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Abstract

A fast computational technique is proposed to speed up the process of parametric macro-
model extraction of Micro-Electro-Mechanical Systems (MEMS). An efficient technique
of parametric macromodel extraction of MEMS is parametric model order reduction (PMOR).
The key step and the main computational load of the popular parametric model order re-
duction methods is the computation of a projection matrix V which requires computing
moment matrices of the systems. For computing each moment matrix, the solution of a
linear system with multiple right-hand sides is required. Usually, a considerable number
of linear systems must be solved when the system includes more than two parameters. If
the original system is of very large size, solving all the linear systems is the most com-
putationally expensive step to obtain the reduced model. In this paper, a fast recycling
algorithm GCRO-DR is applied to solve the whole sequence of linear systems. In addition,
more efficient recycling algorithms G-DRvar1 and G-DRvar2 are proposed. Theoretical
analysis and simulation results show that both the GCRO-DR and its variants G-DRvar1,
G-DRvar2 are very efficient as compared with the standard solvers. Furthermore, the al-
gorithms in this paper overcome the bottleneck of a recently proposed recycling method
MKR-GMRES. By using the recycling algorithms, the PMOR process for extracting the
macromodel can be significantly accelerated.
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1 Introduction
Modeling and numerical simulation are unavoidable for MEMS design due to the very small
size and complexity of the devices. To simulate a MEMS model which is modeled by partial
differential equations (PDEs), spatial discretization such as finite element discretization is re-
quired. A system of ordinary differential equations (ODEs) or differential algebra equations
(DAEs) after discretization has to be solved numerically. Currently, in order to reduce the
simulation cycles and to shorten the period between design and manufacturing, it is demand-
ing to establish parameterized MEMS models for simulation purpose, meaning the PDEs of
MEMS shall include parameters which describe the geometrics of the devices and/or the en-
vironmental conditions. By including the parameters in the model, the system of ODEs/DAEs
derived from spatial discretization also contains the parameters. With the requirement of de-
sign analysis, simulation of the parameterized system of ODEs/DAEs may be implemented
many times with different values of parameters. Usually, the number of ODEs/DAEs is very
large. Simulating such a system once is already very time consuming, not to mention multiple
simulations.

Model order reduction has been recognized as an efficient technique to reduce the simula-
tion time for such a parameterized system. Through model order reduction, a much smaller
system with a reduced number of equations can be derived, which is called the reduced model
of the original system. The reduced model can be simulated much faster, and the solution of
the original system can be approximated by the solution of the reduced model with acceptable
accuracy. The reduced model can also replace the original system and be reused many times
during the design process, which can further save much time. To date, model order reduction
has been widely applied to simulation of MEMS and has achieved much success in simula-
tion and design [4, 5, 6]. The process of model order reduction for MEMS is also known as
macromodel extraction in many literatures.

As far as an efficient model order reduction method is concerned, it is best not only the
reduced model is as small as possible, but also the process of obtaining it is as fast as possible.
Unfortunately, due to the large size of the original system, the process of deriving such a
reduced model (macromodel) is still relatively slow.

The recently developed model order reduction methods for parameterized systems include
[9, 10, 18, 19, 20, 21] etc. These methods are mostly based on matching moments of the
parameterized system. For example, in [9, 21], a modified Gram-Schmidt process is used
to orthogonalize the moment matrices and to construct the projection matrix V . During the
orthogonalization process, each moment matrix in the subspace has to be computed and or-
thogonalized against previous moment matrices. However, computing each moment matrix
includes several vectors multiplied by the inverse of a matrix. If the dimension of the original
system is very large, linear systems of equations must be solved so as to obtain the “inverse
of matrix”-vector products. If there are more than two parameters in the system, many linear
systems of equations have to be solved in order to match enough moments so that a reduced
model with acceptable accuracy can be obtained.

The moment matrices of a parametric model usually are in the forms E−1Ei, i = 1,2, · · · .
When the matrix size is very large, the direct solver such as LU factorization cannot be used
to deal with E−1 due to the occupation of huge memory storage. One needs to solve a sequence
of linear systems iteratively to form the final E−1Ei, i = 1,2, . . .. Such a sequence of linear
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systems can be
Ax = bi, i = 1,2, · · · , l, (1)

or
A jx = b j

i , i = 1,2, · · · , l j, j = 1,2, · · · , lo, (2)

where lo is usually much smaller than each l j. It is noticed that the index j in (2) is not the
power of bi, but only a superscript of bi. We have similar notations in the following sections.
If the model includes more than two parameters, the systems in the sequence could amount to
hundreds. Such a sequence of linear systems can be solved one after another by the standard
iterative solvers such as the Generalized Minimal RESidual method (GMRES) [7] and the
Conjugate Gradient method (CG) [8] etc..

Subspace recycling in [1] was initially proposed to solve a sequence of linear systems such
as Aixi = bi, i= 1,2, · · · , lo. The coefficient matrices Ai are generally considered to be different
from each other. By using the information of the previous linear systems, the convergence rate
of the standard iterative solvers such as GMRES can be obviously accelerated.

In this paper we propose to apply the fast subspace recycling algorithm GCRO-DR in [1]
to accelerate the solution of the sequences in (1), (2). Furthermore, we have proposed variant
versions of GCRO-DR, which have been shown to be more efficient than both GCRO-DR
in [1] and SimGCRO-DR in [24] when solving the systems in (2). To the best knowledge
of the authors, it is the first time that subspace recycling has been introduced into parametric
model order reduction and has been successfully applied to macromodel extraction for MEMS.

Besides introducing the recycling algorithms, we also present a PMOR algorithm which
integrates the recycling algorithm with the process of obtaining the reduced model. With the
algorithm, one can see that the linear systems actually do not continuously appear as those in
(1), (2). However, all the linear systems can be solved with one recycling algorithm, even if
they are interrupted by intermediate computations.

Compared with our conference paper [24],

1. more efficient recycling algorithms G-DRvar1/G-DRvar2 are proposed in this paper,

2. we make more detailed explanations of the algorithm GCRO-DR, which can be seen as
a complement to the theoretical analysis in [1],

3. we not only introduce the recycling algorithms, but also present an algorithm of para-
metric model order reduction combined with the recycling algorithm. As a result, more
intuition for the application of the recycling algorithm to PMOR is provided,

4. we provide implementation details of PMOR for two more complex MEMS models, a
butterfly gyroscope and a microhotplate gas sensor chip, while only a simple 2D ex-
ample is given in the conference paper [24]. In [24], only recycling algorithm for the
sequence in (1) has been considered. However, the sequence of linear systems in (2)
which arise from multi-point expansion of the transfer function must be solved for a
system with more than two parameters. The newly proposed algorithm G-DRvar1/G-
DRvar2 can solve (2) more efficiently than the original version GCRO-DR and the pre-
vious version SimGCRO-DR in [24].
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It is worth pointing out that the proposed recycling algorithm can also be easily applied to
other PMOR methods in [10, 18, 19, 20], where successive linear systems need to be solved
when the system dimension is very large. We use the method in [9, 21] as an example to
explore the recycling algorithm.

In [27], a recycling algorithm based on BiCG method [28] is applied to model order reduc-
tion for non-parametric systems. It is difficult to say which method is more efficient, since the
efficiency of the recycling algorithms depends on the sequence solved. In [27], the recycling
algorithm is applied to a sequence of linear systems Aixi = bi, i = 1,2, · · · , lo. In this paper
we are concerned with solving different sequences of linear systems in (1) and (2), which can
be solved even more efficiently (compared with the original version GCRO-DR) by using the
modified algorithms G-DRvar1/G-DRvar2 proposed in this paper.

In Section 2, besides introducing the PMOR method in [9], we describe the linear sys-
tems to be solved. In Section 3, we give an overview of various iterative solvers solving the
sequence of linear systems. In Section 4, we explain the recycling method GCRO-DR [1] in
Subsection 4.1. The algorithm SimGCRO-DR in [24] is analyzed in Subsection 4.2. Two vari-
ants G-DRvar1/G-DRvar2 of the original version GCRO-DR are presented in Subscetion 4.3
for solving the sequence in (2). A PMOR algorithm which integrates the recycling algorithm
G-DRvar1 with the process of PMOR in [9] is described in Subsection 4.4. The method
MKR-GMRES in [2, 3] is also briefly explained for comparison. The simulation results of the
standard iterative solvers and the recycling algorithms are presented in Section 5, where they
are applied to PMOR of three models of MEMS devices. The accuracy of the reduced model
derived from the use of the recycling algorithms is also presented. All the simulation results
show the efficiency of the recycling algorithms.

2 A Robust Parametric Model Order Reduction Method
PMOR methods are designed for model order reduction of parameterized systems, where the
parameters of the system play an important role in practical applications such as Integrated
Circuit (IC) design, MEMS design etc. The parameters could be the variables describing geo-
metrical measurement, material property or damping of the systems. The reduced models are
constructed such that all the parameters can be preserved with acceptable accuracy. Usually
the time on simulating the reduced models is much shorter than directly simulating the orig-
inal large system. However, the time on constructing the reduced model increases with the
dimension of the original system. If the original system is very large, the process of obtaining
the reduced model could become extremely slow. The recycling algorithms considered in this
paper attempt to accelerate the above process and reduce the time on deriving the reduced
model to a reasonable range.

In the following, we first introduce the PMOR method in [9], then we show how to further
improve the efficiency of the method by applying the recycling algorithms proposed in the
next section.

For simplicity, we use a linear parameterized system as an example, which has the following
form in the frequency domain:

(E0 + s1E1 + s2E2 + . . .+ spEp)x = Bu(sp),
y = LTx,

(3)
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where s1,s2, . . . ,sp are the parameters of the system. x(t) ∈ Rn is the vector of (generalized)
states (also called descriptor variables), u ∈ RdI and y ∈ RdO are, respectively, the inputs and
outputs of the system. To obtain the reduced model in (4), a projection matrix V which is
independent from all the parameters must be computed.

V T (E0 + s1E1 + s2E2 + . . .+ spEp)V x = V T Bu(sp),
y = LTV x.

(4)

The matrix V is derived from orthogonalizing a number of moment matrices of the system in
(3)[9, 10].

By defining BM = Ẽ−1B, Mi =−Ẽ−1Ei, i = 1,2, . . . , p and

Ẽ = E0 + s0
1E1 + s0

2E2 + · · ·+ s0
pEp (5)

we can expand x in (3) at s1,s2, . . . ,sp around a set of expansion points p0 = [s0
1,s

0
2, · · · ,s0

p] as
below,

x = [I− (σ1M1 + . . .+σpMp]
−1BMu(sp)

=
∞

∑
i=0

(σ1M1 + . . .+σpMp)
iBMu(sp).

(6)

Here σi = si−s0
i , i = 1,2, . . . , p. We call the coefficients in the above series expansion moment

matrices of the parameterized system, i.e. BM, M1BM, . . . , MpBM,
M2

1 BM,(M1M2+M2M1)BM, . . . , (M1Mp+MpM1)BM, M2
pBM, M3

1 BM, . . .. The corresponding
moments are those moment matrices multiplied by LT from the left. The matrix V can be
generated by first explicitly computing some of the moment matrices and then orthogonalizing
them as is suggested in [10]. The resulting V is desired to expand the subspace:

range{V}= span{BM, M1BM, . . . ,MpBM, M2
1 BM,

(M1M2 +M2M1)BM, . . . ,(M1Mp +MpM1)BM,
M2

pBM,M3
1 BM, . . . ,Mr

1BM, . . . ,Mr
pBM}.

(7)

However, V does not really span the whole subspace, because the latterly computed vectors
in the subspace become linearly dependent due to numerical instability. Therefore, with this
matrix V one cannot get an accurate reduced model which matches all the moments included
in the subspace.

Instead of directly computing the moment matrices in (7), a numerically robust method is
proposed in [9] (the detailed algorithm is described in [21]), which combines the recursions in
(9) with the modified Gram-Schmidt process to implicitly compute the moment matrices. The
computed V is actually an orthonormal basis of the subspace as below,

range{V}= span{R0,R1, . . . ,Rr}. (8)

It can be proved that the subspace in (7) is included in the subspace in (8). Due to the numerical
stability properties of the repeated modified Gram-Schmidt process employed in [9, 21], the
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reduced model derived from V in (8) is computed in a numerically stable and accurate way.

R0 = BM, R1 = [M1R0, . . . ,MpR0],
R2 = [M1R1, . . . ,MpR1],
...,
Rr = [M1Rr−1, . . . ,MpRr−1]
....

(9)

Furthermore, one can see that each moment matrix is actually several vectors multiplied by
Ẽ−1, and if the dimension of Ẽ is very large, it is necessary to solve linear systems such as

Ẽx = wi, i = 1,2, . . . , l (10)

to obtain Ẽ−1wi, where Ẽ is generally nonsymmetric and wi is a vector. Moreover, if quite
a few of the moment matrices need to be computed (this is normal when system (3) contains
more than 2 parameters), the number l of the linear systems in (10) will be very large. By
looking at the above recursions in (9), it is obvious that the right-hand sides of the linear
systems cannot be available simultaneously. Systems in (10) can be simply solved one after
another by standard iterative methods such as GMRES. However, it is possible to speed up the
standard iterative methods by using more efficient methods.

3 Review of Various Iterative Solvers
It is known that the standard iterative solvers such as GMRES, can only solve one linear sys-
tem at a time. Therefore, all the linear systems in (1), (2) or (10) must be solved independently
by GMRES, or in other words, each of them must be solved from scratch. At the jth iteration,
the non-restarted version of GMRES generates the approximate solution x j from a Krylov
subspace. In many cases, the solution with acceptable accuracy cannot be obtained until the
dimension of the Krylov subspace grows large, which is terrible for very large scale systems.
This is because all the orthogonal vectors in the Krylov subspace have to be stored, the method
becomes very slow due to memory occupation and also due to the orthogonalization process
where the current vector in the Krylov subspace has to be orthogonalized against all the previ-
ous orthogonal vectors. Restarted GMRES(m) was proposed in order to reduce the dimension
of the Krylov subspace. Given a small number m, the approximate solution at each iteration
step is generated always from a Krylov subspace of dimension m. Therefore GMRES(m) is
more efficient than GMRES for very large systems. However a trade-off is that GMRES(m)
may need many more iteration steps than the non-restarted version to attain the final solution.

Conventional block methods [11, 12] have been developed to improve the efficiency of
standard iterative solvers. Unfortunately, these methods require the right-hand sides of all the
linear systems to be available simultaneously, whereas the linear systems considered here can
only appear sequentially rather than simultaneously. Different algorithms [13, 1, 17, 2, 3]
have also been proposed to deal with linear systems whose right-hand sides are not available
simultaneously. However, the method in [17] is limited in solving linear systems with sym-
metric definite coefficient matrices, which is not applicable to the linear systems with general
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nonsymmetric coefficient matrices. While the method in [13] can solve linear systems with
nonsymmetric coefficient matrices, it requires the solutions of neighboring linear systems to
be closely related to each other. The solutions of the linear systems in PMOR, nevertheless,
do not possess such a property.

A recycling algorithm GCRO-DR has been proposed in [1] and is used for solving linear
systems in the form of Aix = bi, i = 1,2, . . . , l. It is suitable for nonsymmetric Ai, and with no
obvious limitation on each linear system. Therefore, we propose to apply GCRO-DR to the
PMOR method in [9, 21].

4 Solving Linear Systems By Recycling Algorithms

4.1 Analysis of GCRO-DR
In this section, we first summarize the motivation and the theoretical background of GCRO-
DR. Moreover, we try to explain GCRO-DR in details, such that one can have a better under-
standing of the algorithm and be able to apply the algorithm more easily. To make the paper
self-contained, we present GCRO-DR in Appendix A.

The algorithm GCRO-DR is developed for the sequential linear systems Aix = bi, i =
1,2, . . . , l, with different Ai and bi, which combines the idea of the GCRO method in [14]
and that of the GMRES-DR method in [15].

GMRES-DR was proposed to accelerate the convergence rate of GMRES(m) when solving
a single linear system Ax= b. By adding the harmonic Ritz vectors of A to the Krylov subspace
which generates the approximate solution x j at each iteration step j, GMRES-DR converges
to the real solution more quickly than GMRES(m). The goal of GMRES-DR is to achieve
a similar convergence rate as the non-restarted GMRES and to use as little storage space as
GMRES(m).

When GCRO-DR is used to solve a single system, it is algebraically equivalent to GMRES-
DR. Moreover, a recycling technique is used in GCRO-DR for a sequence of linear systems,
i.e. before the current system Aix = bi (i > 1) is solved, the harmonic Ritz vectors of Ai−1
are recycled to modify the initial guess x0 of Aix = bi. By recycling these harmonic Ritz vec-
tors, GCRO-DR can solve the linear systems with much fewer matrix-vector (MV) products
than the standard method GMRES and GMRES-DR. Therefore it is much more efficient than
GMRES and GMRES-DR for solving many linear systems.

In the following, we explain the GCRO-DR algorithm given in Appendix A step by step.
Step 1) initializes the algorithm and computes the initial residual r0 for the current linear

system.
Step 2) decides whether the first system or a latter system is being solved. If Ỹ is not yet

defined, it means the first system is being solved. In the following we first see what will be
implemented if the first linear system is being solved.

If we are solving the first linear system, we go directly to Step 9), from which the first
approximate solution x1 in Step 12) is computed by running m steps of GMRES in Step 11).
v1 and c are the vectors used in the Arnoldi process in GMRES. The vector v1 is the first
column of Vm+1 produced in Step 11). e1 in Step 10) is the unit vector e1 = (1,0, . . . ,0)T with
the length of n, the dimension of the coefficient matrix Ai.
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In Step 11), two matrices Vm+1 and H̃m are generated by the Arnoldi process, which satisfy

AiVm = VmHm +hm+1,mvm+1eT
m

= Vm+1H̃m,
(11)

where Vm corresponds to the first m columns of Vm+1, and vm+1 is the m+1th column of Vm+1.
The matrix Hm is the m×m upper block in H̃m, hm+1,m is the (m+ 1,m) entry in H̃m, and
em ∈ Rm, e = [0, . . . ,0,1]T is the unit vector of length m. The expression of the residual r1 of
x1 in Step 13) can be obtained using the relation in (11).

The k eigenvectors of (Hm +h2
m+1,mH−H

m emeH
m) are computed in Step 14) and stored in the

matrix P. From [16], we know the k harmonic Ritz vectors of Ai can be computed by Ỹ =VmP
in Step 15). That is, the columns in Ỹ are the harmonic Ritz vectors of Ai, which are the
approximate eigenvectors of Ai corresponding to the k smallest eigenvalues. For computation
of harmonic Ritz vectors and Ritz values, one can refer to [16].

The matrices C and U are computed in Step 16) and Step 17). From the relation in (11), we
get C = AU . This relation must be maintained, such that the residual r1 computed in Step 7)
and r j computed in Step 27) satisfy r j = bi−Aix j, j = 1, . . . .

The relations between U , Ỹ and C will be used to compute the approximate solutions x j, j >
1 in the WHILE loop. Step 4) or Step 17) produces an orthonormal matrix C which satisfies
CTC = I. This is the reason why the operator (I−CCH)A is used in Step 21) such that the
matrix Vm−k+1 computed by the Arnoldi algorithm is automatically orthogonal to C. This
relation guarantees that the harmonic Ritz vectors of A or the columns in Ũ are independent
from the columns in Vm−k+1, so that V̂m in Step 23) has full column rank. As a result, the
columns of V̂m are the basis of the subspace jointly spanned by the k harmonic Ritz vectors
and the m− k Arnoldi vectors. The idea of using the operator (I−CCH)A in Step 21) comes
from the GCRO method [14]. Generally speaking, it ensures that new vectors are generated in
C⊥ and thus new information in V̂m is added to the subspace. The new approximate solution
x j in Step 26) is generated from the subspace spanned by the basis V̂m.

Step 24) to Step 26) compute x j whose residual is minimized over the subspace spanned
by the columns in V̂m. Therefore r j in Step 27) is actually minimized over the subspace
jointly spanned by the k harmonic Ritz vectors of Ai and the m− k vectors (columns in Vm−k)
computed by Arnoldi.

The k eigenvectors of a small eigenvalue problem is computed in Step 28). From the relation

AV̂m = Ŵm+1Gm (12)

derived in equation (2.11) in [1], one can prove that the columns in Ỹ computed in Step 29)
are the harmonic Ritz vectors of Ai. Step 28) and Step 29) are used to update the harmonic
Ritz vectors, such that they approximate the eigenvectors of A more accurately. New C and
U are formed in Step 31) and Step 32), which also maintains the relation C = AU and can be
proved using (12). The matrix U is given to Ỹ in Step 34) as the initial guess of the Harmonic
Ritz vectors of Ai+1, which are used to modify the initial guess x0 for the next linear system
Ai+1x = bi+1.

Now we study what will be implemented if we are solving the ith system for i > 1. The ma-
trices C and U which are computed from the previous linear system are reused in Step 3)-Step
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5) to generate the new C and U for the current linear system. With the assumption that gen-
erally the current coefficient matrix Ai is different from the previous coefficient matrix Ai−1,
Step 3)-Step 5) must be implemented to keep the relation C = AiU for the current coefficient
matrix Ai. Otherwise,we cannot guarantee that C = AiU though we have C = Ai−1U . The
relation C = AiU must be maintained for each linear system Aix = bi, i = 1,2, . . . respectively.

The QR factorization of AỸ implemented in Step 3) tries to guarantee that the new matrix C
satisfies CTC = I, so that r1 computed in Step 7) is minimized over the subspace spanned by
U . Matrix U is modified in Step 5) such that the relation C = AiU is maintained. From Step
34), Ỹ is actually U computed from solving the previous system Ai−1x = bi−1. Therefore, Step
5) also tells us that although the matrix U is modified, the subspace spanned by the columns
of the new U is the same as the one spanned by the columns of the previous U = Ỹ .

The initial guess x0 is firstly modified to x1 in Step 6). From Step 5), we see x1 is in fact
generated from the subspace spanned by the columns of the previous U = Ỹ , which are the
Harmonic Ritz vectors of the previous coefficient matrix Ai−1. Therefore, the harmonic Ritz
vectors of Ai−1 are recycled to modify the initial guess of the current system, such that x1
is expected to be closer to the real solution. If CTC = I, one can prove that r1 computed in
Step 7) is minimized by x1 over the subspace spanned by the columns of U ([14]). After x0 is
modified to x1, we go directly to Step 19), and the following steps are the same as for the first
system.

The purpose of recycling the harmonic Ritz vectors of Ai−1 is to make the modified solu-
tion x1 closer to the real solution than x0. However, if Ai−1 is very different from Ai, then
the harmonic Ritz vectors of Ai−1 may also be very different from those of Ai. As a result,
generating x1 out of the subspace spanned by the harmonic Ritz vectors of Ai−1 may produce
a x1 which is even worse than the initial guess x0. Therefore, to make the recycling of the
harmonic Ritz vectors of Ai−1 meaningful, Ai should not vary much from Ai−1, such that the
harmonic Ritz vectors of Ai−1 have small difference from those of Ai, which may produce a
x1 closer to the real solution than x0. However, this does not mean that, e.g. Ai+100 should not
vary much from Ai−1 either. Actually, Ai+100 may be very different from Ai−1, but it should
be very close to Ai+99, because the linear system Ai+100x = bi+100 recycles the harmonic Ritz
vectors of Ai+99 rather than those of Ai−1. Finally, we conclude that for the sequence of linear
systems Aix = bi, i = 1,2, . . . , l, the difference between the neighboring coefficient matrices
should be as small as possible, though there might be much difference between the foremost
one and the last one. More theoretical results can be found in [1].

The idea of including the harmonic Ritz vectors into the Krylov subspace generated by
Arnoldi comes from the method GMRES-DR. As is mentioned above, GMRES-DR is a
method more efficient than GMRES especially for linear systems having extreme eigenval-
ues, e.g. eigenvalues of very small magnitude [15]. Therefore, in GCRO-DR, GMRES-DR
rather than GMRES is employed to compute x j. In this way, GCRO-DR not only speeds
up GMRES (by using GMRES-DR) for solving a single system, but also further accelerates
GMRES-DR by recycling harmonic Ritz vectors when solving the entire sequence of linear
systems.

From the algorithm, we see the Ritz vectors must be computed and modified in solving
each linear system. However if the sequence of the linear systems have the same coefficient
matrix Ai = A, i = 1,2, . . ., the above algorithm can be simplified and more efficiency can be
achieved. In the next subsection, we will introduce SimGCRO-DR proposed in [24], which
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is a simplified version of GCRO-DR, and which is especially suitable for the linear systems
in (1) or (10).

4.2 Analysis of SimGCRO-DR
From (6)(9)(10) one can see if the transfer function is expanded around one set of expansion
points p0 = [s0

1,s
0
2, . . . ,s

0
p], the consequential sequence of linear systems will have the same

coefficient matrix Ẽ. For this case, a simplified version SimGCRO-DR is proposed in [24]
(see Appendix B).

Generally speaking, when all the linear systems have the same coefficient matrix, Step 3)-
Step 5) in GCRO-DR (see Appendix A) are not necessary. Step 28)-Step 32) and Step 34) are
only needed for the first linear system. Since we have the same coefficient matrix, the relation
C = AU maintained in the previous linear system Ax = bi−1 can be naturally maintained in
the next linear system Ax = bi. Therefore, we do not have to implement Step 3) and Step 5)
to modify C and U , which can save computation time and thus can improve the efficiency of
GCRO-DR. The matrices C and U can be directly reused to modify the initial guess x0.

The harmonic Ritz vectors of A span an invariant subspace of A, which should not change
with the different right hand sides bi, hence once we have computed the harmonic Ritz vectors
Ỹ in the course of solving the first system, Ỹ does not have to be modified for the latter linear
systems. Therefore, Step 28)-Step 32) need not be repeatedly implemented at each iteration
step for each of the linear systems with i > 1, which again reduce computation.

By removing the above steps, GCRO-DR can be simplified to SimGCRO-DR. We show
in Section 5 that SimGCRO-DR is more efficient than GCRO-DR for the sequence of linear
systems in (10) or (1).

4.3 G-DRvar1 and G-DRvar2
For many parametric systems with more than two parameters, expanding the transfer function
around only one set of parameters (single-point expansion) is insufficient. Instead, the transfer
function needs to be expanded around several sets of parameters (multi-point expansion), such
that the accuracy of the reduced model can be improved and the size of the reduced model can
be kept small. Once the transfer function is expanded around lo > 1 sets of parameters, e.g.
p j = [s j

1,s
j
2, . . . ,s

j
p], j = 1,2, . . . , lo, then lo sequences of linear systems

Ẽ(p j)x = wi(p j), i = 1,2, . . . , l j, j = 1,2, . . . , lo (13)

must be solved, which are of similar forms as the linear systems in (2). The jth sequence of
linear systems with the same coefficient matrix Ẽ(p j) correspond to the jth set of expansion
points p j, j = 1,2, . . . , lo.

Since the coefficient matrix only changes every l j systems, and the number l j is usually
much larger than lo, SimGCRO-DR can be repeatedly applied for lo times to get the solutions
for all the linear systems. At each time, SimGCRO-DR solves a sequence of linear systems
with the same coefficient matrix Ẽ(p j). However for each j > 1, when solving E(p j)=w1(p j)
(notice here i = 1 in (13)), SimGCRO-DR does not reuse the harmonic Ritz vectors from the
previous system Ẽ(p j−1)x = wl j−1(p j−1), instead it recomputes the harmonic Ritz vectors
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of Ẽ(p j)x = w1(p j), i = 1 and then reuses them until i = l j for the current j. Therefore,
SimGCRO-DR actually overlooks some information which could be recycled to further im-
prove the computational efficiency. It becomes inefficient in solving such sequence of linear
systems in (13) or (2), which can be seen from the simulation results.

The lo sequences of linear systems can also be considered as one sequence, where the
coefficient matrices change only every l j systems. If they are considered as a whole, the
original algorithm GCRO-DR can also be applied, and the harmonic Ritz vectors for each
system (except for the last one Ẽ(plo)x = wlo(plo)) can be reused to solve the current linear
system. The trade-off is that the harmonic Ritz vectors have to be updated for each system
at Step 28)-Step 32), which is sometimes unnecessary, especially for the sequence of linear
systems like (2)(13).

In the following we propose a variant of GCRO-DR, which is named G-DRvar1. In this
algorithm, the information which is neglected in SimGCRO-DR is reused, and the redundant
computation in GCRO-DR is removed to further improve the efficiency of both GCRO-DR
and SimGCRO-DR.

For each system in (13), G-DRvar1 recycles the harmonic Ritz vectors of the coefficient
matrix of the previous system, but only updates the harmonic Ritz vectors of the coefficient
matrices of the lo linear systems Ẽ(p j)x = w1(p j), j = 1,2, . . . , lo. That means, once the coef-
ficient matrix changes from Ẽ(p j−1) to Ẽ(p j), the harmonic Ritz vectors of Ẽ(p j−1) will be
recycled and updated during solving Ẽ(p j)x = w1(p j), but they will only be reused and not be
updated during solving Ẽ(p j)x = wi(p j), 1 < i≤ l j. In order to be consistent with GCRO-DR,
we use the sequence of linear systems in (2) to describe G-DRvar1. The application to the
linear systems in (13) is straightforward simply by replacing A j with E(p j).

Algorithm 1 G-DRvar1(m, k) solving (2)

1. For j = 1 : lo

2. For i = 1 : l j

3. If i = 1 and j = 1

4. Implement Step 1) of algorithm GCRO-DR.

5. Implement Step 9)-Step 34) of algorithm GCRO-DR.

6. Else if i = 1 and j > 1

7. Implement Step 2)-Step 7) of algorithm GCRO-DR.

8. Implement Step 19)-Step 34) of algorithm GCRO-DR.

9. Else if i > 1 and j > 1

10. Implement Step 2)-Step 7) of algorithm GCRO-DR.

11. Implement Step 19)-Step 27) and Step 34) of algorithm GCRO-DR.

10



12. End If

13. End For (i)

14. End For ( j)

When solving the current linear system, G-DRvar1 reuses the harmonic Ritz vectors of the
previous linear system by implementing Step 2)-Step 7) of algorithm GCRO-DR. Once the
harmonic Ritz vectors of A j is computed while solving the linear system A jx = b j

1 (notice here
b j

i = b j
1), they will not be recomputed for the latter linear systems with the same coefficient

matrix A j. This can be seen from Step 11) in G-DRvar1. As a result, more information
is recycled in G-DRvar1 than in SimGCRO-DR and less computation is implemented in G-
DRvar1 than in GCRO-DR. The efficiency of G-DRvar1 can be shown by the MEMS example
butterfly gyroscope in Section 5.

In principle, for the cases of i > 1 and j > 1, Step 10) can be further simplified, be-
cause the corresponding linear systems have the same coefficient matrix A j as the linear sys-
tem A jx = b j

1. Since the harmonic Ritz vectors of A j have been computed during solving
A jx = b j

1, and A j do not change for b j
i , i > 1, the relation C = A jU remains for the systems

A jx = b j
i , i > 1. Therefore, Step 2)-Step 5) of GCRO-DR implemented in Step 10) of G-

DRvar1 is not necessary, and more computation is saved. Here we name the further simplified
algorithm as G-DRvar2.

Algorithm 2 G-DRvar2(m, k) solving (2)

1. For j = 1 : lo

2. For i = 1 : l j

3. If i = 1 and j = 1

4. Implement Step 1) of algorithm GCRO-DR.

5. Implement Step 9)-Step 34) of algorithm GCRO-DR.

6. Else if i = 1 and j > 1

7. Implement Step 2)-Step 7) of algorithm GCRO-DR.

8. Implement Step 19)-Step 34) of algorithm GCRO-DR.

9. Else if i > 1 and j > 1

10. Implement Step 6)-Step7) of algorithm GCRO-DR.

11. Implement Step 19)-Step 27) and Step 34) of algorithm GCRO-DR.

12. End If

13. End For (i)

11



14. End For ( j)

We see the only difference of G-DRvar2 from G-DRvar1 is Step 10), where less computation
is done by G-DRvar2. However, from the simulation results for the butterfly gyroscope, we
find if Step 10) is simplified as in G-DRvar2, the convergence rate of G-DRvar2 is slower than
G-DRvar1 for the butterfly gyroscope, whereas G-DRvar2 converges faster than G-DRvar1 for
the other two examples, microthruster and the microhotplate gas sensor, which is in agreement
with our analysis.

4.4 Integration of the recycling algorithm with PMOR
In this Subsection, we show how the recycling algorithms are applied to PMOR to compute
the final projection matrix V for the reduced model. Assume we expand the transfer function
around lo sets of expansion points p j, j = 1,2, . . . , lo. For each set p j, we compute a matrix
Vj by

range{Vj}= span{R0,R1, . . . ,Rr j}, j = 1,2, . . . , lo. (14)

From the definition of Ri, i = 1,2, . . . ,r j, Ẽ is included in each term of Ri and Ẽ actually
depends on the set of expansion points p j. Therefore, it can be written as Ẽ(p j). In order
to distinguish the subspace spanned by Ri, i = 1,2, . . . ,r j corresponding to different p j, and
indicate the dependence of Ri, i = 1,2, . . . ,r j upon p j, we rewrite (14) into

range{Vj}= span{R0(p j),R1(p j), . . . ,Rr j(p j)}, j = 1,2, . . . , lo, (15)

where
R0(p j) = BM(p j),
R1(p j) = [M1(p j)R0(p j), . . . ,Mp(p j)R0(p j)],
R2(p j) = [M1(p j)R1(p j), . . . ,Mp(p j)R1(p j)],
...,
Rr j(p j) = [M1(p j)Rr j−1(p j), . . . ,Mp(p j)Rr j−1(p j)],

(16)

and BM = Ẽ(p j)
−1B, Mi =−Ẽ(p j)

−1Ei, i = 1,2, . . . , p and

Ẽ(p j) = E0 + s j
1E1 + s j

2E2 + · · ·+ s j
pEp. (17)

The final matrix V is computed by orthogonalizing Vj, j = 1,2, . . . , lo,

V = orthogonalize{V1,V2, . . . ,Vlo}. (18)

If some of the expansion points in a set, e.g. p j0 , are complex numbers, such as those expan-
sion points for the variable s in the Laplace domain, then the corresponding matrix Vj0 has to
be divided into real and imaginary parts and the matrix V is then computed by

V = orthogonalize{V1,V2, . . . ,Re(Vj0), Im(Vj0), . . . ,Vlo} (19)

such that V is a real matrix and the resultant reduced model has real system matrices. Para-
metric model reduction combined with the recycling method G-DRvar1 can be described in
Algorithm 3.
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Algorithm 3 PMOR combined with G-DRvar1

1. For j = 1 : lo (compute Vj)

2. Vj = [ ], an empty matrix.

3. If computing the first column of R0(p1) = BM(p1),

implement

4. Solve Ẽ(p1)x = B(:,1) by implementing

Step 4)-Step 5) of G-DRvar1 and get x.

5. If x 6= 0

6. Vj = x/||x||2.

7. EndIf

8. ElseIf computing the first column of R0(p j) and j 6= 1

9. Solve Ẽ(p j)x = B(:,1) by implementing

Step 7)-Step 8) of G-DRvar1 and get x.

10. Orthogonalize x with respect to all the columns in

Vj and get w

11. If w 6= 0

12. Vj = [Vj,w/||w||].

13. EndIf

14. Else

15. Solve Ẽ(p j)x = b(p j,B) by implementing

Step 10)-Step 11) of G-DRvar1 and get x.

16. Orthogonalize x with respect to all the columns in

Vj and get w

17. If w 6= 0

18. Vj = [Vj,w/||w||].

19. EndIf

20. End If

21. End For

13



22. V = orthogonalize{V1,V2, . . . ,Vlo}.

In Algorithm 3, the right hand side vector b(p j,B) is related to p j and/or B. For the com-
putation of the tth column of R0(p j) (except for the first column), the right hand side vector
b(p j,B) = B(:, t), t = 2, . . . ,dI , where dI is the number of inputs and it is also the number of
columns in the input matrix B in (3).

For the computation of the tth column of Mi(p j), i= 1,2, . . . p, j = 1,2, . . . , lo in Rq(p j), 0<
q < r j, the right hand side vector b(p j,B) = EiVRq−1(:, t), t = 2, . . . ,col; col is the number of
columns in VRq−1 . Either B(:, t) or VRq−1(:, t) is the tth column of B or VRq−1 . At the step of
computing the vectors in Rq(p j), the vectors in Rq−1(p j) are already orthogonalized to VRq−1 .
Therefore, when generating the orthogonal vectors in Rq(p j), Rq−1(p j) is replaced by VRq−1 .

Step 3), Step 8) and Step 15) are automatically implemented according to the PMOR pro-
cess in [21] which for clarity, is not shown in detail here.

Algorithm 3 indicates that the linear systems involved in PMOR do not appear continuously.
In fact, after solving one linear system, the current solution is first orthogonalized with respect
to the columns in V , and the next linear system is solved afterwards. Except for the first
linear system Ẽ(p1)x = B(:,1), all the other linear systems in the whole sequence have reused
the harmonic Ritz vectors generated from solving the previous linear system. The recycling
algorithms G-DRvar2, SimGCRO-DR and GCRO-DR can also be integrated with PMOR in a
similar way.

4.5 Comparison with MKR-GMRES
The recycling algorithms are more efficient than a recently developed recycling algorithm
MKR-GMRES in [2, 3], where the Krylov subspaces generated by Arnoldi are recycled. How-
ever, the dimension of the recycled subspace increases rapidly with the number of the linear
systems. This is because all the vectors in the previous Krylov subspaces are recycled. If there
are many linear systems in the sequence, the dimension of the recycled subspace approaches
n (the dimension of the coefficient matrix Ai) quickly. As a result, the algorithm becomes very
slow because of the quick inflation of the recycled subspace and the huge memory occupation
for storage of all the vectors in the subspace. MKR-GMRES for solving a sequence of linear
systems Aix = bi, i = 2, . . . , l is described in Algorithm 4.

Algorithm 4 MKR-GMRES solving the ith system in the sequence of linear systems Aix =
bi, i = 1,2, . . . , l.
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1) Calculate pseudo-inverse P+ of Pi. If i = 1,
let P1 = 0 and its P+ = 0.

2) Let Ps = PiP+.
3) Calculate r = (I−Ps)bi and x =V iP+bi.
4) Generate Krylov subspace Vm using Arnoldi process

(I−Ps)AiVm =Vm+1H̃m.
5) Solve least squares problem

y =arg min‖r−Ai[V i, Vm]y‖.
If the error is satisfactory, go to Step 6, otherwise
let m = m+1 and go to Step 4.

6) Save V i+1 = [V i, Vm], Pi+1 = AiV i+1 for the next
system, and let x = x+V i+1y be the solution.

Problems caused by the subspace inflation could be the pseudo-inverse computation and
least squares problem in Step 5).

From Algorithm 4, we can see that one need not explicitly compute the pseudo-inverse P+

of Pi. The only necessary computation related to P+ is the application of P+ to a vector w.
This can be achieved by solving a least-squares problem, which in a MATLAB implementation
is simply achieved by using the command “\”. However, when the number of columns in Pi

becomes large, the computation of Pi w becomes very slow, and becomes even more expensive
than Aw. In [3], only detailed analysis on how to reduce the complexity of computing (Pi)T Pi

is presented. However, in order to compute P+w, the computational difficulty arises from
the fact that the matrix Pi has dense columns and a singular value decomposition (SVD) or
rank-revealing QR decomposition must be computed to solve the least-squares problem.

Similarly, Step 5) also becomes difficult to implement due to the increase of the columns
in V i. Unfortunately in order to recycle the subspace V i, the dimensional increase in both Pi

and V i is inevitable. All the above issues make the algorithm not as efficient as expected. We
illustrate the above problems by numerical simulations in the next section.

5 Simulation Results
In this section, the recycling algorithms GCRO-DR, SimGCRO-DR, G-DRvar1 and G-DRvar2
are compared with the standard solver GMRES as well as GMRES-DR. The methods G-
DRvar1, G-DRvar2 are also compared with the original version GCRO-DR and the previ-
ous version SimGCRO-DR. Only SimGCRO-DR is compared with MKR-GMRES proposed
in [2, 3], which is sufficient to illustrate the problem of MKR-GMRES. The accuracy of the
reduced model by applying SimGCRO-DR, G-DRvar1 and G-DRvar2 is also presented.

5.1 Examples
We use three examples to show the efficiency of the recycling algorithms. The first example
is a microthruster. In Fig. 1, the upper-left part1 is the structure of an array of pyrotechnical

1The picture is taken from the paper [25], we acknowledge the author’s permission for using the picture.
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Figure 1: A model of the microthruster unit.

thrusters. The lower-right part of Fig. 1 is the structure of a 2D-axisymmetric model for a
single microthruster. When the PolySilicon (green) in the middle is excited by a current, the
fuel below is ignited and the explosion will occur through the nozzle. The thermal process can
be modeled by a heat transfer partial differential equation, while the heat exchange through
device interfaces is modeled by convection boundary conditions with different film coefficients
ht ,hs,hb. The film coefficients ht ,hs,hb respectively describe the heat exchange on the top,
side, and bottom of the microthruster with the outside surroundings. The values of the film
coefficients can change from 1 to 109 [23]. After finite element discretization of the 2D-
axisymmetric model, a parameterized system is derived,

Eẋ = (A−htAt −hsAs−hbAb)x+B
y = Cx. (20)

Here, ht , hs, hb are the parameters and the dimension of the system is n = 4,257. We ob-
serve the temperature at the center of the PolySilicon heater changing with time and the film
coefficient, which defines the output of the system2.

The second example is a butterfly gyroscope, and the parameterized system is obtained by
finite element discretization of the model for the gyroscope, see Fig. 2 (The details of the
model can be found in [22]). The system is of the following form:

M(d)ẍ+D(θ ,α,β )ẋ+T (d)x = Bu(t)
y = Cx. (21)

Here, M(d) = (M1 +dM2), D(θ ,α,β ) = θ(D1 +dD2)+αM(d)+βT (d), and T (d) = (T1 +
1
d T2 + dT3). The variables d,θ ,α,β are the parameters of the system. d is the width of the

2Detailed description of the parameterized system can be find at http://simulation.uni-
freiburg.de/downloads/benchmark
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Figure 2: Scheme of the butterfly gyroscope [22].

bearing, and θ is the rotation velocity along the x axis. The parameters α,β are used to form
the Rayleigh damping matrices αM(d),βT (d) in D(θ ,α,β ). The interesting output of the
system is δ z, the difference of the displacement z(t) between the two end nodes depicted as
red dots on the same side of the bearing (see Fig. 2). Referring to the explanation in [22], the
paddles of the device are excited to a vibration z(t), where all paddles vibrate in phase. With
the external rotation φ the Coriolis force acts upon the paddles, which causes an out-of-phase
movement which is measured as the z-displacement difference δ z between the two red dotted
nodes. The dimension of the system is n = 17913.

The third example is a microhotplate gas sensor chip [29]. The heat transfer within the
sensor is illustrated in Fig. 3 [29]. The model of the heat transfer inside the microhotplate gas
sensor is a system with four parameters [30], the mass density ρ in kg/m3, the specific heat
capacity cp in J/kg/K, the thermal conductivity in W/m/K, and the heat transfer coefficient
h in W/m2/K. The dimension of the system is n = 60020.

(E0 +ρcpE1)ẋ+(K0 +κK1 +hK2)x = Bu(t)
y = Cx. (22)

5.2 Criteria for comparison
We use the same convergence criterion (tol = 10−7) for all the methods, i.e. once the residual
of the current approximate solution of a linear system is smaller than tol, the algorithm stops
and the solution is obtained. We let the solution produced by all the methods be minimized
over the subspaces of the same dimension m. We use the same k, the number of harmonic
Ritz vectors, for each recycling algorithm as well as for GMRES-DR. GMRES(∞) connotes
GMRES method without restarts and GMRES(m) connotes the method with restarts. We
implement GMRES method by running the function ”gmres.m” in MATLAB R© version 2007b.
All the other methods are also programmed in the same version of MATLAB.
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Figure 3: Temperature distribution over the microhotplate gas sensor chip after 5s of heating
with constant heating power of 340mW. (Picture taken from [29])

Any iterative methods may become extremely slow if without preconditioning. Therefore,
when implementing the recycling algorithms, GMRES-DR and the standard solvers, we also
use preconditioning to accelerate the convergence rate. In the following simulation results,
incomplete LU factorization is used as the preconditioner for all the algorithms, which is
luinc(·,0.001) in MATLAB notation. Once the preconditioner is applied, the number of MV
products will be counted based on the preconditioned algorithm. Because the two factors L
and U are triangular matrices, it is reasonable to count one time of preconditioning by L and
U as two MV products for simplicity.

We employ the same comparison criterion as that used in [1] to compare the recycling
algorithms with the standard solver GMRES and GMRES-DR, i.e. the MV products used in
the algorithm for solving each linear system. This is a reasonable criterion because the number
of MV products constitutes the main computation in all the algorithms, which in some sense,
corresponds to the number of iteration steps.

When compare different recycling algorithms, we not only compare the MV products but
also compare the CPU time used by each algorithm. It can be justified by the difference
between SimGCRO-DR, G-DRvar1, G-DRvar2, and the original version GCRO-DR summa-
rized as below.

• For solving the linear systems in (1), SimGCRO-DR has saved the MV products and QR
factorization in Step 3) of GCRO-DR for all the linear systems except for the first. It
also has saved the repeated computation of harmonic Ritz vectors and QR factorization
in Step 28)-Step 32) of GCRO-DR for these linear systems.

• G-DRvar1 actually saves the repeated computation of the harmonic Ritz vectors of A j

and QR factorization in Step 28)-Step 32) of GCRO-DR for the linear systems A jx = b j
i

with i > 1, and it does not reduce MV products of GCRO-DR nevertheless.
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• G-DRvar2 has saved not only the MV products and QR factorization in Step 3) of
GCRO-DR for each of the linear systems A jx = b j

i with i > 1 and j > 1, but also the re-
peated computation of the harmonic Ritz vectors and QR factorization in Step 28)-Step
32) of GCRO-DR for these systems.

Therefore, if we only compare the MV products, we have neglected the repeated computation
of the harmonic Ritz vectors and QR factorization saved by these methods. Since the harmonic
Ritz vectors are computed by solving a small eigenvalue problem, the CPU time spent on the
harmonic Ritz vectors is much less than the CPU time spend on the MV products, especially
when the linear systems are of very large dimension. However, methods SimGCRO-DR, G-
DRvar1 and G-DRvar2 do not save the computation of one small eigenvalue problem, rather
the computation of hundreds of such small eigenvalue problems which may not be neglected.

As is analyzed in Section 4, the main computational complexity in MKR-GMRES is consti-
tuted by the computation of the pseudo-inverse of a large matrix and the least squares solution
of a large dimensional problem, therefore it is not reasonable to compare MKR-GMRES with
SimGCRO-DR with MV products. We compare the two methods by CPU time spent on solv-
ing each system. Although the CPU time varies from computer to computer, the simulation
results are enough to differentiate the two methods from one another because of the large
difference of CPU times between the two methods when they are run on the same computer.

In the next Subsection, we show the simulation results for the thermal process in the mi-
crothruster. The simulation results of the butterfly gyroscope and the microhotplate gas sensor
are analyzed in Subsection 5.4 and 5.5 .

5.3 Simulation of the microthruster
By applying the Laplace transform to the system in (20), we get

sEx = (A−htAt −hsAs−hbAb)x+Bu(s)
y = Cx. (23)

Here, s is the variable in the frequency domain, and there are totally 4 parameters in (23)
including s. Following the PMOR method introduced in Section 2, we may deal with either of
the two cases below.

• Case A, if the state vector x is expanded around one set of expansion points, e.g. p0 =
[s0,h0

t ,h
0
s ,h

0
b], the sequence of the linear systems are Ẽx = wi, i = 1,2, . . . , l. Here, Ẽ =

−A+ s0E +h0
t At +h0

s As +h0
bAb, and Ẽ is nonsymmetric. The number of linear systems

depends on how many moment matrices of the system are used. For this example, 600
linear systems are solved to match enough moments and guarantee the accuracy of the
reduced model. We take expansion points s0 = 1,h0

t = h0
s = h0

b = 1 and the reduced
model is of dimension q = 325.

• Case B, a reduced model of much smaller dimension can be obtained by using multi-
point expansion, i.e. by expanding x in (23) around several sets of expansion points.
Here, we take p0 = [s0,h0

t ,h
0
s ,h

0
b] = [1,10,10,10], p1 = [s1,h1

t ,h
1
s ,h

1
b] = [1,102,102,102],

p2 = [s2,h2
t ,h

2
s ,h

2
b] = [1,106,106,106] and p3 = [s3,h3

t ,h
3
s ,h

3
b] = [1,5×108,5×108,5×
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108]. The sequence of linear systems are of the form in (13), with l1 = 21, l2 = 21, l3 =
21, l4 = 21 and lo = 3. In total, 84 linear systems have been solved, and the correspond-
ing reduced model is of dimension q = 82 which is much smaller than the reduced
model obtained by single-point expansion in Case A.

Notice that although the expansion points p j used here are very different from each
other, they have not caused much difference in the corresponding coefficient matrices
Ẽ(p j), j = 1,2, . . . , lo. Hence, the neighboring matrices Ẽ(p j−1) and Ẽ(p j) are still
close to each other. This is because that the magnitudes of the entries in A dominate the
magnitudes of the entries in Ẽ(p j) = −A+ s jE + h j

t At + h j
sAs + h j

bAb, j = 1,2, . . . , lo.
The maximal magnitude of the entries in A is O(10), while the maximal magnitude of
the entries in either At ,As or Ab is O(10−7). Therefore, when we change the expansion
points, we only change the part of Ẽ(p j) associated with the parameters, which actually
cause relatively small changes in Ẽ(p j). Finally, it can be expected that the recycling
algorithms may achieve much efficiency for such a sequence of linear systems.

5.3.1 Results for Case A

For Case A, the sequence of linear systems are in the form of (1); therefore, SimGCRO-DR is
used to solve them and is compared with the original version GCRO-DR, as well as GMRES-
DR and the standard solver GMRES. In Table 1, we list the number of MV products used by
each algorithm corresponding to different groups of k (the number of harmonic Ritz vectors)
and m (the number of restarts or equivalently, the dimension of the subspace which generates
the approximate solution for each system). In the table, “average MV” is the average number
of MV products used for solving a single linear system, and “total MV” is the total number
of MV products for solving the whole sequence of linear systems. “total time” is the CPU
time used for solving all the linear systems. We see the two recycling algorithms are much

Table 1: SimGCRO-DR vs GCRO-DR, GMRES for Case A
Methods m k average MV total MV total time (s)

SimGCRO-DR 30 20 175 105,060 516.61
GCRO-DR 30 20 182 109,197 1053.5
GMRES(m) 30 — 2584 15,501,118 1707.4

Methods m k average MV total MV total time (s)
SimGCRO-DR 40 30 145 87,120 534.55

GCRO-DR 40 30 141 84,357 1196.2
GMRES(m) 40 — 1871 1,122,690 1638.8

Methods m k average MV total MV total time (s)
SimGCRO-DR 50 30 162 97,290 666.81

GCRO-DR 50 30 157 94,167 1209.8
GMRES(m) 50 — 1378 826,677 1280.9
GMRES(∞) — — 264 158,394 581.96
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more efficient than the restarted GMRES(m). They also use much fewer MV products than the
non-restarted GMRES(∞). However, GCRO-DR uses more CPU time than GMRES(∞). This
may be due to our usage of the function “gmres.m” in MATLAB, which is already numerically
optimized. What’s more important is that it is well-known that GMRES(∞) uses significantly
more memory storage, therefore it is actually not applicable for very large systems, which can
be seen from the simulation of the other two examples.

Usually the number of MV products of GMRES(m) can be reduced by improving the num-
ber of restarts m, and if we take m = n (the dimension of the coefficient matrix), then the MV
products are reduced to the MV products used by GMRES(∞), because these two methods are
equivalent in this situation. However the memory storage is sacrificed at the same time, which
is not suitable for very large systems either.

The two recycling algorithms use more or less the same number of average MV products for
each linear system, whereas SimGCRO-DR uses only half of the CPU time used by GCRO-
DR. It tells us that SimGCRO-DR has saved much computation of the MV products and QR
factorization in Step 3) as well as the computation of the harmonic Ritz vectors and QR fac-
torization in Step 28)-Step 32), which cannot be ignored. We conclude that SimGCRO-DR
attains a similar convergence rate as GCRO-DR, while saving much extra computation imple-
mented by GCRO-DR.

The method GMRES-DR begins to stagnate after solving the first linear system, which is
not listed in the table.

In Fig. 4, the error of the output response of the reduced model in the time domain is plotted.
The reduced model is obtained by applying SimGCRO-DR to PMOR. The error is the 2-norm
relative error between the output of the reduced model and that of the original system on the
whole range of the time interval. By fixing ht (here ht = 100), Fig. 4 indicates the error varying
with the two parameters hs, hb. We take 529 groups of hs and hb from the whole range [1,109].
The maximum error of the reduced model over all the groups of the parameters is around 10−7,
much smaller than the requirement of the maximum error 0.05 for real-world applications.

Typical important sets of the film coefficients ht ,hs,hb are given in [23]. In Table 2, Table 3
and Table 4, we show the errors of the reduced model corresponding to various sets of the
film coefficients taken from TABLE VI in [23]. From the results in the tables, we see that
the reduced model is accurate for all interesting values of the parameters listed there. One
can also see that the error at ht = hb = hs = 109 in Table 4 (though it is acceptable) is much
larger than the others. This is mainly because we have used the expansion points h0

t = h0
s =

h0
b = 1, therefore the reduced model could cause larger error for the values far away from

the expansion points. However the accuracy can be improved by the multi-point expansion
studied in Case B.

Fig. 5 includes the MV products used in MKR-GMRES. The number of MV products used
for the first system is 2337, which is much more than the numbers for the other systems.
For clarity, it is therefore not included in the figure. Although the number of MV products
for each system in MKR-GMRES is relatively small, the corresponding CPU time becomes
larger and larger, which is shown in the figure on the bottom. It is not surprising from the
above analysis that the main computational complexity of MKR-GMRES are not the MV
products but the high dimensional pseudo-inverse computation and the least squares solution
in Step 5). Moreover, MKR-GMRES is also slowed by the large memory requirements due to
storage of the recycled subspace, which could amount to dimension n, the dimension of the
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Figure 4: Error of the reduced model produced by SimGCRO-DR.

Table 2: error of the reduced model vs. the film coefficients for the microthruster
No. ht hb hs error
1 5 1 5 9.239×10−9

2 5 10 5 9.244×10−9

3 5 25 5 8.452×10−9

4 5 50 5 7.834×10−9

5 5 100 5 6.557×10−9

6 15 1 15 8.099×10−9

7 15 10 15 7.745×10−9

8 15 25 15 7.297×10−9

9 15 50 15 6.616×10−9

10 15 100 15 5.540×10−9

11 30 5 30 5.871×10−9

12 30 30 30 5.424×10−9

13 30 50 30 5.102×10−9

14 30 200 30 3.622×10−9

15 80 5 80 3.097×10−9

16 80 30 80 2.952×10−9

17 80 50 80 2.848×10−9

18 80 200 80 2.264×10−9

19 200 5 200 1.373×10−9
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Table 3: error of the reduced model vs. the film coefficients for the microthruster
No. ht hb hs error
20 200 30 200 1.337×10−9

21 200 50 200 1.311×10−9

22 200 200 200 1.149×10−9

23 25 1 5 9.257×10−9

24 25 10 5 8.899×10−9

25 25 25 5 8.380×10−9

26 25 50 5 7.696×10−9

27 25 100 5 6.333×10−9

28 75 1 15 6.361×10−9

29 75 10 15 6.162×10−9

30 75 25 15 5.847×10−9

31 75 50 15 5.374×10−9

32 75 100 15 4.658×10−9

33 150 5 30 4.241×10−9

34 150 30 30 3.949×10−9

35 150 50 30 3.766×10−9

36 150 200 30 2.827×10−9

37 500 5 200 9.926×10−10

38 500 30 200 9.694×10−10
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Table 4: error of the reduced model vs. the film coefficients for the micorthruster
No. ht hb hs error
39 500 50 200 9.523×10−10

40 500 200 200 8.484×10−10

41 10 50 10 6.996×10−10

42 10 1000 10 1.287×10−9

43 1000 5 10 9.062×10−9

44 10000 50 10 7.910×10−9

45 10000 10000 10000 5.106×10−11

46 5000 5000 5000 2.487×10−11

47 1000 1000 1000 1.362×10−10

48 500 500 500 3.829×10−10

49 109 109 109 0.0161
50 50000 50000 50000 1.093×10−8

51 10000 10000 1 2.260×10−11

52 10 10000 1 2.339×10−10

53 10000 10 1 2.980×10−11

54 1 1 1 3.097×10−9

coefficient matrix. The CPU time of MKR-GMRES for solving each system increases very
fast with the increase of the linear systems, whereas the CPU time used in SimGCRO-DR is
much less (around 1s) and remains steady.

5.3.2 Results for Case B

If a smaller reduced model is desired, then multi-point expansion in Case B can achieve this.
The sequence of linear systems necessary to be solved during PMOR is in the form in (13),
which can be solved by GCRO-DR, G-DRvar1, G-DRvar2 or by SimGCRO-DR. In Table 5,
we compare the four recycling algorithms with different choices of k and m. To avoid repeti-
tion, we do not list the results of GMRES(∞) and GMRES(m), because they are as inefficient
as in Case A. For each group of k and m, GMRES-DR behaves similar to Case A, i.e. it
stagnates when solving the second linear system.

As can be seen from Table 5, GCRO-DR is least efficient because of the implementation of
Step 3) for each linear system (except for the 1st) and Step 28)-Step 32) at each iteration for
each linear system. However for the sequence of linear systems in (13), the computations in
Step 3) and Step 28)-Step 32) can be saved by SimGCRO-DR, G-DRvar1 and G-DRvar2. The
algorithm SimGCRO-DR is not as efficient as G-DRvar1 and G-DRvar2, because it does not
recycle the harmonic Ritz vectors for some linear systems, which slows down the convergence
and is consistent with our analysis above. By saving the computation in Step 3) of GCRO-
DR, G-DRvar2 uses almost the same MV products as G-DRvar1, and uses less CPU time. It
implicates that G-DRvar2 behaves better than G-DRvar1.

The accuracy of the reduced model obtained by applying G-DRvar2 to PMOR is shown in
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Figure 5: Behavior of MKR-GMRES for Case A

Figure 6. Similar to Figure 4, the error here is the error of the output response of the reduced
model at different values of hs and hb. Here we fix ht = 1e9 instead of ht = 100 in Figure 4.
We can see the error of the reduced model at hs = hb = ht = 1e9 is reduced from 0.0161 in
Table 4 to O(10−8). Similar accuracy can also be obtained by G-DRvar1.

5.4 Simulation of a gyroscope
To apply the PMOR method in Section 2, we also first transform the system into the frequency
domain:

s2M(d)x+ sD(θ ,α,β )x+T (d)x = Bu(s)
y = Cx.

(24)

It can be seen that although there are four physical parameters in the original system in (22),
there are actually 11 different variables in (24) and they must be considered as individual
parameters during PMOR. The parameters are s1 = s2, s2 = s2d, s3 = sθ , s4 = sθd, s5 = sα ,
s6 = sαd, s7 = sβ , s8 =

s
d β , s9 = sβd, s10 =

1
d , s11 = d respectively.

For such a system with many parameters, the dimension of the reduced model will grow
quickly if only one set of expansion points are chosen. In order to deal with this problem, we
use multi-point expansion. Here we use 4 sets of expansion points p j = [s j

1,s
j
2, . . . ,s

j
11], j =

1,2, . . . ,4, and the resulting reduced model is of dimension q = 289, which is small versus the
original dimension n = 17,931.

The physical parameters have their own interesting ranges respectively, which may help us
to choose the expansion points. Here d ∈ [100%,200%] is taken as the percentage of the base
value, and θ ∈ [10−7,10−5]MHz. It is proven in [26] that the two damping parameters α and
β need not be considered during model reduction, and they can be taken as 0.

We also have the range for the frequency f ∈ [0.025,0.25]MHz. The relation between the
Laplace domain variable s and the frequency f is s= σ +2π

√
−1 f . σ is a real variable, which
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Table 5: G-DRvar1, G-DRvar2 vs SimGCRO-DR, GCRO-DR for Case B
Methods m k average MV total MV total time (s)

G-DRvar1 30 20 133 11,139 62.44
G-DRvar2 30 20 130 10,899 59.70

SimGCRO-DR 30 20 131 11,010 59.60
GCRO-DR 30 20 129 10,809 108.20
Methods m k average MV total MV total time

G-DRvar1 40 30 118 9,939 67.9
G-DRvar2 40 30 115 9,699 64.34

SimGCRO-DR 40 30 116 9,750 65.55
GCRO-DR 40 30 117 9,849 131.64
Methods m k average MV total MV total time

G-DRvar1 50 40 106 8,889 74.27
G-DRvar2 50 40 103 8,649 66.59

SimGCRO-DR 50 40 113 9,480 71.92
GCRO-DR 50 40 105 8,829 156.69

Figure 6: Error of the reduced model produced by G-DRvar2.
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is often taken as zero.
We finally have three independent parameters s, d and θ . The system (24) is established

based on the unit MHz, therefore the values of f for numerical simulation are in the interval
[0.025,0.25], and the values of θ are in the interval [10−7,10−5].

We denote p̃ j = [s j,d j,θ j], j = 1,2, . . . ,4 the expansion points. Once p̃ j are given, the cor-
responding values in p̃ j are available. Here, p̃ j = [s j,d j,θ j], j = 1,2, . . . ,4 are taken as p̃1 =
[2π
√
−1× 0.225,1,10−6], p̃2 = [2π

√
−1× 0.225,2,10−6], p̃3 = [2π

√
−1× 0.15,2,10−6],

p̃4 = [2π
√
−1×0.15,1.5,10−6].

Next, we check if the expansion points have caused big difference between the coefficient
matrices Ẽ(p j) = T1 + s2

jM1 + s2
jdM2 + s jθ jD1 + s jθ jd jD2 +

1
d j

T2 + d jT3, j = 1, . . . ,4. If

we look at the magnitudes of the individual matrix in Ẽ(p j), we see that the magnitude of
the entries in the matrices M1, M2 are around O(10−11) and O(10−12) respectively, and the
maximal magnitudes of the entries in D1 and D2 are both around O(10−11), which are much
smaller than the magnitude of s j. The magnitudes of the entries in T2 and T3 are around
O(10−5), which are also much smaller than the magnitudes of d j. Therefore, the change
from one expansion point to another expansion point has caused relatively large change in
the matrices s2

jM1 + s2
jdM2 + s jθ jD1 + s jθ jd jD2 +

1
d j

T2 + d jT3, j = 1, . . . ,4. However, the
magnitude of T1 is around O(1), which dominates the whole matrix E(p j). Therefore, the
neighboring E(p j), j = 1, . . . ,4 have just changed slightly.

Notice p̃ j are complex numbers here, and the resultant projection matrix Vj is also a com-
plex matrix. We should divide Vj into two matrices [Re{Vj}, Im{Vj}] to form the final projec-
tion matrix V as in (19) in Subsection 4.4.

The MV products of the recycling algorithms and the standard solver GMRES are shown
in Table 6. The results of GMRES-DR are not listed, because it stagnates after solving the
first linear system. We see that with the same usage of memory storage (the same m), the
recycling methods uses far less MV products and CPU time than GMRES(m) does. The
recycling methods generate the approximate solution from a subspace of small dimension
m, much memory storage has been saved compared with GMRES(∞). Actually GMRES(∞)
cannot be implemented on the PC (Pentium(R) Dual-Core CPU E5400@ 2.70GHz, 2.69GHz,
2.98GB of RAM) because of limited memory. It makes no sense to implement GMRES(m) for
all the linear systems, because it requires too much time. Therefore, we only use GMRES(m)
to solve around 50 systems for each m = 85,90,95 and do not give the total MV products and
total time used. From the systems it solves, GMRES(m) behaves almost the same for each
system, and we expect that it will produce similar results for the unsolved systems.

Unlike its behavior for Case B of the microthruster, G-DRvar1 is even more efficient than
G-Drvar2 for the gyroscope. As is analyzed in Subsection 4.3, G-DRvar2 should save more
computation than G-DRvar1 theoretically. However, for m = 85 and m = 90, although G-
DRvar2 has saved around 50 MV products on average, the CPU time spent is even more than
G-DRvar1. Especially for the case m = 95, G-DRvar1 uses even less MV products than G-
DRvar2, which means it converges faster than G-DRvar2, and therefore less MV products
have been used. For m = 110,120,130, G-DRvar1 converges also faster than G-DRvar2.

SimGCRO-DR does not converge for all the linear systems. For the case m = 85, it does
not converge when it solves for the 130th linear system. Therefore, the algorithm is stopped.
For the case m = 90, it stops converging from the 87th system. Only the first 44 systems are
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Table 6: G-DRvar1, G-DRvar2 vs SimGCRO-DR, GCRO-DR, GMRES for the gyroscope,
k = 30

Methods m average MV total MV total time (s)
G-DRvar1 85 668 114,810 22,256
G-DRvar2 85 601 103,485 23,188

SimGCRO-DR 85 795 — —
GCRO-DR 85 689 118, 440 23,525
GMRES(m) 85 24,758 — —

Methods m average MV total MV total time (s)
G-DRvar1 90 633 108, 900 21,106
G-DRvar2 90 589 101, 340 21,931

SimGCRO-DR 90 699 — —
GCRO-DR 90 638 109,800 23,192
GMRES(m) 90 25,026 — —

Methods m average MV total MV total time (s)
G-DRvar1 95 597 102,645 19,812
G-DRvar2 95 631 108, 585 23,754

SimGCRO-DR 95 713 — —
GCRO-DR 95 601 103,425 23,038
GMRES(m) 95 28,495 — —
GMRES(∞) — — — —
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solved when m = 95, and after, it begins to diverge. Therefore, we cannot count the total MV
products and the total CPU time of the method. The average MV products are computed from
the results for the converged systems. For the converged systems, SimGCRO-DR uses even
more average MV products than GCRO-DR, which means it converges slower than GCRO-
DR. This may be due to the fact that for each new different coefficient matrix, SimGCRO-DR
does not recycle the harmonic Ritz vectors of the previous matrix, which slows the algorithm.

Table 7: G-DRvar1 vs GCRO-DR for the gyroscope
Methods m k average MV total MV total time (s)

G-DRvar1 110 30 633 108,840 23,048
GCRO-DR 110 30 634 109,080 23,418
Methods m k average MV total MV total time (s)

G-DRvar1 120 30 668 114,840 24,126
GCRO-DR 120 30 666 114,570 24, 983
Methods m k average MV total MV total time (s)

G-DRvar1 120 40 663 114,000 23,004
GCRO-DR 120 40 682 117,360 27,123

In Table 7, when we further compare G-DRvar1 with GCRO-DR with more choices of k
and m, we can see without implementing Step 28)-Step 32) for the linear system from the 2nd
until the last one in the sequence, G-DRvar1 can still converge with almost the same iteration
steps as GCRO-DR because they use almost the same MV products. Since less computation
is implemented by G-DRvar1, it uses less CPU time than GCRO-DR.

The output δ z of the system in (22), changing with d and the frequency, is plotted in Fig. 7
and that of the reduced model by applying G-DRvar1 to PMOR is given in Fig. 8. Here we
show the output in the frequency domain; 4 samples of d and 41 samples of the frequency are
taken. The absolute error between the two is plotted in Fig. 9, where the maximum absolute
error is 4.6×10−8. The relative error is plotted in Fig. 10, where the maximum relative error
is 0.26% which is already much smaller than the usually acceptable error tolerance 1%. To get
the output of the original system, one needs more than one week by using an iterative method
(e.g. GMRES(m)) to compute the value of δ z at each frequency sampling as well as each
d-sampling, whereas the output of the reduced model can be obtained in 40 seconds.

5.5 Simulation of a microhotplate gas sensor chip
We have used three groups of expansion points pi = [si,κi,ci

p,ρi,hi], i= 1, . . . ,3 to obtain a re-
duced model with dimension q= 63, which are p1 = [0,4,700,3100,11], p2 = [0,3,500,3100,10.5],
p3 = [0,2.5,439,3100,10].

In total, 63 linear systems have been solved. In Table 8, we list the results of the methods
GCRO-DR, SimGCRO-DR, G-DRvar1 and G-DRvar2 for four groups of k and m. The method
GMRES(m) is too slow to give the result for a single linear system after a long time (more
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Figure 7: Magnitude of the output δ z of the model for the Gyroscope

Figure 8: Magnitude of the output δ z of the reduced model for the Gyroscope.
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Figure 9: Absolute error plot of the reduced model for for the Gyroscope.

Figure 10: Relative error plot of the reduced model for the Gyroscope.
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than 1 hour). GMRES without restarts use too much memory, and the computation cannot
be implemented. GMRES-DR still cannot finish solving all the linear systems. For various
values of k and m, GMRES-DR starts to stagnate after solving around 10 linear systems.

Table 8: G-DRvar1, G-DRvar2 vs SimGCRO-DR, GCRO-DR for the microhotplate gas sensor
chip

Methods k m average MV total MV total time (s)
G-DRvar1 50 60 217 13650 2292
G-DRvar2 50 60 83 5220 1777

SimGCRO-DR 50 60 81 —- —-
GCRO-DR 50 60 217 13650 2602
Methods k m average MV total MV total time (s)

G-DRvar1 40 50 187 11760 1814
G-DRvar2 40 50 72 4560 1461

SimGCRO-DR 40 50 71 4500 1444
GCRO-DR 40 50 187 11760 2488
Methods k m average MV total MV total time (s)

G-DRvar1 30 40 157 9900 1761
G-DRvar2 30 40 71 4500 1390

SimGCRO-DR 30 40 81 5100 1482
GCRO-DR 30 40 158 9930 1766
Methods k m average MV total MV total time (s)

G-DRvar1 20 30 138 8670 1675
G-DRvar2 20 30 80 5070 1462

SimGCRO-DR 20 30 81 5130 1487
GCRO-DR 20 30 141 8910 1689

In general, G-DRvar1, G-DRvar2, SimGCRO-DR are more efficient than the original al-
gorithm GCRO-DR. For this example, G-DRvar2 is much faster than G-DRvar1, which is in
agreement with our theoretical analysis. Although SimGCRO-DR is better than G-DRvar1 in
many cases, it is unfortunately not convergent for the case k = 50, m = 60. Among all the
methods, G-DRvar2 performs the best.

The relative error of the transfer function of the reduced model relative to the frequency and
the parameter κ is plotted in Fig. 11. The transfer function of the original system is shown
in Fig. 12. The maximal relative error at the 800 samples for frequency and κ is 1.3×10−7.
In Fig. 13, we plot the transfer function of the original system changing with frequency and
the heat capacity cp. The relative error of the transfer function of the reduced model changing
with frequency and cp is plotted in Fig. 14. The maximal error at 1750 samples of frequency
and cp is 2.4×10−7.

32



Figure 11: Relative error plot of the reduced model for microhotplate gas sensor chip changing
with frequency and κ .

Figure 12: Transfer function of the original system for the microhotplate gas sensor chip
changing with frequency and κ .
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Figure 13: Transfer function of the original system for the microhotplate gas sensor chip
changing with frequency and cp.

Figure 14: Relative error plot of the reduced model for the microhotplate gas sensor chip
changing with frequency and cp.
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6 Conclusions
In this paper, algorithms based on subspace recycling have been successfully applied to the
PMOR process, with much efficiency achieved.

During the PMOR process, many linear systems must be solved. When linear systems are
of very large scale, direct solvers like LU decomposition are difficult to employ. The most
appropriate choices are the iterative methods. The algorithms based on subspace recycling are
designed to accelerate the standard iterative methods, and further they speeds up the process
of PMOR.

The two variants G-DRvar1 and G-DRvar2 of the recycling algorithm GCRO-DR are pro-
posed in this paper, which require less computation and hence are more efficient than the orig-
inal version GCRO-DR, especially for the sequences of linear systems arising from PMOR.

It can be seen from the above simulation results that the efficiency of the recycling algo-
rithms depends on the choice of m and k, i.e. different values of m, k leads to different numbers
of MV products. How to choose the proper m and k remains an open problem.

Finally, the application of the recycling algorithms is not limited to PMOR. It can be eas-
ily extended to many other simulation problems, where computation of a sequence of linear
systems is unavoidable for very large scale systems. Furthermore, the right-hand sides of the
linear systems do not need to be simultaneously available, which makes the recycling algo-
rithms flexible for various problems.

Appendix A. GCRO-DR in [1]

Algorithm 5 GCRO-DR(m,k) Solving the ith system in the sequence of linear systems Aix =
bi, i = 1,2, . . . , l:

1. Choose m, the maximum size of the subspace, and k the desired number of the harmonic
Ritz vectors of A. tol is the convergence tolerance. x0 is the initial guess, and r0 =
bi−Aix0 is the initial error. Set j = 1.

2. IF Ỹ is defined (from solving a previous system) then

3. Let [Q,R] be the reduced QR-factorization of AiỸ .

4. C = Q

5. U = Ỹ R−1

6. x1 = x0 +UCHr0

7. r1 = r0−CCHr0

8. ELSE

9. v1 = r0/||r0||2

10. c = ||r0||e1
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11. Perform m steps of GMRES, generating a (m+ 1)×m matrix H̃m , a n× (m+ 1)
matrix Vm+1.

12. x1 = x0 +Vmy

13. r1 =Vm+1(c− H̃my)

14. Compute the k eigenvectors ξ j of: (Hm+h2
m+1,mH−H

m emeH
m)ξ j = λ jξ j associated with

the k smallest magnitude eigenvalues and store in P.

15. Ỹ =VmP

16. Let [Q, R] be the reduced QR-factorization of H̃mP.

17. C =Vm+1Q; U = Ỹ R−1.

18. END IF

19. WHILE ‖r j‖2 > tol do

20. j = j+1

21. run m− k steps of Arnoldi algorithm with the linear operator (I−CCH)A, letting v1 =
r j−1/‖r j−1‖2 and generating H̃m−k, Vm−k+1, and Bm−k.

22. Let Dk be a diagonal scaling matrix such that Ũ =UDk, where that columns of Ũ have
unit norm.

23. V̂m = [Ũ Vm−k]; Ŵm+1 = [C Vm−k+1];

24. Let Gm =

[
Dk Bm−k

0 H̃m−k

]
.

25. Solve min‖Ŵ H
m+1r j−1−Gmy‖2 for y.

26. x j = x j−1 +V̂my;

27. r j = r j−1−Ŵm+1Gmy.

28. Compute the k eigenvectors ξt of GH
mGmξt = λtGH

mŴ H
m+1V̂mξt associated with the k

smallest magnitude eigenvalues λt and store in P.

29. Ỹ = V̂mP.

30. Let [Q,R] be the reduced QR-factorization of GmP;

31. C = Ŵm+1Q;

32. U = Ỹ R−1.

33. END WHILE

34. Let Ỹ =U (for the next system).
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Appendix B. SimGCRO-DR in [24]

Algorithm 6 SimGCRO-DR(m,k) Solving the ith system in the sequence of linear systems
Ax = bi, i = 1,2, . . . , l:

1. Choose m, the maximum size of the subspace, and k the desired number of the harmonic
Ritz vectors of A. tol is the convergence tolerance. x0 is the initial guess, and r0 =
bi−Ax0 is the initial error. Set j = 1.

2. IF C and U are defined (from solving a previous system) then

3. x1 = x0 +UCHr0;

4. r1 = r0−CCHr0.

5. ELSE

6. run m steps of GMRES, generating an (m+ 1)×m matrix H̃m , an n× (m+ 1)
matrix Vm+1 and x1, r1.

7. Compute k smallest harmonic Ritz vectors of A, i.e. k eigenvectors ξ j of: (Hm +
h2

m+1,mH−H
m emeH

m)ξ j = λ jξ j associated with the k smallest magnitude eigenvalues and
store in P. Here Hm is the m×m upper block in H̃m, hm+1,m is the (m+ 1,m) entry in
H̃m and em ∈ Rm, e = [0, . . . ,01]T .

8. Ỹ =VmP; Vm contains the first m columns in Vm+1.

9. Let [Q, R] be the reduced QR-factorization of H̃mP;

10. C =Vm+1Q; U = Ỹ R−1.

11. END IF

12. WHILE ‖r j‖2 > tol do

13. j = j+1;

14. run m− k steps of Arnoldi algorithm with the linear operator (I−CCH)A, letting v1 =
r j−1/‖r j−1‖2 and generating a (m− k+ 1)× (m− k) matrix H̃m−k, a n× (m− k+ 1)
matrix Vm−k+1, and Bm−k = CHAVm−k, likewise, Vm−k contains the first m− k columns
of Vm−k+1.

15. Step 16-Step 20 compute x j whose residual r j is minimized over the subspace spanned
by [Ũ Vm−k]. Here Ũ =UDk, Dk is a diagonal scaling matrix such that each column in
Ũk has unit 2-norm.

16. Let Gm =

[
Dk Bm−k

0 H̃m−k

]
.
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17. V̂m = [Ũ Vm−k]; Ŵm+1 = [C Vm−k+1];

18. Solve min‖Ŵ H
m+1r j−1−Gmy‖2 for y.

19. x j = x j−1 +V̂my;

20. r j = r j−1−Ŵm+1Gmy.

21. IF solving the first system i.e. i = 1, then modify the k harmonic Ritz vectors of A, i.e.,
compute k eigenvectors ξt of GH

mGmξt = λtGH
mŴ H

m+1V̂mξt associated with the k smallest
magnitude eigenvalues λt and store in P.

22. Ỹ = V̂mP.

23. Let [Q,R] be the reduced QR-factorization of GmP;

24. C = Ŵm+1Q;

25. U = Ỹ R−1.

26. END IF

27. END WHILE.
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