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Model Reduction of an Elastic Crankshaft for
Elastic Multibody Simulations

Christine Nowakowski∗, Patrick Kürschner†, Peter Eberhard∗, Peter Benner†

Abstract

System analysis and optimization of combustion engines and engine components are increasingly supported
by digital simulations. In the simulation process of combustion engines multi physics simulations are used. As an
example, in the simulation of a crank drive the mechanical subsystem is coupled to a hydrodynamic subsystem.
As far as the modeling of the mechanical subsystems is concerned, elastic multibody systems are frequently used.
During the simulation many equations must be solved simultaneously, the hydrodynamic equations as well as the
equations of motion of each body in the elastic multibody system. Since the discretization of the elastic bodies, e.g
with the help of the finite element method, introduces a large number of elastic degrees of freedom, an efficient
simulation of the system becomes difficult. The linear model reduction of the elastic degrees of freedom is a key step
for using flexible bodies in multibody systems and turning simulations more efficient from a computational point
of view. In recent years a variety of new reduction methods alongside the traditional techniques were developed in
applied mathematics. Some of these methods are introduced and compared for reducing the equations of motion of
an elastic multibody system. The special focus of this work is on balanced truncation model order reduction which
is a singular value based reduction technique using the Gramian matrices of the system. We investigate a version of
this method that is adapted to the structure of a special class of second order dynamical systems which is important
for the particular application discussed here. The main computational task in balanced truncation is the solution or
large-scale Lyapunov equations for which we apply a modified variant of the low-rank ADI method. The simulation
of a crank drive with a flexible crankshaft is taken as technically relevant example. The results are compared to
other methods like Krylov approaches or modal reduction.

I. INTRODUCTION

One important step in the development process of technical products is the digital engineering using computer
aided simulations. In this way many experiments and prototypes, and hence financial costs can be saved. Coupled
simulations of different physical areas have become increasingly important as described in [3]. The efficient
simulation of such systems, e.g. consisting of mechanical, electrical, hydraulic or pneumatic components, is of
utmost interest. With respect to the growing working speeds and usage of lightweight structures, elastic multibody
systems (EMBS) can be frequently used for the dynamical simulation of the mechanical parts. For systems where
the elastic deformation is small compared to the rigid body motion, the floating frame of reference method is a
sensible choice for the description of flexible bodies. The basic idea is to divide the movement of a body into a
large nonlinearly described motion of the reference system and in a linear elastic deformation with respect to the
reference system. Usually, the finite element method (FEM) is used for the modeling of the elastic deformations.
Thereby, a very large number of elastic degrees of freedom is introduced into the model. One essential step
for an efficient simulation of EMBS is the reduction of the linear elastic degrees of freedom, see [32], [21].
Currently, reduction techniques based on modal reduction, condensation and component mode synthesis (CMS)
are often used in industrial environments. A variety of reduction techniques based on moment-matching with
Krylov subspaces [26] or singular value decompositions (SVD) [37] have been developed in the last years in
addition to the traditional approaches. An overview about the current state of development can be found e.g. in [2],
[46]. These modern strategies often yield a more accurate approximation of the system dynamics with the same
dimension of the reduced order model, or a comparable accuracy with smaller reduced order models, as obtained
with the conventional reduction approaches. Some of the latest developments deal with the efficient application of
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these methods to dynamical systems of special structure, for instance, linear time invariant second order dynamical
systems as they are highly relevant for the industrial application. For these systems we focus on balanced truncation
model order reduction which aims at neglecting the parts of the system which are hard to control and difficult to
observe. For dealing with the occurring second order systems a structure preserving modification of this reduction
strategy can be applied. Pushed by promising results for large scale dynamical systems and the existence of error
estimators, a joint research project supported by the Forschungsvereinigung Verbrennungskraftmaschinen (FVV)
was done to investigate the applicability of modern model order reduction techniques for the reduction of elements
of a combustion engine.

This paper is structured as follows: In the next section we review some basics of elastic multibody systems,
including the modeling as second order linear time invariant system as well as the application of model order
reduction. Section III describes the three main strategies of model reduction: conventional approaches, moment-
matching with Krylov subspaces, and SVD based methods. The emphasis is drawn to the latter approach, where
give more detailed information on the required numerical solution of the involved matrix equations and on the
preservation of the second order structure. In Section IV a flexible crankshaft is introduced as test case from an
actual industrial application, onto which the previously model reduction approaches are applied. Finally, Section V
concludes.

II. FUNDAMENTALS OF ELASTIC MULTIBODY SYSTEMS

A classic multibody system (MBS) consists of rigid elements which are connected by ideal joints and coupling
elements between each other and the surrounding environment. Detailed information about the concept of MBS can
be found e.g. in [45]. For many engineering applications, where elastic effects can not be neglected, elastic multibody
systems are used. There, the classical approach is extended by elastic bodies, [47], [48]. For systems where the
elastic deformation is small compared to the rigid body motion, the floating frame of reference formulation can be
used. As written in [48] it is currently the most widely used method in computer simulations of flexible multibody
systems. The motion of a single flexible body or, respectively, the motion rP (t) of a particular point P is separated
into the nonlinear motion ri (t) of the reference frame Ki and the linear elastic deformation uP (t) = u (RiP , t)
with respect to the reference frame

rP (t) = ri (t) +RiP + uP (t) . (1)

The vector RiP that is time independent in the body fixed reference frame corresponds to the position of the point
P in the undeformed state. A similar approach concerning the orientation of the coordinate system at point P
leads to the rotational motion ϑP (t) = ϑP (RiP , t) by elastic deformation. When the deformation vanishes, this
kinematic formulation leads to exact modeling of the rigid body dynamics.

Using the floating frame of reference formulation, the modeling of an EMBS can be split into two parts, on the
one hand modeling the multibody dynamics and on the other hand modeling the flexibility, see Figure 1. To establish
the EMBS in the end of the modeling process both descriptions are combined and so the resulting equations have
to be consistent.

Fig. 1. Procedure of EMBS simulation.
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A. Modeling the Multibody Dynamics

Based on the kinematic description, (1) the equation of motion of a single body can be derived with the help of
the principles of mechanics, such as d’Alembert’s or Jourdain’s principle [47]. This yields the equation of motion
of a single deformable body [

M i
r M i

re

M i
er M i

e

][
q̈ir
q̈ie

]
+

[
0

kie

]
=

[
hir
hie

]
, (2)

similar to [20], [33] or [47]. Thereby, the superscript i refers to the body number. The vector of coordinates consists
of the rigid body coordinates qr ∈ RNr and the elastic coordinates qe ∈ RNe . The rigid multibody dynamics is
described by the submatrix M r of the mass matrix and the rigid body accelerations q̈Tr =

[
aTαT

]
that contain

the global translational accelerations a and rotational accelerations α. The coupling matrices M er ∈ RNe×Nr and
M re = MT

er take into account the interactions between the different coordinate frames. The Coriolis, centrifugal,
constraint as well as the externally applied forces are summarized in the force vectors hr and he, respectively.
In general, both the mass matrix and the vector of the internal elastic forces ke are nonlinear with respect to the
generalized coordinates. However, since the elastic deformations are assumed to be small the corresponding part of
the equations of motions can be considered as linear with respect to the elastic degrees of freedom and thus, linear
model order reduction techniques can be applied. Together with the equation of motion of each single body (2), the
topology characterization and the principles of mechanics, the equation of motion of the whole elastic multibody
system without kinematic loops can be written as

M(q)q̈ + k(q̇, q, t) = g(q̇, q, t), (3)

with the symmetric and positive definite mass matrix M of the complete multibody systems, the vector of
generalized gyroscopic forces k, the vector of applied forces g and the vector of generalized coordinates q, that
comprises all degrees of freedom of every body.

B. Modeling the Flexible Parts

One instrument to describe the elasticity is the linear finite element method, which is an approximation and
discretization method for field problems formulated by partial differential equations [56]. In structural dynamics the
displacement field of a continuum is approximated by the Ritz approach and the d’Alembert principle to get the
equation of motion of a finite element model. The linear elastic deformations u (R, t) and ϑP (R, t) are specified
by the approach

u (R, t) = Φ (R) qe (t) , ϑ (R, t) = Ψ (R) qe (t) , (4)

where qe (t) is referring to the nodal displacements of a finite element model and Φ (R), Ψ (R) are the elastic
shape functions, see also [33]. This results in the linear equation of motion

M eq̈e (t) +Keqe (t) = he (5)

of an elastic body as formulated in [32]. The matrices M e, Ke ∈ RNe×Ne are the mass and stiffness matrix of the
flexible structure and have the following characteristics if the system is constraint sufficiently to avoid rigid body
motion

M e = M e
T > 0, Ke = Ke

T > 0. (6)

The generalized surface and volume forces are summarized in the force vector he. Additionally, for consideration
of dissipative effects a damping matrix De is usually introduced so that (5) becomes

M eq̈e (t) +Deq̇e (t) +Keqe (t) = he. (7)

The damping matrix is, e.g., approximated by Rayleigh damping

De = αM e + βKe (8)

with the factors 0 ≤ α, β, such that obviously De = DT
e > 0 holds as well. The need for high precision and

complex geometries often leads to a fine spatial discretization. Mathematically the elastic body is described by a
large set of linear ordinary differential equations, whose solution increases the computational effort of the simulation.
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Linear model reduction is a decisive component for an efficient simulation. To get a representation used for some
model reduction techniques, the forces acting on the finite element structure are described by the time dependent
excitation ue(t) and the input or control matrix Be ∈ RNe×m. This matrix captures the spatial distribution of the
boundary and coupling conditions. Further on, the output or observation matrix Ce ∈ Rp×Ne is introduced for the
calculation of the interesting displacements y(t). For this system theoretic description the equation of motion of
a single elastic body can be formulated as a linear time-invariant second order multi-input multi-output (MIMO)
system

M eq̈e (t) +Deq̇e (t) +Keqe (t) = Beue(t),

y(t) = Ceqe (t) .
(9)

C. Model Order Reduction of Elastic Degrees of Freedom

Due to increasing demands on the technical products and their simulation, the requirements on the calculation
accuracy and the calculation time are often extremely high. One consequence of this trend is that the dimension of
the equation of motion rises whereas the time to run the simulation should be as short as possible. Such problems
particularly require an adequate model order reduction (MOR) to decrease the number of equations and keep the
significant characteristics of the system. In Figure 1 the way to get a simulation of an EMBS with the help of
MOR is shown.

The application of model order reduction can be described by a projection of the elastic part of the equation
of motion, see [9], [19], [32], [33]. There, the large number of degrees of freedom of the flexible coordinates
qe ∈ RNe are reduced by approximating qe by a representation q̃e ∈ Rn defined in a subspace Vs of smaller
dimension n < Ne

qe ≈ V q̃e. (10)

The vector q̃e is also referred to as reduced displacement vector. Let V ∈ RNe×n be the projection matrix
representing the subspace V , i.e. it has the basis vectors as columns. Introducing this relation into the FE equation
of motion (9) leads to an over-determined system and leaves a residuum since the exact solution qe is in general
not an element of the subspace. To obtain a unique solution one imposes that the residual is orthogonal to a second
subspace Ws represented by another projection matrix W ∈ RNe×n. This orthogonality condition is often called
Petrov-Galerkin condition [2], [26], [42] and results in the reduced FE equations

M̃ e
¨̃qe + D̃e

˙̃qe + K̃eq̃e = B̃eue,

ỹ = C̃eq̃e,
(11)

with the reduced mass matrix M̃ e := W TM eV , damping matrix D̃e := W TDeV , stiffness matrix K̃e :=
W TKeV ∈ Rn×n, and the reduced input and output matrices B̃e := W TBe ∈ Rn×m, C̃e := CeV ∈ Rm×n.
The projection is called orthogonal if the subspaces are identical, i.e. V = W , and oblique otherwise. This procedure
leads to the reduced equations of motion of a single flexible body[

M r MT
erV

W TM er M̃ e

][
q̈r
¨̃qe

]
+

[
0

K̃eq̃e + D̃e
˙̃qe

]
=

[
hr
h̃e

]
, (12)

where the reduced forces and moments are defined as h̃e := W The ∈ Rn. In engineering applications it can be
helpful to preserve the structural properties (6). In such cases an orthogonal projection has to be performed, e.g.
by assuming Ce = Be

T . The differences of the reduction techniques mentioned above are the principles, which
establish how the projection matrices are generated.

III. MODEL REDUCTION TECHNIQUES

In industrial settings and software environments methods based on modal reduction, condensation and component
mode synthesis (CMS) are still the state of the art methods. Modern reduction techniques like moment-matching
with Krylov subspace based method or reduction approaches based on the singular value decompositions (SVD), for
example balanced truncation, were introduced in the last decades. These methods use different ways to approximate



5

the input to output mapping of the dynamical system describing the underlying physical or technical process. For
the application in the simulation of elastic bodies, there are mainly three classes of model reduction techniques:
• classical reduction techniques such as modal reduction, condensation and component mode synthesis,
• SVD-based approximation methods using Gramian matrices, or
• techniques based on moment-matching via Krylov subspaces.
Each of the reduction techniques mentioned above has its specific advantages and disadvantages. The following

criteria are of special interest for the user: computability for large scale systems, stability preservation, quality of the
reduced order model, knowledge about the error induced through the approximation. For the particular application
discussed here, the preservation of the second order structure, an emphasis onto a certain frequency range, and the
possibility to automate the reduction process are also of relevance.

A. State of the Art Reduction Techniques

In structural mechanics and elastic multibody dynamics the most frequently used model order reductions are
techniques based on modal reduction and substructuring. Modal reduction relies on a transformation of the geometric
coordinates of the FE model into a system of modal coordinates as given in [31]. The nodal displacement vector
is approximated by a linear combination of r modes

qe =

r∑
i=1

φie
λit = Φqmodal, (13)

where φi are, for example, dominant eigenvectors of the free (free-free normal modes) or a bounded (fixed-interface
normal modes) body. A suitable normalization of the modes requires

φiM eφj = δij . (14)

a) Condensation (Guyan reduction): Static condensation is done by substructuring the nodal displacement
vector into internal or slave qi and external or master qe degrees of freedom, see [35] or [30]. As in [15], [16], the
external coordinates are redundant and the internal ones are kept as the remaining node displacement coordinates.

b) Mixed static modal (Craig-Bampton): The combination of condensation and modal reduction of the internal
structure by superposition results in an approximation of the internal degrees of freedom by

qs = −KeiK
−1
ii qm + Φinternalqintmodal (15)

with parts of the stiffness matrix Kei and Kii and the Craig-Bampton [16] projection matrix becomes

V CMS =

[
I 0

−KeiK
−1
ii Φinternal

]
. (16)

The convergence of modal reduction can be slow, e.g. because the spatial distribution of loads is not mandatory
considered. In addition, no information about the error introduced by model reduction can be gained and a tuning
of the reduced model for certain frequency ranges is not possible. Modal reduction can be improved by extending
the projection space with other modes. However, often the selection of the dominant eigenmodes requires a lot of
experience by the engineer, so that these method can be hardly automated.

B. Methods based on Krylov subspaces

1) Basic Idea: In these reduction techniques the frequency response is taken as a characteristic quantity to
describe the original system. The basic idea is to approximate the transfer function matrix

H(s) = Ce

(
s2M e + sDe +Ke

)−1
Be, s ∈ C (17)

by matching several values and derivatives at different points which are usually called expansion or interpolation
points, respectively, or simply shifts [26], [32].

For this purpose, the transfer function matrix is expanded into a power series, whose coefficients T σk

j are called
moments of order j with respect to an expansion point σk ∈ C of the transfer function. To match several values
and derivatives, it is required that the moments to these specific expansion points of the original and the reduced



6

transfer function matrix match. This is realized in [26] for systems of first order by using the rational Krylov
approach by projecting the system onto rational Krylov subspaces. For second order systems one uses second order
Krylov subspaces [4], [44] which are for a given shift σk given by

Gr
(
P̄ k, Q̄k;Sk

)
:= span {R0, R1, R2, . . . , Rr−1} ,

Rj := pj(P̄ k, Q̄k)Sk.
(18)

There, using

Lk := σ2kM e + σkDe +Ke, Nk := 2σkM e +De, (19)

the defining matrices are given by

P̄ k := −L−1k Nk, Q̄k := −L−1k M e, and Sk := L−1k Be. (20)

Furthermore, pj(α, β) is a bivariate polynomial following the recursion

pj(α, β) = αpj−1(α, β) + βpj−2(α, β) (21)

with p0(α, β) ≡ 1 and p1(α, β) = α. The second order Krylov subspace can be generated with a second order
Arnoldi method (SOAR) [5]. Using different expansion points σk and matching moments of order Jk, the rational
second order Krylov subspace is constructed by concatenating all the second order Krylov subspaces associated to
one shift σk ⋃

k

GJk
(
P̄ k, Q̄k; Sk

)
⊆ Vs = colsp (V ) . (22)

Additionally, one can define another rational second order Krylov subspace for the left transformation⋃
k

GFk

(
−L−Hk NH

k , −L−Hk MT
e ; L−Hk Ce

)
⊆ Ws = colsp (W ) , (23)

where the orders Fk of the moments to not have to coincide with Jk. Both spaces can be constructed simultaneously
using a two-sided second order Arnoldi method [44].

2) Advantages and Disadvantages: The fact that Krylov subspace based reduction methods are iterative methods
and can be applied to large scale models represents their decisive advantage. The performance of Krylov subspace
based reduction methods clearly depends on the choice of expansion points, leading to developments for automated
shift selections in recent years. In addition, error estimation is nowadays possible, see [22], which means that the
user has much more control over the validation of his simulation. However, the method lacks flexibility with respect
to systems with many inputs or outputs, since with an increasing order of the moments, mJk new basis vectors are
added to the Krylov subspace for each shift σk. This can be circumvented by constructing the Krylov subspaces
with the help of tangential interpolation [23].

C. SVD based Reduction Techniques

1) Basic Idea for Systems of First Order: Another large group of reduction techniques are methods based on
a singular value decomposition (SVD) or Gramian matrices. The basic motivation for this reduction is the energy
interpretation of the input output map of the system. There, the governing question is: which states of the system
require the most excitation energy and produce the least output energy? These states would yield no important
contributions to the system dynamics and can by neglected. This identification and truncation is carried out in
balanced truncation model order reduction [37], [2] which was intrinsically designed for standard state space
systems of the form

ẋ = Ax+Bu,

y = Cx.
(24)

Here we present the basic principles of balanced truncation for generalized first order systems

Eẋ = Ax+Bu,

y = Cx,
(25)
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which are more relevant for our purposes and for which balanced truncation can be modified appropriately in a
straightforward way as it was shown in, e.g., [8], [13], [43]. The controllability and observability Gramian matrices,
P and Q, of (25) are strongly related to the above energy interpretation. For an asymptotically stable system they
are the unique solutions of the generalized Lyapunov equations

APET +EPAT = −BBT , (26)

ATQE +ETQA = −CTC. (27)

The Gramian matrices P , Q are symmetric matrices which are also positive definite if the system in (25) is in
addition controllable and observable which we assume for the remainder. Hence there exist Cholesky factorizations
P = RRT , Q = SST . The eigenvalues of P or Q are a measure of how strongly the states can be controlled or
observed. Moreover, the eigenvalues of the product PETQE give a combined measurement of how good states can
be controlled and observed. Note that the eigenvalue relation PETQEx = λx is equivalent to RTETSSTERy =
λy with y := R−1x and hence, the square roots of the eigenvalues are the singular values of STER which are
system invariants and referred to as Hankel singular values (HSV)

σj :=
√
λj
(
PETQE

)
. (28)

Note that the positive definiteness of the Gramian matrices is actually not neccessary, since the above can also be
carried out by using Cholesky-like, or low-rank, factorizations P ≈ R̃R̃T

, Q ≈ S̃S̃T , as it is done in a large-scale
setting anyway. We investigate the numerical computation of such low-rank factors in Section III-C2.

It is the goal of this reduction to determine those state components which have no or little effect on the energy
transfer. These state components can be identified by the associated small Hankel singular values. This can be
achieved by applying a balancing transformation to (25) such that P = Q = Σ = diag (σ1, . . . , σn) from which
the small, to be neglected, HSVs can be read off easily. The complete procedure of balanced truncation including
these transformations is schematically given in Algorithm 1.

Algorithm 1 Balanced truncation for generalized state-space systems
Input: System matrices E, A, B, C defining the dynamical system (25), truncation tolerance εBT

Output: Matrices Ẽ, Ã, B̃, C̃ of reduced system
1: Compute Cholesky factors R, S of the solutions of (26), (27).
2: Compute and partition a (thin) singular value decomposition

XΣY T =
[
X1 X2

] [Σ1 0
0 Σ2

] [
Y 1 Y 2

]T
= STER,

where (29) can be used to define Σ1 := Σ(1 : n, 1 : n) and the other adequately sized blocks.
3: Construct transformation matrices V and W

V := RY 1Σ
− 1

2

1 , W := SX1Σ
− 1

2

1 .

4: Generate reduced order realization

Ẽ := W TEV , Ã := W TAV , B̃ := W TB, C̃ := CV .

Let σn+1 denote the largest neglected HSV, and H, H̃ are the transfer functions of the original and reduced
first order system. Then the error bound

‖H − H̃‖H∞ ≤ 2

N∑
i=n+1

σi (29)

holds which can be used to adaptively determine n, i.e., the reduced system’s order, by truncating the SVD in step
2 of Algorithm 1 as the sum in (29) falls below a tolerance εBT. Furthermore in [1] the value

σn+1

σ1
< τ (30)
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assigns the error of the approximation for ‖y − yred‖ over the entire frequency range. It is recommended to set
τ in relation to the machine precision, typically τ =

√
ε. Note that Ẽ is always the identity matrix In. The steps

requiring the most computational work are the solution of the generalized Lyapunov equations in step 1 and the
computation of the SVD in step 2. In the next section we show an algorithm that computes approximations to
P , Q in an efficient way via low-rank versions of R, S which in turn will also render the SVD computation
numerically inexpensive.

2) Solving the Lyapunov Equations: If the size N of A and E is small or moderately large, methods based on the
Schur decomposition can be used to solve (26) and (27). The most prominent of such methods for this case are the
Bartels-Stewart algorithm [7] and Hammerling’s method [27]. The alternating directions implicit (ADI) method [54],
[55] is another method of iterative nature for solving Lyapunov equations. Since in our application N will be
large, the usage of these methods is not feasible for solving the corresponding generalized Lyapunov equations
due to their cubic complexity. However, practical observations as well as recent theoretical investigations [50],
[25] show that P , Q, and thus their Cholesky factors R, S, have a small numerical rank, i.e., their singular
values decay quite rapidly towards zero. Hence, they can be approximated by low-rank Cholesky factors (LRCFs)
R̃ ∈ RNe×r1 , S̃ ∈ RNe×r2 with r1, r2 � Ne and such that R̃R̃

T
≈ P , S̃S̃

T
≈ Q.

This is the foundation for the low-rank-Cholesky-factor ADI (LRCF-ADI) method [40], [34], [11] which refor-
mulates the ADI method to produce LRCFs. The generalized LRCF-ADI (G-LRCF-ADI) is a version of LRCF-ADI
capable to solve generalized Lyapunov equations [43], [12], [8] and is illustrated in Algorithm 2.

Note that there is another class of methods using Krylov subspaces for computing low-rank factors of the
solution, see e.g. [49]. In contrast to ADI based method, to apply these methods the system has to be dissipative,
i.e., AET + EAT has to be negative definite, which is too restrictive for our purposes. Later on we briefly return
to this issue.

Algorithm 2 Generalized low-rank Cholesky factor ADI iteration (G-LRCF-ADI)
Input: E, A and B, or C as in (26), (27) and shift parameters {µ1, . . . , µjmax

} ⊂ C−.
Output: Z = Zjmax ∈ Cn×tjmax , such that ZZH ≈ P , Q in (26),(27), respectively.

1: if right hand side given is C then
2: Transpose A, E and set B = CT .
3: end if
4: for j = 1, 2, . . . , jmax do
5: if j = 1 then
6: V 1 =

√
−2 Re (µ1)(A+ µ1E)−1B

7: Z1 = V 1

8: else
9: V j =

√
Re (µj)/Re (µj−1)(V j−1 − (µj + µj−1)(A+ µjE)−1V j−1)

10: Zj = [Zj−1, V j ]
11: end if
12: end for

The set of shift parameters {µ1, . . . , µjmax
} required in Algorithm 2 is closed with respect to complex conjugation

and steers the convergence of the iteration. The optimal set of shift parameters can be related to a rational minmax
problem [55] which involves all eigenvalues of the generalized eigenvalue problem Ax = λEx, 0 6= x ∈ CN .
Since for large matrices the complete spectrum Λ(A, E) cannot be computed efficiently, a common approach
uses a small number of approximate eigenvalues which are obtained from k+ � N Ritz values of E−1A and the
inverses of k− � N Ritz values of A−1E, where both subsets can be computed with an Arnoldi process. The
shift parameters obtained by solving the rational minmax problem approximately using these Ritz values are often
called heuristic, or Penzl shifts [40].

Since the systems discussed here represent elastic bodies, it is highly likely that A, E have complex eigenvalues.
Consequently, the obtained Ritz values and thus also the shift parameters are complex. This will inevitably
introduce complex arithmetic computations in Algorithm 2 and the final LRCFs R̃, S̃ are then complex matrices.
Consequently, the matrix S̃

T
ER̃ used in Algorithm 1 is complex resulting in a complex reduced order model. Since
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this is undesirable and arithmetic operations with complex numbers are more expensive than with real ones, an
algorithm using only real arithmetics and producing real LRCFs is preferred. In [11, Algorithm 4] it is shown how
the LRCF-ADI method can be rewritten to achieve this goal. However, another approach given in [10] generates
real low-rank factors as well, but appears to be more efficient in term of the computational complexity although
temporarily still complex arithmetic operations are employed. In the remainder we assume we have generated real
LRCFs using the latter approach.

The algorithm can be terminated after a maximum number jmax of iterations is reached, or if the normalized
residual of the current approximation is of sufficient accuracy, e.g. if the norm of the residual falls below a given
tolerance. Alternatively, one can monitor the relative change of the current LRCF approximation in the Frobenius
norm. See [43], [11] for more information on stopping criteria for the ADI method.

Solving the linear systems in steps 6 and 9 are the most expensive operations in the algorithm and we assume
that we are able to employ sparse direct solvers [18], e.g. a sparse LU factorisation, for their solution. Note that
instead of computing R̃, S̃ separately by two runs of Algorithm 2, a simultaneous computation is also possible
by, for instance, reusing the LU factorization LU = A + µjE in each step for the solution of the adjoint linear
system.

Since in each iteration m columns (the number of columns in B (or CT )) are added to the current LRCF iterate
Z, we assume that m� Ne such that the number of columns in Z does not grow too fast.

After termination of Algorithm 2, the LRCFs R̃, S̃ will usually have r1, r2 � Ne columns and hence, the
matrix S̃

T
ER̃ ∈ Rr1×r2 is small such that the computation of the SVD in step 2 of Algorithm 1 is inexpensive.

3) Treatment of Second Order Systems: To apply the balanced truncation process to second order systems (9),
one usually chooses an equivalent first order system. This reformulation into a system of the form (25) is closely
related to a transformation of the associated quadratic eigenvalue problem (λ2M e + λDe +Ke)x = 0, x 6= 0,
into a generalized linear eigenvalue problem (λE −A)z = 0, z = [xT , λxT ]T 6= 0. Therefore, the reformulation
is sometimes also called linearization of the λ-matrix.

There are several linearizations possible [51], but since for the application discussed here, mass, damping and
stiffness matrices of (9) are assumed to be symmetric, and it holds Be = CT

e , it is beneficial to take

x :=

[
qe
q̇e

]
, E :=

[
De M e

M e 0

]
, A :=

[
−Ke 0

0 M e

]
∈ R2Ne×2Ne , B :=

[
Be

0

]
= CT ∈ R2Ne×m. (31)

This has the advantage that E and A are symmetric matrices, B = CT , such that both generalized Lyapunov
equations (26) and (27) coincide which implies P ≡ Q and hence, R ≡ S =: Z. Consequently, only the solution,
respectively its (low-rank) Cholesky factor, of one single Lyapunov equation is sufficient to carry out balanced
truncation which relaxes the computational effort drastically.

Note that the assumptions on the system matrices to obtain these properties are rather strong. Even the case
Be 6= Ce

T will lead to different Lyapunov equations and hence to different controllability and observability
Gramian matrices.

As shown in [13], a generalized system with matrices of the form (31) can only be dissipative if M e = Ke.
This is by far a too restrictive assumption on realistic systems and in particular not fulfilled in our case, applying
projection based Krylov subspace methods [49] for solving the generalized Lyapunov equations is not feasible. This
short discussion serves as an extra motivation for the application of low-rank ADI based methods for this purpose.

Although a straightforward application of Algorithm 1 including one run of the G-LRCF-ADI method (Algo-
rithm 2) with the matrices E, A, B defining the first order system (25) is possible, it has two severe drawbacks.
At first, Algorithm 1 will produce transformation matrices V , W ∈ R2Ne×r that are only applicable to the first
order system, resulting in a reduced system of first order and loosing the second order structure. Secondly, working
with the first order matrices of dimension 2Ne× 2Ne within G-LRCF-ADI introduces a huge amount of additional
computational work. There, it is desired to work with the original Ne ×Ne matrices of the second order systems.
In the sequel we discuss both issues, beginning with the latter one.

a) Efficient Computation of LRCFs for Systems of Second Order.: The main operations in the G-LRCF-ADI
method are solving linear systems of the form (A + µE)f = g and (A + µE)f = Eg for f , g ∈ R2N×m. As
described above, due to the symmetry of A and E the transposed linear systems are not required. To rewrite these
steps such that the original matrices of (9) are used, we split the sought solution f of the linear systems and the
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corresponding right hand side g into upper and lower blocks

f =

[
f (1)

f (2)

]
, g =

[
g(1)

g(2)

]
, f (i), g(i) ∈ RNe×m, i = 1, 2. (32)

In the initial step of Algorithm 2 one has to solve (A+µ1E)f = g for f . Exploiting the structure of A, E leads
to [

−Ke + µ1De µ1M e

µ1M e M e

] [
f (1)

f (2)

]
=

[
g(1)

g(2)

]
= B =

[
Be

0

]
, (33)

or equivalently,

−Kef
(1) + µ1Def

(1) + µ1M ef
(2) = Be,

µ1M ef
(1) +M ef

(2) = 0.
(34)

From the lower equation in (34) and the invertibility of M e it follows that f (2) = −µ1f (1) which, after inserting
into the upper equation, gives (

µ21M e − µ1De +Ke

)
f (1) = −Be. (35)

Similar manipulations can be done for the increment in the jth iteration, where (A+ µjE)f = Eg is solved for
f , which is equivalent to [

−Ke + µjDe µjM e

µjM e M e

] [
f (1)

f (2)

]
=

[
Deg

(1) +M eg
(2)

M eg
(1)

]
. (36)

Thus, f (2) = g(1) − µjf (1) which eventually yields(
µ2jM e − µjDe +Ke

)
f (1) = (µjM e −De)g

(1) −M eg
(2). (37)

Including these equations into G-LRCF-ADI leads to the second-order LRCF-ADI (SO-LRCF-ADI) shown in
Algorithm 3. For using only operations with the original Ne×Ne matrices one has to solve linear systems involving
quadratic matrix polynomials of the form µ2jM e − µjDe +Ke. For avoiding additional numerical problems it is
of often wise to restrict the absolute values of the shift parameters to circumvent that µ2j does not dominate over
the norm of the matrices.

We want to emphasise, that the single steps of Algorithm 3 crucially depend on the selected equivalent first order
system. Choosing another linearization will ultimately lead to another reformulation of G-LRCF-ADI, for instance,
as in [43], [12], [13].

In the presence of complex shift parameters, it is again possible to rewrite Algorithm 3 into a real form along
the lines of [11, Algorithm 4] or to apply the strategy proposed in [10] in order to generate real LRCFs.

b) Structure Preserving Balanced Truncation for Second Order Systems.: In [41], [57], [14], [36] modifications
of balanced truncation for the construction of reduced systems of second order are presented. The main idea there
is to partition the LRCFs R̃, S̃ of P , Q accordingly with respect to the structure of the first order system matrices

R̃ =

[
R̃p

R̃v

]
, S̃ =

[
S̃p
S̃v

]
, R̃p, R̃v, S̃p, S̃v ∈ RNe×r1,2 , (38)

where the subscripts p, v refer to the position and velocity component in the generalized state space vector x of
(25). Compatibly partitioning the (approximate) Gramian matrices

P =

[
P p P o

P o P v

]
≈

[
R̃p

R̃v

][
R̃p

R̃v

]T
= R̃R̃

T
, (39)

Q =

[
Qp Qo

Qo Qv

]
≈

[
S̃p
S̃v

][
S̃p
S̃v

]T
= S̃S̃

T
(40)

reveals the second order Gramian matrices which are the diagonal blocks. According to [41], P p, Qp are referred to
as position controllability and, respectively, observability Gramian matrices. Similarly, P v, Qv are called velocity
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Algorithm 3 (Second-Order Low-rank Cholesky factor ADI iteration (SO-LRCF-ADI))
Input: M e, De, Ke, Be defining (9) and shift parameters {µ1, . . . , µjmax

}.
Output: Z̃ ∈ C2N×tjmax , such that Z̃Z̃

H
≈ P = Q in (26), (27).

1: for j = 1, 2, . . . , jmax do
2: if j = 1 then
3: Solve (µ21M e − µ1De +Ke)V̂

(1)
= −Be for V̂

(1)
, set V̂

(2)
= −µ1V̂

(1)
.

4: V 1 =
√
−2 Re (µ1)

[
V̂

(1)

V̂
(2)

]
.

5: Z̃ = V 1.
6: else
7: Solve (µ2jM e−µjDe+Ke)V̂

(1)
= (µjM e−De)V

(1)
j−1−M eV

(2)
j−1 for V̂

(1)
, set V̂

(2)
= V

(1)
j−1−µjV̂

(1)
.

8: V j =
√

Re (µj)
Re (µj−1)

(
V j−1 − (µj + µj−1)

[
V̂

(1)

V̂
(2)

])
.

9: Z̃ = [Z̃, V j ].
10: end if
11: end for

controllability and observability Gramian matrices. By simultaneously diagonalizing one controllability and one
observability second order Gramian matrix we arrive at a total of four different ways to carry out balancing and
thus also balanced truncation. For example, choosing (P p, Qp) leads to a position-position balanced reduced order
model. Likewise, one could take (P p, Qv) for position-velocity, (P v, Qp) for velocity-position, and (P v, Qv)
for velocity-velocity balanced truncation. Table I summarizes the associated transformations and the involved
SVDs of all possibilities. The entries, e.g., of the block Σνξ are referred to as position-position, velocity-velocity,
velocity-position, or position-velocity singular values, depending on the choice of ν, ξ ∈ {p, v}. The left and right
transformations are now Ne × r matrices and can be multiplied to the original second order matrices to get a
reduced order model of the same structure. However, for general systems the error bound (29) of this model order
reduction approach is lost. To determine the order of the reduced system adaptively, one can monitor the ratio
σk/σ1 instead and perform the truncation as soon as the ratio falls below a prescribed tolerance [43].

TABLE I
LEFT AND RIGHT TRANSFORMATIONS MATRICES FOR BALANCED TRUNCATION OF SECOND ORDER SYSTEMS.

type right transformation left transformation SVD

position-position V pp := R̃pY pp,1Σpp,1
− 1

2 W pp := S̃pXpp,1Σ
− 1

2
pp,1 XppΣppY

T
pp = S̃

T

p MeR̃p

position-velocity V pv := R̃pY pv,1Σpv,1
− 1

2 W pv := S̃vXpv,1Σ
− 1

2
pv,1 XpvΣpvY

T
pv = S̃

T

v MeR̃p

velocity-position V vp := R̃vY vp,1Σvp,1
− 1

2 W vp := S̃pXvp,1Σ
− 1

2
vp,1 XvpΣvpY

T
vp = S̃

T

p MeR̃v

velocity-velocity V vv := R̃vY vv,1Σvv,1
− 1

2 W vv := S̃vXvv,1Σ
− 1

2
vv,1 XvvΣvvY

T
vv = S̃

T

v MeR̃v

Since the second order systems discussed here have symmetric and positive definite matrices, it holds Be = Ce,
and we have chosen a symmetric equivalent first order system, the balanced truncation approach has some additional
properties worth mentioning. At first, because of P = Q and S = R the second order controllability are the same as
the observability Gramian matrix, i.e., P ξ = Qξ, ξ ∈ {p, v} and the same is obviously true for the associated blocks
Sξ, Rξ of the low-rank factors. Therefore, the SVDs become EVDs for position-position and velocity-velocity
balanced truncation which yields V pp ≡ W pp, V vv ≡ W vv. This one-sided projections preserve symmetry and
positive definiteness of mass, damping and stiffness matrix and hence, both reductions preserve the stability of
the original system. This is a similar situation as reported in [41] for position-velocity balanced truncation, where
another linearization is used. For the position-velocity and velocity-position approach we also note that, since

XpvΣpvY
T
pv = R̃

T

vM eR̃p =
(
R̃
T

pM eR̃v

)T
= Y vpΣvpX

T
vp, (41)
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and it follows V vp = W pv and W vp = V pv, such that by interchanging the right with the left transformation
matrix, position-velocity becomes velocity-position balanced truncation and vise versa. This yields, exemplary for
the mass matrix, to

M̃ vp = W T
vpM eV vp = V T

pvM eW pv = M̃
T

pv (42)

such that the reduced mass, damping and stiffness matrices of both approaches are transposes of each other.
Moreover, since B̃vp = W T

vpBe = V T
pvC

T
e = C̃

T

pv and C̃vp = B̃
T

pv it follows for the transfer functions of the
reduced systems

H̃vp(s) = C̃vp

(
s2M̃ vp + sD̃vp + K̃vp

)−1
B̃vp

= B̃
T

pv

(
s2M̃

T

pv + sD̃
T

pv + K̃
T

pv

)−1
C̃
T

pv = H̃pv(s)
H .

(43)

Since complex conjugation and transposition a matrix will not change its maximum singular value, the position-
velocity and velocity-position reduced order models share the same frequency response plot in the 2- and Frobenius
norms.

Algorithm 4 summarizes the procedure of balanced truncation for the special class of second order systems
discussed here using the previously described techniques. For ease of exposition an SVD is used for all balancing
types such that the constructions in Algorithm 4 are in line with the ones given in Table I.

Algorithm 4 Balanced truncation for symmetric second order systems

Input: M e, De, Ke, Be, Ce = BT
e defining (9), ν, ξ ∈ {p, v} to define balancing type.

Output: Matrices M̃ e, D̃e, K̃e, B̃ , C̃ of reduced system
1: Compute (low-rank) Cholesky factor R of the solution of (26) using Algorithm 3.
2: Compute and partition a (thin) singular value decomposition

XνξΣνξY
T
νξ =

[
Xνξ,1 Xνξ,2

] [Σνξ,1 0
0 Σνξ,2

] [
Y νξ,1 Y νξ,2

]T
= RT

ξM eRν .

3: Construct the transformation matrices V νξ and W νξ

V νξ := RνY νξ,1Σ
− 1

2

νξ,1, W νξ := RξXνξ,1Σ
− 1

2

νξ,1.

4: Generate reduced order realization

M̃ e := W T
νξM eV νξ, D̃e := W T

νξDeV νξ, K̃e := W T
νξKeV νξ, B̃e := W T

νξBe, C̃e := CeV νξ.

4) Advantages and Disadvantages: The balanced truncation reduction method for first order systems has some
additional advantages like an immediately available error bound (29), see [20], [32], [2], [1]. This error bound
is lost for balanced truncation for second order systems. Stability preservation is an advantage of this reduction
method, which holds always for the reduction to a first order system and in special cases also for second order
systems. Fortunately, the second order dynamical systems used here fall into this category. The solution of one (or
two) generalized Lyapunov equations is, due to the high computation effort, the biggest drawback of the reduction
process. The presented SO-LRCF-ADI makes an efficient computation of the solutions possible, but since the
solution of linear systems with possibly multiple right hand sides is required in each iteration, it is often more
expensive than Krylov subspace methods, but still the method of choice for non-dissipative systems. Furthermore,
the generation of suitable shift parameters needed for this algorithm is sometimes a formidable task, both from
a theoretical and a computational point of view. For instance, if heuristic shifts are used and generated from
crude eigenvalue approximations, they might be of bad quality which can deteriorate the convergence speed of the
method significantly. The presence of eigenvalues very close to the imaginary axis or of eigenvalues with very
large imaginary parts compared to the real parts can also derail convergence. By the use of second order frequency
weighted Gramian matrix based reduction techniques [24], [32] the distribution of the loads is taken into account a
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priori and very accurate models can be obtained within a predefined frequency range. Hence, using this method only
the load distribution, the frequency range of interest and a measure for the desired accuracy have to be provided
by the user.

IV. NUMERICAL RESULTS

In Section II the theoretical background of EMBS together with the important equations have been shown and
in Section III a short overview of different reduction techniques have been addressed with a special focus on
SVD based reduction techniques. Next some basic aspects of the numerical example, a crank drive with a flexible
crankshaft is introduced and the results from reducing the crank drive and the crankshaft will be presented.

A. Combustion Engines with a Flexible Crankshaft

The internal combustion engine is the heart of a vehicle. Shorter development periods and rising requirements like
durability, fuel efficiency, mass reduction, noise reduction and the reduction of exhaust gas emission demand precise
simulations during the whole design process. For the simulation of combustion engines multi-physics simulations are
necessary [39]. The dynamic simulation of a crank drive with elastic parts, transient load curves and the interaction
of the components as well as the hydrodynamic coupling of the bearings is a complex issue. The components are
loaded dynamically, cyclically and in a multidimensional way. A failure of one key component of the piston engine,
e.g. the crankshaft, causes a premature motor fail.

As described in [52], the crank drive is designed to transmit the translational motion, caused by the gas forces
that act on the pistons, into rotational movement of the crankshaft. Central elements of the crank drive are the
pistons, the piston rods, the crankshaft with the counter-mass like the flywheel and the bearings that connects the
crankshaft to the piston rods and the engine block via fluid film lubrications. In Figure 2 a schematic cross-sectional
view of the crank drive is drawn, see [6]. The external loads are the combustion gas forces, which act on the pistons
and lead to the accessory drive torque on the crankshaft.

Fig. 2. Structure of a crank drive Fig. 3. Crankshaft of a four-cylinder engine

In Figure 3 a crankshaft of a four-cylinder engine is shown. The crankshaft in the figure is designed with
balancing weights on the crank webs for compensating the one-sided masses due to e.g. pin bearing or the rotating
share of the piston rods. In this work a crankshaft is considered with a rough discretization of Ne = 51726 degrees
of freedom of the free-free FE model. The loads acting on the crankshaft are distributed over a spatial region of
the bearings. In order not to pay attention to every node on the surface of the bearing cones, the coupling of the
crankshaft is designed by interface nodes [21], [38]. The reduction results are shown for a crankshaft with rigid
elements coupling the interface nodes (RBE2 or CERIG as they are called in the FE packages Nastran and Ansys).
Consequently, the matrices of the constraint model are of dimension Ne = 42126. The degrees of freedom of the
defined interface nodes are taken partly as inputs and outputs at the same time. In total, 35 inputs and outputs are
defined, each radial, translatory degree of freedom at the pin bearings, the translatory degree of freedom at the
main bearings and all degrees of freedom at the drive end and the flange.



14

The model of the crank drive and the crankshaft that is analyzed in this investigation was developed within
the FVV project ’Low Friction Power Train’ and is kindly provided by the ’Lehrstuhl für Maschinenelemente
und Tribologie’ (IMK), University of Kassel. In the elastic multibody model of the crank drive the crankshaft is
considered as flexible and all the other bodies are assumed as rigid. The main bearings which connect the crankshaft
to the rigid housing are modeled by five impedance bearings. At the drive end a torsion damper is fixed. In addition,
a dual mass flywheel is connected to the crankshaft at the other end of the crankshaft. A Fast Fourier Transformation
(FFT) analysis of the signals, acting on the crankshaft in the crank drive, revealed a mainly interesting frequency
range from f = 0 to about f = 720 Hz, see [39].

B. Role of Tribological Applications of the Combustion Engine

The consideration of coupling laws between the elements of the combustion engine is a very complex issue, see
e.g. [28]. Such tribological contacts describe the relative motion between solids which are separated by fluid film
lubrication. In the combustion engine many contacting parts exist, such as the main bearings or the rod bearings.

As described in [29], a trend to include hydrodynamic interaction in the simulation can be found. This means
additional calculations of the load transmission in the feedback system, e.g. at the lubrication gap. Therefore,
the calculation of the hydrodynamic pressure distribution based on the hydrodynamic lubrication theory and the
determination of the changes in lubrication geometry caused by the position and deformation of the components
is necessary. Established characteristic quantities are the minimum gap and the maximum pressure in the bearings.
The lubrication geometry requires to consider the elasticity of the components for a realistic calculation of the
bearings with fluid film lubrication. This explains the double solving expense for the hydrodynamic equations and
the equations of motion of the EMBS. In Figure 4 the different maximum pressures inside the bearings concerning
the rigid and elastic crankshaft are shown. The difference makes it obvious that an elastic description is required.
The great influence of the deformation of the crankshaft and additionally the deformation of the entire engine
block can then be investigated. These differences require to combine hydrodynamic bearings and elastic multibody
systems.
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Fig. 4. Maximum pressure in a hydrodynamic bearing (left: rigid, right: elastic) crankshaft

To analyze the pressure p build-up in the hydrodynamic bearings, different methods are available, see [28], [29].
One efficient method is the use of characteristic diagrams of the rigid sliding surfaces. It is qualified for analyses
where the complex over-all dynamics of the engine block is in the focus. This method is used for the simulation
of the examined EMBS of the crank drive in the FVV project.

C. Frequency Domain Analysis

The criterion to evaluate the effect of the reduction is in the following the relative approximation error

ε(s) =
‖H(s)− H̃(s)‖F
‖H(s)‖F

, ε̂(s) =
‖H(s)− G̃(s)‖F
‖H(s)‖F

(44)
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in the Frobenius norm. Here, the transfer function matrix of the original system H is calculated as reference in
the frequency domain and is compared with the transfer function matrices

H̃(s) := C̃e

(
s2M̃ e + sD̃e + K̃e

)−1
B̃e and G̃(s) := C̃

(
sẼ + Ã

)−1
B̃ (45)

of the reduced second and first order model, respectively.
1) Balanced Truncation Reduced Order Models: At first the results of balanced truncation are presented. For

applying the model order reduction approach of Section III-C the LRCF R of the Lyapunov equation was obtained
with 15 steps of SO-LRCF-ADI (Algorithm 3). The shift parameters were computed using k+ = 45 and k− = 35
Ritz values of E−1A and A−1E, respectively. To circumvent additional numerical instabilities in the solution of
the linear systems involving µ2M −µD+K we neglected all parameters which are greater then 105 in magnitude,
resulting in J = 12 heuristic shifts in total. Since it turned out that even the computed singular values obtained
in Algorithm 4 were smaller than any realistic truncation tolerance, see Figure 5, the dimension of the reduced
order models was fixed to n = 70. Additionally, the system was reduced to a generalized first order system of
dimension n = 140 using an adequately adapted variant of Algorithm 1. Figure 6 shows the relative error of reduced
crankshafts over a frequency range from 0 Hz to 750 Hz. The reduction from second to first order is denoted by
s2f BT.
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Fig. 5. Decay of the computed singular values
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Fig. 6. Relative error of balanced truncation reduced order models

The relative error plots reveal that the accuracy of the reduced second order systems obtained with Algorithm 4
is higher than of the one obtained from the reduction to a first order system. All reduced order models show an
increasing relative error as the frequency increases which is a frequently observed phenomenon resulting from the
inexact solution of the Lyapunov equations. Note also the consistency of the singular values and relative errors of
the position-velocity and velocity-position reduced order model.

2) Different Reduced Order Models: For comparison Figure 7 shows the relative error of the reduced order
models obtained with the other reduction techniques introduced in Section III. The crankshaft is reduced to the
same reduced size of 70.

The Craig Bampton reduction is built by 35 static ansatz functions, representing the number of inputs or outputs
respectively, and the same number of internal modes. As the location of the expansion points for the Krylov
reduction, which is indicated clearly by the very small relative error in the figure, a frequency of f = 668 Hz
with a strong amplitude in the flywheel torque, compare [39], is taken. In the reduction with the tangential Krylov
method, whereby in principle an increased number of expansion points can be matched in contrast to the standard
Krylov reduction, the shifts are equally distributed over a frequency range from 0 to 720 Hz and random complex
vectors were used a tangential directions. Clearly, the conventional reduction approaches Craig Bampton and model
truncation cannot compete with respect to accuracy with balanced truncation and both Krylov subspace methods. As
expected, the Krylov subspace methods achieves its lowest error around the used interpolation point. The tangential
interpolation method has the lowest error in the most parts of the considered frequency domain among all reduction
methods. Close to the origin the position-position balanced truncation model is more accurate for small frequencies
until f ≈ 170 Hz.
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Fig. 7. Relative errors of the different model reduction methods.

V. CONCLUSIONS

The combustion engine and the engine components are examples for a technical system where it is getting more
and more important to simulate and optimize efficiently. For realistic simulations of such systems elastic effects
can not be neglected. It is shown that the deformation of the crankshaft is of great influence. For the simulation
of a crank drive the linear model reduction of the elastic degrees of freedom and so of the crankshaft is a key
step. The quality of the reduced models depends decisively on the chosen reduction method. In this contribution
some reduction techniques are introduced and the balanced truncation model order reduction is emphasized. The
potential of modern reduction techniques is shown by a comparison of different reductions to the same reduced
size. Substantial benefits in the relative error can be gained for all modern reduction techniques. In addition, error
bounds are available for the non-modal reduction techniques which allows for a more automated model reduction
process.
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