either
in C− or in C+. To be more precise, we want to have A = AT ≺ 0, B =
BT ≺ 0, E = ET � 0 and F = F T � 0. This allows us to consider an energy
norm based on the following symmetric positive definite matrix

LS = −E ⊗A−B ⊗ F.

We now seek for approximations of the form X̃ = V X̂W T of rank k which
minimize the LS-norm between the original solution X and X̃, i.e.

|| vec
(
X − X̃

)
||2LS =

(
vec
(
X − X̃

))T
LS vec

(
X − X̃

)
.

Here, X̂ will again be determined by solving a reduced Sylvester equation

ÂX̂Ê + F̂ X̂B̂ + ĈD̂ = 0,

while V and W denote projection matrices with V TV = W TW = I. From
now on, let

Σ = (A,B,C,D,E, F )

denote an abbreviation for an associated Sylvester equation of the form (1).
Furthermore, let us consider the following objective function

f(Σ) = tr
(
CTXDT

)
, (13)

with X fulfilling (1). As is easily seen, this function results from a slight
modification of the H2-norm of a dynamical system and thus can be com-
puted as

f(Σ) = (vec (Ip))
T
(
D ⊗ CT

)
(−E ⊗A−B ⊗ F )−1 (DT ⊗ C

)
vec (Ip) .

(14)

Assume now that we have constructed a reduced set of matrices

Σ̂ = (Â, B̂, Ĉ, D̂, Ê, F̂ )
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by the following projection, i.e.

Â = V TAV, B̂ = W TBW, Ĉ = V TC,

D̂ = DW, Ê = W TEW, F̂ = V TFV.

Next, for Σ and Σ̂ we define the corresponding error set

Σerr = (A,B, C,D, E ,F)

with

A =

[
−A 0

0 Â

]
, B =

[
−B 0

0 B̂

]
, C =

[
C

Ĉ

]
D =

[
D D̂

]
, E =

[
−E 0

0 Ê

]
, F =

[
−F 0

0 F̂

]
.

The following result will later on be crucial for constructing optimal low
rank approximations.

Lemma 4.1. Let Σ and Σ̂ denote two sets of matrices associated with large
and reduced Sylvester equations of the form (1), respectively. Then for the
associated error set Σerr, it holds

f(Σerr) ≤ f(Σ)− f(Σ̂).

Proof. We begin with analyzing the solution X of the Sylvester equation for
the error set Σerr = (A,B, C,D, E ,F). What we obtain is[

−A 0

0 Â

] [
X Y

Z X̂

]
︸ ︷︷ ︸

X

[
−E 0

0 Ê

]
+

[
−F 0

0 F̂

] [
X Y

Z X̂

]
︸ ︷︷ ︸

X

[
−B 0

0 B̂

]

+

[
C

Ĉ

] [
D D̂

]
=

[
0 0
0 0

]
.

Hence, X and X̂ are the solutions to the Sylvester equations

AXE + FXB + CD = 0 and ÂX̂Ê + F̂ X̂B̂ + ĈD̂ = 0.

On the other hand, Y and Z satisfy

−AY Ê − FY B̂ + CD̂ = 0 and − ÂZE − F̂ZB + ĈD = 0.

Next, let us have a look at the generalized Sylvester equations

AYÊ + FYB̂ + CD̂ = 0 and ÂZE + F̂ZB + ĈD = 0.

17



Comparing the structure of the error set, it trivially follows that Y =

[
Y

X̂

]
and Z =

[
Z X̂

]
. Consequently, we can derive the objective function for

the error set as

f(Σerr) = tr
(
CTXDT

)
= tr

([
CT ĈT

] [X Y

Z X̂

] [
DT

D̂T

])
= tr

(
CTXDT + ĈTZDT + CTY D̂T + ĈT X̂D̂T

)
= tr

(
CTXDT + CTYD̂T + ĈTZDT − ĈT X̂T D̂T

)
.

In order to compare the above identity with f(Σ)− f(Σ̂), let us analyze the

term tr
(
CTYD̂T

)
, for which we obtain

tr
(
CTYD̂T

)
= vec (Ip)

T vec
(
CTYD̂T

)
= vec (Ip)

T
(
D̂ ⊗ CT

)
vec (Y)

= vec (Ip)
T
(
D̂ ⊗ CT

)(
−Ê ⊗A− B̂ ⊗F

)−1 (
D̂T ⊗ C

)
vec (Ip) .

For the following step, we refer to [4], where by means of a special permu-
tation matrix, the evaluation of Kronecker products of structured matrices
of the above form can be simplified as

tr
(
CTYD̂T

)
= vec (Ip)

(
D̂ ⊗ CT

)(
Ê ⊗A+ B̂ ⊗ F

)−1 (
D̂T ⊗ C

)
vec (Ip)

− vec (Ip)
(
D̂ ⊗ ĈT

)(
Ê ⊗ Â+ B̂ ⊗ F̂

)−1 (
D̂T ⊗ Ĉ

)
vec (Ip) .

Note that the structure of the above terms is

xTM−1x− xTV
(
VTMV

)−1 VTx,

where M is a symmetric negative definite matrix. Moreover,

M−1 − V
(
VTMV

)−1 VT

is the Schur complement of S =

[
VTMV VT
V M−1

]
in M−1. Let s =

[
y
z

]
now

be an arbitrary vector. Then it holds

sTSs = yTVTMVy + yTVT z + zTVy + zTM−1z.

Defining q := MVy, it follows

sTSs = (qT + zT ) M−1(q + z) ≤ 0.
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However, this means that S as well as its Schur complement are negative

semi-definite. Finally, this shows that tr
(
CTYD̂T

)
≤ 0. A completely

analogue argumentation leads to ĈTZDT ≤ 0, finishing the proof.

Similar to the Lyapunov case, our goal will be locally minimizing f(Σerr)

simultaneously leading to a minimizer of || vec
(
X − X̃

)
||2LS . For this, we

will derive first order necessary conditions on Σ̂ = (Â, B̂, Ĉ, D̂, Ê, F̂ ). In the
following, we make use of the spectral decomposition of the pencil (Â, F̂ ),
i.e. Â = F̂QΛQ−1, where Q contains the eigenvectors corresponding to the
eigenvalues of Λ = diag(λ1, . . . , λk). Since a similar derivation with equiv-
alent Kronecker structures can be found in [4], we only state the most im-
portant aspects. First, note that it holds

f(Σerr) = vec (Ip)
T ([D D̂

]
⊗
[
CT ĈT

])
×([

−E 0

0 Ê

]
⊗
[
−A 0

0 Â

]
+

[
−F 0

0 F̂

]
⊗
[
−B 0

0 B̂

])−1

×(
−
[
DT

D̂T

]
⊗
[
C

Ĉ

])
vec (Ip)

= vec (Ip)
T ([D D̂

]
⊗
[
CT ĈT

])([I 0

0 Î

]
⊗
[
I 0
0 Q

])
×([

−E 0

0 Ê

]
⊗
[
−A 0
0 Λ

]
+

[
−F 0

0 F̂

]
⊗
[
−B 0

0 B̂

])−1

×([
I 0

0 Î

]
⊗
[
I 0

0 Q−1F̂−1

])(
−
[
DT

D̂T

]
⊗
[
C

Ĉ

])
vec (Ip) .

Since Â and F̂ are symmetric matrices, we can compute a set of F̂ -orthonormal
eigenvectors Q, i.e. QT F̂Q = I. Hence, we have

f(Σerr) = vec (Ip)
T ([D D̂

]
⊗
[
CT ĈT

])([I 0

0 Î

]
⊗
[
I 0
0 Q

])
×([

−E 0

0 Ê

]
⊗
[
−A 0
0 Λ

]
+

[
−F 0

0 F̂

]
⊗
[
−B 0

0 B̂

])−1

×([
I 0

0 Î

]
⊗
[
I 0
0 QT

])(
−
[
DT

D̂T

]
⊗
[
C

Ĉ

])
vec (Ip) .

Next, for the derivative w.r.t. λi, we make use of the product rule for
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Kronecker products (see [4]) in order to obtain

∂f

∂λi
= 2 · vec (Ip)

T ([D D̂
]
⊗
[
CT ĈT

])([I 0

0 Î

]
⊗
[
I 0
0 Q

])
×([

−E 0

0 Ê

]
⊗
[
−A 0
0 Λ

]
+

[
−F 0

0 F̂

]
⊗
[
−B 0

0 B̂

])−1

×([
−E 0

0 Ê

]
⊗
[
0 0
0 eie

T
i

])
×([

−E 0

0 Ê

]
⊗
[
−A 0
0 Λ

]
+

[
−F 0

0 F̂

]
⊗
[
−B 0

0 B̂

])−1

×([
I 0

0 Î

]
⊗
[
I 0
0 QT

])([
DT

D̂T

]
⊗
[
C

Ĉ

])
vec (Ip) .

By setting the last expression equal to zero and carefully analyzing the
structure, it turns out that for optimality we have to require

vec (Ip)
T
(
D ⊗ ĈTQ

)(
−E ⊗ Λ−B ⊗ Î

)−1 (
−E ⊗ eieTi

)
×(

−E ⊗ Λ−B ⊗ Î
)−1 (

DT ⊗QT Ĉ
)

vec (Ip)

= vec (Ip)
T
(
D̂ ⊗ ĈTQ

)(
−Ê ⊗ Λ− B̂ ⊗ Î

)−1 (
−Ê ⊗ eieTi

)
×(

−Ê ⊗ Λ− B̂ ⊗ Î
)−1 (

D̂T ⊗QT Ĉ
)

vec (Ip) .

This now can be simplified as follows

C̃T
i D (−λiE −B)−1E (−λiE −B)−1DT C̃i

= C̃T
i D (−λiE −B)−1E (−λiE −B)−1DT C̃i,

with C̃ = ĈTQ. Furthermore, if we introduce a transfer function H(s) =
D (sE −B)−1DT , the above means

C̃T
i H

′(−λi)C̃i = C̃T
i Ĥ

′(−λi)C̃i,

i.e. the derivative of the reduced transfer function has to tangentially in-
terpolate the derivative of the original transfer function at the mirror im-
ages of the reduced system poles of the pencil (Â, F̂ ). Using C̃ as opti-
mization parameter determining one part of the reduced set of matrices
(Â, B̂, Ĉ, D̂, Ê, F̂ ), for the derivative of f w.r.t. C̃i, one will obtain

H(−λi)C̃i = Ĥ(−λi)C̃i,

C̃iH(−λi) = C̃iĤ(−λi).
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Similarly, introducing the dual transfer function as G(s) = CT (sF −A)−1C,
and deriving necessary conditions as well, we finally arrive at

G(−µi)D̃i = Ĝ(−µi)D̃i,

D̃iG(−µi) = D̃iĜ(−µi),
D̃iG

′(−µi)D̃i = D̃iĜ
′(−µi)D̃i,

where D̃ = D̂R and B̂ = ÊRΘR−1, Θ = diag(µ1, . . . , µk). Due to the
fact that the tangential directions as well as the interpolation points are
determined by the reduced pair of dual matrices there is obviously a close
connection to the case of optimalH2-model reduction. Hence, one can adapt
the iterative rational Krylov algorithm by means of appropriately changing
the shift strategy. This then leads to Algorithm 2 which converges to a
reduced set of matrices fulfilling these optimality conditions.

Algorithm 2 Sylvester IRKA (Symmetric)

Input: A, B, C, D, E, F , Â, B̂, Ĉ, D̂, Ê, F̂
Output: Xopt

1: while (change in Λ,Θ > 0) do
2: ÂQ = F̂QΛ, B̂R = ÊRΘ, QT F̂Q = RT ÊR = I, C̃ = ĈTQ, D̃ = D̂R
3: Vi = (−µiF −A)−1CD̃i Wi = (−λiE −B)−1DT C̃i

4: V = orth (V ), W = orth (W )
5: Â = V TAV , B̂ = W TBW , Ĉ = V TC, D̂ = DW , Ê = W TEW ,

F̂ = V TFV
6: end while
7: Âopt = Â, B̂opt = B̂, Ĉopt = Ĉ, D̂opt = D̂, Êopt = Ê, F̂ opt = F̂
8: Solve ÂoptX̂Êopt + F̂ optX̂B̂opt + ĈoptD̂opt = 0.
9: Xopt = V X̂W T

Remark 4.1. Due to the connection to optimal H2-model reduction, it
should be mentioned that instead of Step 3 of Algorithm 2, one can alterna-
tively solve two reduced Sylvester equations of the form

AV Ê + FV B̂ + CD̂ =0,

EWÂ+BWF̂ +DT ĈT = 0.

For a robust solver for this type of equations, we refer to e.g. [5].

It remains to show that, in case of convergence of Algorithm 2, it holds
f(Σerr) = f(Σ)− f(Σ̂). However, from the proof of Lemma 4.1, recall that

this is equivalent to showing tr
(
CTYD̂T

)
= 0 and tr

(
ĈTZDT

)
= 0. This
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is easily seen as follows. We know that

tr
(
CTYD̂T

)
= vec (Ip)

(
D̂ ⊗ CT

)(
Ê ⊗A+ B̂ ⊗ F

)−1 (
D̂T ⊗ C

)
vec (Ip)

− vec (Ip)
(
D̂ ⊗ ĈT

)(
Ê ⊗ Â+ B̂ ⊗ F̂

)−1 (
D̂T ⊗ Ĉ

)
vec (Ip) .

From [4], we know that V and W can also be computed using vectorized
notation, i.e.

vec (V ) =
(
−Θ⊗ F − Î ⊗A

)−1 (
D̃T ⊗ C

)
vec (Ip) ,

vec (W ) =
(
−Λ⊗ E − Î ⊗B

)−1 (
C̃T ⊗DT

)
vec (Ip) .

Moreover, for z ⊂ span (vec (V )) , it holds (Î⊗V V T )z = z. Next, let us have
a look at

vec (Ip)
(
D̂ ⊗ ĈT

)(
Ê ⊗ Â+ B̂ ⊗ F̂

)−1 (
D̂T ⊗ Ĉ

)
vec (Ip) .

Using the spectral decomposition from Algorithm 2, this expression is equiv-
alent to

vec (Ip)
(
D̃ ⊗ ĈT

)(
Î ⊗ Â+ Θ⊗ F̂

)−1 (
D̃T ⊗ Ĉ

)
vec (Ip) . (15)

Finally, due to the mentioned properties of the projection matrix V, (15)
can be transformed into

vec (Ip)
(
D̃ ⊗ CT

)(
Î ⊗A+ Θ⊗ F

)−1 (
D̃T ⊗ C

)
vec (Ip)

which in turn yields tr
(
CTYD̂T

)
= 0. Similarly, we obtain tr

(
ĈTZDT

)
= 0.

Analog to the proof of Theorem 3.1, one can eventually show that

vec
(
X − V X̂W T

)T
LS vec

(
X − V X̂W T

)
= f(Σ)− f(Σ̂).

Altogether, we have proven our main result.

Theorem 4.1. Let Σ = (A,B,C,D,E, F ) denote a set of matrices deter-
mining a Sylvester equation as in (1) with solution X. Assume that A =
AT ≺ 0, B = BT ≺ 0, E = ET � 0 and F = F T � 0. Let further Xopt be
computed by Algorithm 2. Then Xopt is a local minimizer of

min
Xk∈M

{(vec (X −Xk))TLS vec (X −Xk)}.
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The unsymmetric case

For sake of completeness, let us briefly analyze the case

AX +XB + cdT = 0,

where A 6= AT ∈ Rn×n, B 6= BT ∈ Rm×m, c ∈ Rn and d ∈ Rm. Similar
to the Lyapunov equations, in order to ensure the possibility of defining
an appropriate norm, we will have to compute symmetrizers J1 = JT

1 and
J2 = JT

2 s.t. J1A = ATJ1 and BJ2 = J2B
T . For this, we assume that

(A, c, cT ) and (B, d, dT ) are dynamical systems that are at least equivalent
to state space symmetric systems. Following the approach of the previous
section, we can then always find matrices which additionally satisfy J1c = c
and dTJ2 = dT . As a consequence, we are thus faced with the transformed
equation

J1AXJ2 + J1XBJ2 + J1cd
TJ2 = 0,

for which we again define an energy norm as

|| · ||L̄S =
√
〈·, ·〉L̄S with 〈u, v〉L̄S = 〈u, L̄Sv〉

and

L̄S := −J2 ⊗ J1A−BJ2 ⊗ J1.

Although by means of Algorithm 2, we now would be able to compute a
locally optimal low rank approximation to X, in practice we obviously want
to avoid the ill-conditioned computation of the symmetrizers J1 and J2.
Instead, the goal is to directly operate on the original matrices A and B.
Completely analog to the H2-optimal model reduction problem, this will
yield the necessity of using oblique projections for the reduction. Note that
the first order necessary conditions on f(Σerr) will no longer include tan-
gential directions. However, we will still have to make sure that

H(−λi) = Ĥ(−λi), H ′(−λi) = Ĥ ′(−λi),
G(−µi) = Ĝ(−µi), G′(−µi) = Ĝ′(−µi),

where H(s) = dT (sIm −B)−1d and G(s) = cT (sIn − A)−1c. A slight modi-
fication of Algorithm 2 then leads to Algorithm 3.
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Algorithm 3 Sylvester IRKA (Unsymmetric)

Input: A, B, c, d, Â, B̂, ĉ, d̂
Output: Xopt

1: while (change in Λ,Θ > 0) do
2: ÂQ = QΛ, B̂R = RΘ
3: Ui = (−µiIn −A)−1c, Vi = (−µiIn −AT )−1c,
4: Wi = (−λiIm −B)−1d, Zi = (−λiIm −BT )−1d
5: U = orth (U), V = orth (V ), W = orth (W ), Z = orth (Z)
6: Â = (V TU)−1V TAU , B̂ = (ZTW )−1ZTBW,

ĉ = (V TU)−1V T c, d̂ = W Td
7: end while
8: Âopt = Â, B̂opt = B̂, ĉopt = ĉ, d̂opt = d̂
9: Solve ÂoptX̂ + X̂B̂opt + ĉopt(d̂opt)T = 0.

10: Xopt = UX̂(ZTW )−1ZT

Though it might not be obvious at a first glance how to construct the
approximations, a careful analysis justifies the following result.

Corollary 4.1. Let Xopt be constructed by Algorithm 3 applied to the orig-
inal matrices (A,B, c, d). Let further (A, c, cT ) and (B, d, dT ) be dynami-
cal systems that can be transformed into state space symmetric realizations.
Then Xopt = UX̂(ZTW )−1ZT is a local minimizer of

min
Xk∈M

{(vec (X −Xk))T L̄S vec (X −Xk)}.

Remark 4.2. As in the Lyapunov case, it is possible to show equivalence
between the rational Krylov framework and the ADI iteration for Sylvester
equations. For the assumptions and a more detailed discussion we refer to
[13].

5 Numerical examples

In this section, we will study the performance of the proposed algorithms
by means of some standard numerical test examples. As stopping crite-
rion for the iterative algorithms we always use a relative residual of 10−8.
All simulations were generated on an Intel R© Dual-Core CPU E5400, 2
MB cache, 3 GB RAM, Ubuntu Linux 10.04 (x86 64), MATLAB R© Version
7.11.0 (R2010b) 64-bit (glnxa64).

Lyapunov equations

The first example is a semi-discretized heat transfer problem from the Ober-
wolfach benchmark collection.1 Here, we used the coarsest discretization

1http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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Figure 1: Steel profile

leading to symmetric matrices E,A ∈ R1357×1357 together with the input
matrix C ∈ R1357×6, see [7]. In Figure 5, we present a comparison between
the singular value decomposition based approximation of the exact solu-
tion with the approximation given by the rational Krylov space obtained by
IRKA. As expected, the relative error in the Frobenius norm is obviously
better when the SVD approximation is used. However, the slope of the
IRKA approximation is almost parallel to that and for an approximation
of rank 30, the relative error is only one order of magnitude smaller than
the best approximation given by the SVD. On the other hand, we see that
IRKA outperforms the SVD for nearly every rank k when the relative error
is measured in terms of the L−norm introduced in [25]. The few values of k
where this is not the case may be explained by the fact that IRKA only is
able to find a local minimum of the underlying H2-model reduction problem.

The second example is also quite common in the context of model or-
der reduction. The symmetric system matrices E,A ∈ R1668×1668 and
C ∈ R1668×5 stem from the finite element discretization of a thermal model
of a filter device and thus are sparse, see [17]. Similar to the previous ex-
ample, from Figure 5 we can again conclude that the SVD approximation
dominates the performance with respect to the Frobenius norm while the
IRKA approach performs better when the L-norm is taken as a basis for
judgment. However, here one can observe a constant improvement of the
SVD approximation for ranks larger than 30.
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Figure 2: Tunable optical filter

Our final example concerning the Lyapunov equations is a clamped beam
model taken from the Slicot model reduction benchmark collection. Though
the matrices A ∈ R348×348, c, d ∈ R348×1 are smaller than in the previous
cases we are now faced with an unsymmetric matrix A 6= AT , see [8].2 Recall
from Section 3 that the two-sided IRKA still implicitly yields an optimal
approximation subspace. However, it is obvious that the computation of
the observability and controllability matrices Kc and Kd is infeasible due to
numerical instabilities caused by the ill-conditionedness. For this reason, in
Figure 5, we show the results for the approximations of the two Lyapunov
equations

AX +XAT + ccT = 0 and ATY + Y A+ ddT = 0

by means of the relative error measured in the Frobenius norm. Despite the
fact that the IRKA approximants lead to larger relative errors than those
resulting from the SVD of the true solution, we observe a monotone decrease
with satisfying relative errors in the range of 10−9 for k = 20. Moreover, the
approach clearly outperforms the approximations of same rank computed
by KPIK. However, recall that KPIK is computationally far more attractive
than IRKA which has to be taken into account when computing low rank
approximations.

Since in Section 3 we have seen that the H2-norm of the error system
only vanishes if the corresponding approximation of the Lyapunov equation

2http://www.slicot.org
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Figure 3: Clamped beam

is exact, in Figure 5 we plot a comparison between the H2-norm of the error
system corresponding to a reduced order model and the error of the asso-
ciated Lyapunov approximation Xk = V X̂V T measured in the Frobenius
norm. The results belong to four completely random stable SISO systems
of dimension n = 200 with complex poles. Each reduced model is obtained
by a one-sided interpolatory projection P = V V T with interpolation points
randomly chosen within the interval [0, 1000]. The solution of the original
Lyapunov equation is denoted with X. As Figure 5 indicates, the H2-error
behaves in a similar way as the Frobenius error X − Xk indicating that a
locally H2-reduced model might yield accurate low rank Lyapunov approx-
imations as well.

Sylvester equations

Let us now finally draw our attention to the more general case specified in 2.
Analogue to the Lyapunov case, our first example is given by the process of
optimal cooling of steel profiles. In order to end up with a general Sylvester
equation including different matrix dimensions, we have used matrix sets
(A,B,C,D,E, F ), where A,E,C is as specified above while B,F,D is ob-
tained by a finer resolution with mesh size m = 5177. In Figure 5, we see a
comparison between the rational Krylov subspace approximation computed
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Figure 4: Frobenius error and H2-error

by Algorithm 2 which is abbreviated with SIRKA and the SVD-based ap-
proximation. Due to the lack of an exact solver for the original Sylvester
equation, we used our new method with an approximation of rank 250 for
reference values. It should be mentioned that the relative residual for this
approach was smaller than 10−13 and thus should be sufficient for compar-
ison. Again, we see that SIRKA is dominated by the SVD approximation
if the quality is measured in terms of the Frobenius norm while it performs
constantly better if we use the LS-norm from Section 4.

For reasons of completeness, we also present one final example for an un-
symmetric Sylvester equation. The matrices are obtained by combination of
a continuous heat transfer model as well as the clamped beam. Both models
can be found in the Slicot benchmark collection and exhibit unsymmetric
matrices A 6= AT ∈ R200×200, C ∈ R200×1 and B,D as above. Of course,
the use of such a Sylvster equation with completely unrelated models may
be questionable. However, here they should only serve as realistic test ma-
trices and for our purposes thus are sufficient. In Figure 5, we present the
results for the approximations obtained by Algorithm 3, again abbreviated
with SIRKA and compare them with the SVD approximation of the true
solution.
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Figure 6: Clamped beam and heat equation

29



6 Conclusions and Outlook

In this paper we have studied low rank approximations of large-scale ma-
trix equations including the special case of Lyapunov equations arising in
the context of dynamical systems. For symmetric systems, we have shown
that the rational Krylov subspaces that lead to local minimizers of the un-
derlying H2-model reduction problem additionally yield optimal low rank
approximations with respect to a certain energy norm. Hence, we could
show a close connection to the recently proposed solvers based on Rieman-
nian optimization, see [25]. We further extended our results to the case of
unsymmetric Lyapunov equations with rank one right hand side. Here, un-
der the assumption that the systems can be transformed into a state space
symmetric realization, we have shown that the two-sided IRKA implicitly
minimizes a symmetrized system obtained by means of the controllability
and observability matrix, respectively. Moreover, we have proven that the
H2-norm of the error system arising in model order reduction is an objective
function which vanishes if and only if the corresponding low rank Lyapunov
approximations are the exact solutions and thus might be used as a reason-
able error measure. Furthermore, we extended our discussion to the case of
more general Sylvester equations. For this, we introduced an appropriate
extension of the iterative rational Krylov algorithm which also minimizes
the corresponding energy norm induced by the Kronecker notation of the
associated Sylvester operator.

As an outlook for further research, we want to draw our attention to the
case of more general matrix equations of the form

AXE + FXB +
m∑
j=1

NjXMj + CD = 0,

which have been shown to possess possible applications in the context of
model reduction of bilinear and linear stochastic control systems.
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[5] P. Benner, M. Köhler, and J. Saak. Sparse-dense sylvester equations in
H2-model order reduction, 2011. Preprint MPIMD/11–11.

[6] P. Benner, C.R. Li, and N. Truhar. On the ADI method for Sylvester
equations. J. Comput. Appl. Math., 233(4):1035–1045, 2009.

[7] P. Benner and J. Saak. Efficient numerical solution of the LQR-problem
for the heat equation. Proc. Appl. Math. Mech., 4(1):648–649, 2004.

[8] Y. Chahlaoui and P. Van Dooren. A collection of benchmark exam-
ples for model reduction of linear time invariant dynamical systems.
SLICOT Working Note 2002–2, 2002.

[9] V. Druskin, L. Knizhnerman, and V. Simoncini. Analysis of the rational
Krylov subspace and ADI methods for solving the Lyapunov equation.
SIAM J. Numer. Anal., 49:1875–1898, 2011.

[10] E.V. Dulov and N.A. Andrianova. On differentiability of the matrix
trace operator and its applications. Korean J. Comput. Appl. Math.,
8:97–109, 2001.

[11] G. Flagg. H2-optimal interpolation: New properties and applications,
2010. Talk given at the 2010 SIAM Annual Meeting, Pittsburgh (PA).

[12] G. Flagg, C.A. Beattie, and S. Gugercin. Convergence of the Itera-
tive Rational Krylov Algorithm. Technical report, 2011. submitted,
available as arXiv:1107.5363v1.

[13] G. Flagg and S. Gugercin. On the ADI method for the Sylvester Equa-
tion and the optimal-H2 points. Technical report, 2012. submitted,
available as arXiv:1201.4779.

[14] L. Grasedyck. Existence and computation of low kronecker-rank ap-
proximations for large linear systems of tensor product structure. Com-
puting, 72(3–4):247–265, 2004.

[15] S. Gugercin, A.C. Antoulas, and S. Beattie. H2 Model Reduction for
large-scale dynamical systems. SIAM J. Matrix Anal. Appl., 30(2):609–
638, 2008.

31



[16] S.J. Hammarling. Numerical solution of the stable, non-negative defi-
nite Lyapunov equation. IMA J. Numer. Anal., 2:303–323, 1982.

[17] D. Hohlfeld and H. Zappe. An all-dielectric tunable optical filter based
on the thermo-optic effect. Journal of Optics A: Pure and Applied
Optics, 6:504–511, 2004.

[18] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic
Press, Orlando, 2nd edition, 1985.

[19] J.-R. Li. Model Reduction of Large Linear Systems via Low Rank Sys-
tem Gramians. PhD thesis, Massachusettes Institute of Technology,
September 2000.

[20] L. Meier and D.G. Luenberger. Approximation of linear constant sys-
tems. IEEE Trans. Automat. Control, 12(5):585–588, 1967.

[21] T. Penzl. Eigenvalue decay bounds for solutions of lyapunov equations:
the symmetric case. Sys. Control Lett., 40(2):139–144, 2000.

[22] V. Simoncini. A new iterative method for solving large-scale lyapunov
matrix equations. SIAM J. Sci. Comput., 29(3):1268–1288, 2007.

[23] D.C. Sorensen and A.C. Antoulas. The Sylvester equation and ap-
proximate balanced reduction. Linear Algebra Appl., 351–352:671–700,
2002.

[24] D.C. Sorensen and Y. Zhou. Bounds on eigenvalue decay rates and
sensitivity of solutions of lyapunov equations. Technical Report 7, Rice
University, 2002.

[25] B. Vandereycken and S. Vandewalle. A Riemannian optimization ap-
proach for computing low-rank solutions of Lyapunov equations. SIAM
J. Matrix Anal. Appl., 31(5):2553–2579, 2010.

[26] E.L. Wachspress. The ADI model problem, 1995. Available from the
author.

[27] Y. Zhou and D. Sorensen. Approximate implicit subspace iteration
with alternating directions for LTI system model reduction. Numer.
Lin. Alg. Appl., 15:873–886, 2008.

32


	Introduction
	Optimal H2-model reduction
	The Lyapunov equation
	Sylvester equations
	Numerical examples
	Conclusions and Outlook

