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Abstract

We investigate second order balanced truncation model order reduction for
symmetric linear time invariant second order control systems. This special struc-
ture decreases the required computational effort significantly. Moreover, we show
how stability of the original model can be preserved for such systems. We briefly
discuss the numerical solution of the occurring large-scale Lyapunov equations
with a modified low-rank ADI method. The approach is tested on finite element
models of mechanical structures.

1 Introduction

In this work we consider model reduction for linear, time-invariant control systems of
second order:

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), (1)

y(t) = Cvẋ(t) + Cpx(t), (2)

where M, D, K ∈ Rn×n are usually referred to as the mass, damping and stiffness
matrix, B ∈ Rn×m is the input matrix and Cp, Cv ∈ Rp×n are position and velocity
output matrices. Such systems arise, for instance, in the vibration analysis of elas-
tic mechanical bodies. A common way to model the elastic deformations of such a
structure is using the Finite Element method which will introduce a high number of
elastic degrees of freedom and thus drastically increase the state space dimension of
the model compared to a rigid body model of the structure. In order to carry out
time-domain simulations efficiently, this large number of degrees of freedom is reduced
by model order reduction approaches.
To obtain accurate reduced order models we use balanced truncation [3] here as model
order reduction method which has a system theoretic background. We focus on sym-
metric second order systems whose properties turn out to be beneficial for our purposes
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from both a theoretical and computational point of view. Following the second order
balanced truncation approach [5], the original second order structure can be preserved.
For solving the inherent Lyapunov equation, the low-rank ADI method [4, 6] is used
which has proven to be an efficient algorithm for this goal and was recently subject
to extensive research. It can be modified to deal with the special structure of the
considered systems.
This paper is organized as follows: in the next section we briefly recall the main ideas
behind balanced truncation for first order system. In Section 3 the second order sys-
tems of interest are transformed to equivalent first order systems and second order
balanced truncation is introduced to regain the second order structure. The numerical
solution of the occurring large-scale Lyapunov equation with the LR-ADI method is
briefly discussed in Section 4. The performance of this model reduction approach for
two test examples is shown in Section 5, and Section 6 concludes.

2 Balanced Truncation for First Order Systems

Here we review the main workflow of balanced truncation for generalized state space
systems

Eż(t) = Az(t) +Gu(t),

y(t) = Lz(t),
(3)

where E, A ∈ Rn×n,G ∈ Rn×m and L ∈ Rp×n. It is assumed that E is nonsingular and
that the spectrum Λ(A, E) lies in the open left half plane C− := {z ∈ C : Re (z) <
0} such that (3) is asymptotically stable. Note that balanced truncation originated
for standard state space systems (E = In) [3], but since systems of the form (3)
are more important for our purpose, we follow the straightforward modification to
generalized state space systems which was worked out in detail, e.g., in [6]. The
most important ingredients to carry out balanced truncation are the solutions of the
generalized Lyapunov equations

APET + EPAT = −GGT , (4a)

ATQE + ETQA = −LTL. (4b)

There, the symmetric matrices P andQ are the reachability and observability Gramian,
respectively. The magnitude of the square roots of the eigenvalues of PETQE provides
a joint measurement of how good certain states can be reached and observed. The
values are system invariants and referred to as Hankel singular values. The main idea
of balanced truncation is to identify and to truncate states which correspond to very
small Hankel singular values, that is they are difficult to reach and to observe. Since
both Gramians are positive semidefinite, we have Cholesky factorizations P = RRT

and Q = SST . Using the singular value decomposition with decreasingly ordered
singular values

STER = XΣY T = [X1, X2] diag (Σ1, Σ2) [Y1, Y2]T ,
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where Σ1 ∈ Rr×r contains the dominant singular values, the truncation matrices are
constructed via

Tl = Σ
− 1

2
1 XT

1 S
T and Tr = RY1Σ

− 1
2

1 .

The reduced system of order r is given by

˙̂z(t) = Âẑ(t) + Ĝu(t),

ŷ(t) = L̂ẑ(t),

where Â := TlATr ∈ Rr×r, Ĝ := TlG ∈ Rr×m and L̂ := LTr ∈ Rp×r. Note that it
can be shown that TlETr = Ir holds [6]. The stability of the original large system
is preserved in the reduced ordel model. Moreover, one of the main advantages of
balanced truncation is the available error bound

‖y − ŷ‖ ≤ 2

n∑
j=r+1

σj‖u‖, (5)

where the σj are the singular values from the neglected block Σ2. This error bound
can be used to adaptively determine the order of the reduced system with respect to
a prescribed error tolerance.

3 Balanced Truncation for Symmetric Second Order
Systems

The main focus of the article are second order systems (1), where M, D, K are
symmetric positive definite matrices and for B, Cp, Cv we have one of the cases:
either B = CTp , Cv = 0 (case 1) or B = CTv , Cp = 0 (case 2). The positive definiteness
ensures that (1) is asymptotically stable.

3.1 Reduction of Equivalent First Order Systems

In order to follow the balanced truncation framework we have to transform the second
order system into a first order system. The above assumptions on the matrices ensure
that in both cases (1) can be transformed into a generalized state space system (3)
with symmetric matrices E, A ∈ R2n×2n, with G = LT ∈ R2n×m and the augmented
generalized state vector z(t) := [x(t)T , ẋ(t)T ]T . The matrices of the above generalized
system are given by

E :=

[
D M
M 0

]
, A :=

[
−K 0

0 M

]
, G :=

[
B
0

]
(6)

for case 1 and

E :=

[
−K 0

0 M

]
, A :=

[
0 −K
−K −D

]
, G :=

[
0
B

]
(7)
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for case 2. This transformation is closely related to the rewriting of a quadratic
eigenvalue problem into a generalized one, hence we may refer to it as linearization.
In this context (6) relates to the first and (7) to the second companion linearization
of a quadratic eigenvalue problem. It follows that these generalized systems are also
asymptotically stable and that both generalized Lyapunov equations (4a) and (4b) are
identical, such that P = Q and consequently R = S. Hence, only the solution P ,
respectively its Cholesky factor R, of one generalized Lyapunov equation

APE + EPA = −GGT (8)

is required. Since the solution of the Lyapunov equations (4) is the computationally
most expensive task in balanced truncation, the symmetry of the chosen first order
system leads to a reduction of the computational effort by half. We postpone the
discussion about the actual numerical computation of R until Section 4. Another
consequence is that since RTER is a symmetric matrix, its eigendecomposition can
be used for building the truncation matrices Tl and TTr . The matrices of the reduced
order model will in general not have a block structure like the original matrices, such
that the second order structure is lost. This can be cured by modifying balanced
truncation as it is shown in the next section.

3.2 Regaining the Second Order Structure

Balanced truncation can be modified in order to generate a reduced order model which
is also in second order form, see e.g., [5]. The main idea there is to partition the
Gramians P and Q according to the structure present in in the equivalent generalized
first order system:

P =

[
Pp P1,2

PT1,2 Pv

]
, Q =

[
Qp Q1,2

QT1,2 Qv

]
,

where Pp, Qp ∈ Rn×n are called position, and Pv, Qv ∈ Rn×n velocity reachability
and observability Gramians, respectively. For our symmetric systems we only have to
consider Pp and Pv. Let Pp = RpR

T
p , Pv = RvR

T
v be their Cholesky decompositions

with nonsingular factors Rp, Rv ∈ Rn×n. Then one has four possible singular value
decompositions

ZTαMZβ=XαβΣαβY
T
αβ

=[Xαβ,1, Xαβ,2]diag (Σαβ,1,Σαβ,2) [Yαβ,1, Yαβ,2]T

with α, β ∈ {p, v}. The Σαβ,1 ∈ Rr×r contain the dominant singular values, and all
other blocks have appropriate dimensions. Taking all possible choices for α, β into
account leads to four different pairs of reduction matrices

Tr,αβ := RαYαβ,1Σ
− 1

2

αβ,1,

Tl,αβ := RβXαβ,1Σ
− 1

2

αβ,1.
(9)
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For α = β = p the approach is called position-position (PP), for α = β = v velocity-
velocity (VV), for α = v, β = p velocity-position (VP), and for α = p, β = v
position-velocity (PV) second order balanced truncation, respectively. All four pairs
of these transformation matrices are summarized in Table 1. Hence, there are in total
four different reduced order models in second order form

M̂αβ
¨̂x(t) + D̂αβ

˙̂x(t) + K̂αβ x̂(t) = B̂αβu(t),

ŷ(t) = Ĉp
αβ x̂(t) + Ĉv

αβ
˙̂x(t)

with

M̂αβ := TTl,αβMTr,αβ , D̂αβ := TTl,αβDTr,αβ , K̂αβ := TTl,αβKTr,αβ ∈ Rr×r,

B̂αβ := TTl,αβB ∈ Rr×m, Ĉ
p
αβ := CpTr,αβ , Ĉ

v
αβ := CvTr,αβ ∈ Rm×r.

(10)

For this type of balanced truncation, there is in general no error bound similar to (5).
For an adaptive determination of the reduced order model, one can, e.g., monitor the
ratio of the entries in Σαβ

σj,αβ
σ1,αβ

≤ ε. (11)

Moreover, stability is not preserved for general systems using the approach in [5]. We
now show that for the symmetric systems it can be preserved for two particular choices
from (10). Since M is symmetric positive definite, so are RTpMRp and RTvMRv and
hence, because now their singular value decomposition coincides with their eigende-
composition, Xpp = Ypp and Xvv = Yvv. Consequently, Tr,pp = Tl,pp and Tr,vv = Tl,vv
holds such that position-position and velocity-velocity second order balanced trunca-
tion use one-sided transformations. Therefore, the reduced mass, damping and stiffness
matrices remain symmetric positive definite such that the reduced order models are
asymptotically stable. Note that the reduced output is still the reduced transposed
input matrix in these two approaches.

Beyond that, since RTvMRp =
(
RTpMRv

)T
we have Xpv = Yvp, Xvp = Ypv which

leads to Tr,pv = Tl,vp and Tr,vp = Tl,pv. One easily sees then that the mass, damping

Table 1: Left and right transformations matrices of balanced truncation for second
order systems.

Type right transformation left transformation

PP Tr,pp := RpYpp,1Σ
− 1

2
pp,1 Tl,pp := RpXpp,1Σ

− 1
2

pp,1

PV Tr,pv := RpYpv,1Σ
− 1

2
pv,1 Tl,pv := RvXpv,1Σ

− 1
2

p v ,1

VP Tr,vp := RvYvp,1Σ
− 1

2
vp,1 Tl,vp := RpXvp,1Σ

− 1
2

v p ,1

PV Tr,vv := RvYvv,1Σ
− 1

2
vv,1 Tl,vv := RvXvv,1Σ

− 1
2

v v ,1
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and stiffness matrices of the position-velocity reduced order model are the transposes
of the matrices of the velocity-position reduced order model. Additionally, it holds for
case 1 that B̂pv = (Ĉp

vp)T and B̂vp = (Ĉp
pv)T . For case 2 similar relations involving

Ĉv exist. The position-velocity is the adjoint of the velocity-position reduced order
model such that the spectral- and Frobenius norm of the transfer functions of both
systems are identical as it can be seen in the frequency response plots for the examples
in Section 5.

4 Solution of the Lyapunov equation

Since for our purposes, M, D, K and thus E and A will be large and sparse matrices,
classical solution strategies for (8) involving the eigendecomposition of (A, E) cannot
be applied due to their cubic complexity. We therefore approximate the Cholesky
factor R by a low-rank solution factor R̂ ∈ Rn×d, d� n such that R̂R̂T ≈ P . For this
we use the generalized low-rank alternating direction implicit method (G-LR-ADI)
[4, 6, 2] which follows for j = 1, . . . , jmax the iteration

V1 =
√
−2 Re (µ1)(A+µ1E)

−1
G,

Vj=
√

Re (µj)
Re (µj−1)

(
I−(µj+ µj−1)(A+µjE)

−1
)
EVj ,

(12)

with R̂ = [V1, . . . , Vjmax ]. There the µj ∈ C− are shift parameters steering the conver-
gence. In a large-scale setting they are usually obtained from a small number of Ritz
values of E−1A solving approximately a rational min-max problem [4].

Since systems of the form (1) come often from a spacial finite element discretization
of elastic mechanical bodies, the matrix pair (A, E) of (6),(7), and equivalently the
quadratic matrix polynomial associated to (1), will most likely have complex eigenval-
ues. Hence the Ritz values as well as the shift parameters might be complex numbers.
In the presence of such complex shift parameters, the iteration (12) will consequently
produce a complex low-rank factor R̂. This is undesirable from a numerical point of
view since complex arithmetic operations are more expensive than real ones. More-
over, a complex low-rank factor R̂ will also make the transformation matrices (9) and
hence the matrices defining the reduced order model (10) complex. However, if the
both µj , µj+1 := µj are consecutive shift parameters this can be circumvented by
following the approach in [1] which allows the computation of real low-rank factors
even if complex shift parameters are used. The main result there is that the iterate
with respect to µj+1 can be constructed by

Vj+1 = Re (Vj)−  Im (Vj) + 2
Re (µj)
Im (µj)

Im (Vj)

such that the solution of the complex linear system with µj is not required. Thus the
amount of complex arithmetic operations and storage is greatly decreased.

For reasons of efficiency, instead of working with the augmented matrices E, A, G
and the associated linear systems

(A+ µE)V̂ = EV
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Algorithm 1 Second-Order Low-rank ADI iteration (SO-LR-ADI)

Input: M , D, K, B defining (1) and shift parameters {µ1, . . . , µjmax}.
Output: Real low-rank solution factor R̂ ∈ R2n×djmax , such that R̂R̂T ≈ P in (8).
1: for j = 1, 2, . . . , jmax do
2: if j = 1 then
3: Solve (µ2

1M − µ1D +K)V̂ (1) = −B for V̂ (1).
4: Set V̂ (2) = −µ1V̂

(1).

5: V1 =

[
V

(1)
1

V
(2)
1

]
=
√
−2 Re (µ1)

[
V̂ (1)

V̂ (2)

]
.

6: else
7: Solve (µ2

jM − µjD +K)V̂ (1) = (µjM −D)V
(1)
j−1 −MV

(2)
j−1 for V̂ (1).

8: Set V̂ (2) = V
(1)
j−1 − µj V̂ (1).

9: Construct iterate

Vj =

[
V

(1)
j

V
(2)
j

]
=
√

Re (µj)
Re (µj−1)

(
Vj−1 − (µj + µj−1)

[
V̂ (1)

V̂ (2)

])
.

10: end if
11: if Im (µj) = 0 then

12: R̂ = [R̂, Re (Vj)].
13: else
14: β = 2

Re (µj)
Im (µj)

.

15: Vj+1 = Vj + β Im (Vj).

16: Set R̂ =

[
R̂,
√

2 Re (Vj) + β√
2

Im (Vj),

(√
β2

2 + 2

)
Im (Vj)

]
.

17: Set j = j + 1.
18: end if
19: end for

of dimension 2n × 2n the iteration (12) can be rewritten such that linear systems of
the form

(µ2M − µD +K)V̂ (1) = Ŵ

of dimension n×n have to be solved [2] which involve the original matrices M, D, K, B
. This modification is usually referred to as second order LR-ADI (SO-LR-ADI).
Altogether this leads for case 1 to the second order LR-ADI (SO-LR-ADI) given in
Algorithm 1. The iteration for case 2 is similar and can be obtained from using the
augmented matrices (7) and rewriting the associated iteration (12).

7



Table 2: Dimensions of the reduced systems and maximal relative error for both ex-
amples.

beam mirror

Type r max (εrel) r max (εrel)

PP 12 2.8 · 10−8 60 1.1 · 10−5

VV 27 4.7 · 10−10 105 4.3 · 10−8

PV 19 3.2 · 10−9 98 4.2 · 10−8

VP 19 3.2 · 10−9 98 5.4 · 10−8

BT1 24 3.9 · 10−9 132 5.0 · 10−8

BT2 9 1.5 · 10−3 68 3.7 · 10−4

5 Numerical examples

We investigate the quality of the model reduction approach using two test systems
which both represent finite element models of elastic structures and belong to case
1. The first model represents a Bernoulli beam, where the discretization leads to a
second order system of dimension n = 3000 with m = 1. The second system was
obtained from a discretization of a secondary deformable mirror which is part of a
telescope. There, n = 83508 and we take the first m = 5 of the original 672 columns
in B. The generalized Lyapunov equations of dimension 6000 and 167016 were solved
with SO-LR-ADI (Algorithm 1) until the norm of the normalized Lyapunov residuals
dropped below 10−8 which required 76 and 88 iterations of SO-LR-ADI, respectively.
Second order balanced truncation was applied to obtain the reduced order models,
where in both examples the dimensions of the reduced systems was determined using
the ratio (11) and a truncation tolerance ε = 10−10. Additionally, the reduction to
first order systems with standard balanced truncation (in the sequel denoted by BT1)
was carried out using both (11) and the error bound (5) (BT2) to set the reduced
dimension. We measure the accuracy of the different reduction approaches using the
transfer functions

H(s) := C(s2M + sD +K)−1B,

Ĥ(s) := Ĉ(s2M̂ + sD̂ + K̂)−1B̂,

F̂ (s) := L̂(sÊ − Â)−1Ĝ

with s = iω, ω ∈ R of original and reduced order systems, as well as the associated
relative errors

εrel = ‖H(s)− Ĥ(s)‖2�‖H(s)‖2, or εrel = ‖H(s)− F̂ (s)‖2�‖H(s)‖2,

where the quantities involving F̂ are used for the reduction to a generalized first or-
der system (BT1 and BT2). The frequency parameter ω varies through logarithmically
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Figure 1: Frequency response and relative errors plots for both test examples.

spaced points from the interval [1, 104] Hz for the beam example and [10−3, 5 · 103]
Hz for the mirror system. Table 2 shows the dimensions of the obtained reduced or-
der models and the maximal relative error in the considered frequency range for both
examples. Fig. 1(a) and 1(c) show the frequency response in terms of the spectral
norm of exact and reduced transfer functions for both examples. Apparently, there is
no distinguishable difference between the frequency response plots of original and re-
duced models. In Fig. 1(b) and 1(d) the associated relative errors along the considered
frequency interval is plotted showing that the accuracy of the models obtained with
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second order and standard balanced truncation using the singular value ratio (11) is
very high. The relative error of standard balanced truncation using the error bound
(5) is much higher as it is also visible from the values in Table 2. This leads to the con-
clusion that monitoring the relative singular value decays yields more accurate results
for these systems. Similar experiments (not reported here) using a fixed dimension of
the reduced order model instead of using (5) or (11) also showed a higher accuracy
obtained with second order balanced truncation. The equivalence of the frequency
response in the spectral norm of position-velocity and velocity-position reduced order
models is also clearly visible by the relative error plots.

6 Conclusions

We have investigated second order balanced truncation for the special class of symmet-
ric second order systems. This structure is beneficial, since it enables the preserving
stability of the dynamical system in the reduction process and it also greatly reduces
the amount of required computational work. The occurring generalized large-scale
Lyapunov equations were efficiently solved with an adequately adapted version of the
low-rank ADI method. Numerical experiments using finite element discretizations of
real elastic bodies confirmed a high accuracy of the obtained reduced order models,
which also lead to more accurate results than following the standard balanced trunca-
tion approach by reducing the second order system to a reduced first order state space
system.
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