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Abstract

In this paper, we discuss a recently introduced approach for nonlinear
model order reduction. The new method is motivated by the concept
of moment matching known from model reduction techniques for lin-
ear systems and can be generalized by means of generalized transfer
functions arising for a large class of smooth nonlinear control affine
dynamical systems. We will extend the existing concepts by making
use of some basic tools known from tensor theory. This will allow a
more efficient computation of the reduced-order model as well as the
possibility of constructing two-sided projection methods which are the-
oretically shown to yield more accurate reduced-order models. More-
over, we will test both, one-sided and two-sided projection methods, on
several semi-discretized nonlinear partial differential equations which
already have been used as test examples in the context of nonlinear
model reduction and compare them with the common nonlinear reduc-
tion technique proper orthogonal decomposition. We will further point
out the main advantages and drawbacks of our new method.
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1 Introduction

One of the most important challenges in the field of numerical analysis cer-
tainly is the study and analysis of complex dynamical processes described
by ordinary differential equations (ODEs) and/or partial differential equa-
tions (PDEs), respectively. Although computational power is increasing at
vast rates, the fast simulation of complex dynamical systems still often is
to resource-intensive for the fine granularity of models necessary for an un-
derstanding of real-life applications in full detail. In particular, in order to
solve a certain PDE numerically, one often starts out by a spatial discretiza-
tion which leads to a large-scale system of ODEs. However, the number
of state variables of such a system easily might exceed dimensions up to
O(105), making a fast and reliable simulation hardly possible. Particularly,
in a many query context, e.g. a design study, it is necessary to simulate
the system for varying forcing terms. Here, model order reduction (MOR)
can be used to significantly accelerate the repeated simulation. Although
far from being a trivial task, theory as well as numerical methods for linear
systems are quite well-established and recently more and more interest is
dedicated to nonlinear control systems of the form

ΣNL :

{
ẋ(t) = f(x(t)) + bu(t),

y(t) = cTx(t), x0 = 0,
(1)

where f : Rn → Rn is a nonlinear state evolution function and b, c ∈ Rn de-
note the input and output vector, respectively. Moreover, x(t), u(t), y(t) ∈
Rn are called the state, input and output of the system, respectively. The
term bu(t) often is obtained after spatial discretization of a PDE from a
source term of the form S(x, t) by separation of variables S(x, t) = b(x)u(t).
In general, the initial state of the system x0 does not have to be zero.
However, since all the concepts rely on this fact, throughout the paper, we
will assume that x0 = 0. Nevertheless, if this is not the case, one can al-
ways transform the above system by introducing a reference state variable
x̃ = x − x0 which fulfills this condition such that this is no restriction for
more general systems. As already mentioned above, if the state dimension
n becomes too large, one usually is interested in a reduced order model of
the same structure

ΣNLR :

{
˙̂x(t) = f̂(x̂(t)) + b̂u(t),

ŷ(t) = ĉT x̂(t), x̂0 = 0,
(2)

with f̂ : Rn̂ → Rn̂, b̂, ĉ ∈ Rn̂ and n̂ � n. In contrast to linear systems,
one of the main difficulties clearly is the construction of a reduced evolution
function f̂ . Trajectory-based methods like proper orthogonal decomposition
(POD), see e.g. [2, 6, 8, 15, 16], rely on a Galerkin projection P = VVT

2



and compute f̂ = VT f(Vx̂). While this definitely preserves the nonlinear
structure of the original system, it also displays a major bottleneck of the
classic POD approach. To be more precise, note that the function f still
has to be evaluated on the original state space Rn, making the simulation
of the reduced-order system too expensive. However, there exist several
ways to circumvent this problem, e.g., the empirical interpolation method
(EIM), missing point estimation (MPE), best points interpolation method
(BPIM) and the discrete empirical interpolation method (DEIM). For those
methods, we refer to, e.g., [2, 4, 8, 9, 18]. We refer to e.g. [6, 8, 15, 16],
for a detailed discussion on POD. Motivated by the same idea, the reduced
basis method is a further popular and successful approach in the context of
nonlinear model order reduction, see e.g. [4, 9].

Another way is to replace the nonlinearity by a weighted combination
of linear systems which then can be efficiently treated by well-known linear
reduction methods like balanced truncation or interpolation (see [1]). For a
more detailed insight into the resulting trajectory piecewise linear (TPWL)
method, the reader is referred to [21], where more information can be found.

So far, the above mentioned methods all share the common drawback
of input dependency, i.e., in order to construct a reduced-order model one
at first needs some snapshots of a given or computed solution trajectory of
the original model. If this has been done, one indeed can get very accurate
approximations of the system. However, as soon as the input function is
varied, which is common in control, optimization and design problems, no
rigorous assertions on the error for the new dynamics can be specified. In
this paper, we will pick up a method which extends the concept of inter-
polation or moment matching, respectively, discussed for linear systems in,
e.g., [10]. The main idea was introduced in [11], where the author shows
how to transform a specific class of nonlinear control systems into a system
of so-called quadratic-bilinear differential algebraic equations (QBDAEs).
For those, in [11] an approximation procedure based on generalized moment
matching about the interpolation point 0 was discussed and evaluated by
means of some typical numerical test examples in the context of nonlinear
model reduction. Basically, the method can be seen as a suitable extension
of ideas which have been discussed for systems with a similar structure in,
e.g., [3, 5, 20, 19]. The main advantage of the approach is that it tries to
construct a reduced-order model that aims at capturing the input-output
behavior of the underlying system, making it input independent and thus
allowing to use the reduced-order model for varying controls.

The structure of the paper now is as follows. In the next section, we will
state the main properties of quadratic-bilinear differential algebraic equa-
tions. This will include a brief review on the concept of variational analysis
which allows to replace the nonlinear system by a nested sequence of pseudo-
linear subsystems and subsequently opens up the possibility to derive gen-
eralized transfer functions. In Section 3, we then recall some tools from
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tensor theory. This will be helpful in order to improve the computation and
the accuracy of the reduced-order model. The main result then is proven in
Section 4, where we will see how to construct appropriate two-sided projec-
tion methods for quadratic-bilinear differential algebraic equations. Finally,
we will carefully implement and test some numerical examples in Section 5
and underline advantages and difficulties of the new approach. We conclude
with a summary and an outlook for topics of further research.

2 Quadratic-bilinear DAEs

In this section, we will review the basic properties of systems of quadratic-
bilinear differential algebraic equations (QBDAEs). These systems are of
the form

ΣQB :

{
Eẋ(t) = Ax(t) +Hx(t)⊗ x(t) +Nx(t)u(t) + bu(t),

y(t) = cTx(t), x0 = 0,
(3)

where E,A,N ∈ Rn×n, H ∈ Rn×n2
, and b, c ∈ Rn. Analog to more general

nonlinear systems of the form (1), here u(t), y(t) ∈ R are input and output
variables, respectively. At this point, note the special structure of the matrix
H which denotes the Hessian of the right hand side. Due to commutativity
of the variables in x(t)⊗x(t), it is always possible to arrange the entries of H
such that the commutativity is handed over to the matrix itself. To be more
precise, for two arbitrary vectors u, v ∈ Rn, we have H (u⊗ v) = H (v ⊗ u) .
Since this concept will be important later on, we will study a simple example
which underscores the main idea.

Example 2.1. Let us consider a two-dimensional purely quadratic system
of the form

ẋ(t) = Hx(t)⊗ x(t), with H =

[
a b c d
e f g h

]
.

Writing down the dynamics explicitly, we obtain

ẋ1(t) = ax1(t)
2 + bx1(t)x2(t) + cx2(t)x1(t) + dx2(t)

2,

ẋ2(t) = ex1(t)
2 + fx1(t)x2(t) + gx2(t)x1(t) + hx2(t)

2.

Using j = b+c
2 and k = f+g

2 , the above system is equivalent to

ẋ1(t) = ax1(t)
2 + jx1(t)x2(t) + jx2(t)x1(t) + dx2(t)

2,

ẋ2(t) = ex1(t)
2 + kx1(t)x2(t) + kx2(t)x1(t) + hx2(t)

2.

4



Hence, we can replace H by H̃ =

[
a j j d
e k k h

]
. However, one now easily

observes that for arbitrary u, v ∈ R2, it holds

H̃ (u⊗ v) = H̃ (v ⊗ u) =

[
au1v1 + ju1v2 + ju2v1 + ku2v2
eu1v1 + ku1v2 + ku2v1 + fu2v2

]
.

Obviously, the above also holds true for arbitrary n > 2.

As has already been shown in [11], QBDAEs are very useful in the context
of nonlinear model order reduction. In particular, a large class of smooth
nonlinear control affine systems can be transformed into a system of QB-
DAEs. This is done via introducing new state variables for the occurring
nonlinearities of the underlying control system. The new dynamics then can
be derived by symbolic differentiation or adding algebraic constraints. For
a more detailed discussion on this topic, we refer to [11]. However, it should
be mentioned that this transformation concept has already been known as
McCormick-relaxation for several years, see [17]. The fact that the idea has
not been used for model reduction purposes might be surprising. On the
other hand, at a first glance it seems counterintuitive to first increase the
state dimension of a control system which actually should be reduced.

Before we proceed with the concepts of variational analysis for these
systems, we will mention some differences to the theory discussed in [11].
There the author includes a further term of the form

Lx(t)⊗ x(t)u(t), L ∈ Rn×n
2
.

However, although it might further increase the state dimension of a trans-
formed system, it should be emphasized that by introducing a new state
variable z(t) := x(t) ⊗ x(t), the nonlinearity becomes purely bilinear, i.e.
Lz(t)u(t). Since this simplifies the structure of the transfer functions that
will be introduced in the following, we will always assume that the system
under consideration does not contain multiplicative couplings of quadratic
and bilinear variables. Moreover, in [11], the systems are denoted as quadratic-
linear since the state variable x(t) appears quadratically while the input
variable appears linearly. On the other hand, one can interpret system (3)
as a combination of a purely quadratic system and a bilinear control system,
justifying the notation QBDAE.

Let us now turn our attention to the analysis of QBDAEs. Even for
more general nonlinear systems, it is well-known (see e.g. [22]) that instead
of solving (3), one can iteratively look for solutions of a sequence of pseudo
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linear systems of the form

Eẋ1(t) = Ax1(t) + bu(t),

Eẋ2(t) = Ax2(t) +A2x1(t)⊗ x1(t) +Nx1(t)u(t),

Eẋ3(t) = Ax3(t) +A2 (x1(t)⊗ x2(t) + x2(t)⊗ x1(t)) +Nx2(t)u(t),

...

where, e.g., in the 2nd system, x1(t) is used as additional input for the
linear ODE defining x2. The solution x(t) of (3) then can be derived as
x(t) =

∑∞
i=1 xi. For the previous approach, one assumes that the nonlinear

system under consideration consists of a series of homogeneous subsystems,
meaning that the transient response to an input of the form αu(t) is given
as

x(t) = αx1(t) + α2x2(t)
2 + α3x3(t)

3 + . . . ,

where the xi are given as the solution of the above sequence.
A similar technique allows an input-output characterization in the fre-

quency domain. According to [22], if one is interested in the first two transfer
functions of (3), one can consider an input u(t) = es1t + es2t which is sup-
posed to yield a transient response

x(t) = H10e
s1t +H01e

s2t +H20e
2s1t +H02e

2s2t +H11e
(s1+s2)t.

Inserting this expression into the state equation (3) and comparing the coef-
ficients then leads to the first two generalized symmetric transfer functions

G1(s1) = cT (s1E −A)−1︸ ︷︷ ︸
F (s1)

b,

G2(s1, s2) =
1

2
cT ((s1 + s2)E −A)−1H (F (s1)⊗ F (s2) + F (s2)⊗ F (s1))

+
1

2
cT ((s1 + s2)E −A)−1N (F (s1) + F (s2))

= cT ((s1 + s2)E −A)−1H (F (s1)⊗ F (s2))

+
1

2
cT ((s1 + s2)E −A)−1N (F (s1) + F (s2)) .

Similarly, one can derive higher order transfer functions, see e.g. [11, 22].

3 Tensors and matricizations

In this section, we now want to briefly review some concepts known from ten-
sor theory, see e.g. [14]. This will be helpful in understanding the structure
of H and will yield some properties that are beneficial for model reduction
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purposes. Although the following ideas exist for arbitrary order, here it will
suffice to stick to the three-dimensional tensor case. Recall that in quadratic-
bilinear systems of the form (3), the matrix H ∈ Rn×n2

corresponds to the
terms of second order and thus denotes the Hessian tensor of the right hand
side. Moreover, we can interpret H as the so-called matricization of a tensor
H ∈ Rn3

. To be more specific, a tensor H is a vector indexed by a product
index set

I = I1 × I2 × I3, #Ij = n.

For such a tensor H, the t-matricization H(t) is defined as

H(t) ∈ RIt×It′ , H(t)
(iµ)µ∈t, (iµ)µ∈t′ := H(i1,i2,i3), t′ := {1, 2, 3}\t.

Example 3.1. For a given 3-tensor H(i1,i2,i3) with i1, i2, i3 ∈ {1, 2}, we have
the following matricizations:

H(1) =

[
H(1,1,1) H(1,2,1) H(1,1,2) H(1,2,2)

H(2,1,1) H(2,2,1) H(2,1,2) H(2,2,2)

]
,

H(2) =

[
H(1,1,1) H(2,1,1) H(1,1,2) H(2,1,2)

H(1,2,1) H(2,2,1) H(1,2,2) H(2,2,2)

]
,

H(3) =

[
H(1,1,1) H(2,1,1) H(1,2,1) H(2,2,1)

H(1,1,2) H(2,1,2) H(1,2,2) H(2,2,2)

]
.

In context of so-called multimoment matching of the transfer functions
of a quadratic-bilinear system, in the next section, we will be faced with
terms of the form wTH(u ⊗ v), with u, v, w ∈ Rn. At this point recall the
symmetric structure of the Hessian tensor discussed in Section 2. There
we have seen that, due to the structure of the terms in x(t) ⊗ x(t), we can
always rearrange the entries of H in such a way that it holds

H(u⊗ v) = H(v ⊗ u), (4)

for arbitrary u and v. Moreover, in terms of the above notation, if we as-
sociate H with the 1-matricization of H ∈ Rn3

, it follows that the two
remaining matricizations of the underlying tensor coincide, i.e H(2) = H(3)

and, thus,

wTH(u⊗ v) = uTH(2)(v ⊗ w) = uTH(3)(v ⊗ w).

The above identity will be the crucial tool in constructing two-sided projec-
tion methods for reducing a quadratic-bilinear control system of the form
(3). Furthermore, interpretation of H as a matricization of an underlying
tensor H has the additional advantage of computing the reduced-order sys-
tem in a beneficial way. Let us consider two matrices V,W ∈ Rn×n̂, with
orthonormal columns. The reduced-order model then is given as

Ê =WTEV, Â =WTAV, Ĥ =WTH(V ⊗ V), b̂ =WT b, ĉ = VT c.
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However, since V usually is a dense matrix, building V⊗V can easily become
computationally infeasible. Note that storing V ⊗ V requires O(n2 · n̂2)
memory. One way out obviously is given by the splitting

V ⊗ V = (V ⊗ In)(In̂ ⊗ V),

which will reduce the necessary storage complexity to O(n2 · n̂ + n · n̂2).
However, this still might be too expensive. On the other hand, if we use
the matricization idea, we can start with computing HW = WTH ∈ Rn̂×n2

and then proceed with reshaping HW into one of the two remaining matri-
cizations. This will lead to a matrix H̃W ∈ Rn×n̂n that we might multiply
with VT from the left in order to obtain H̄VW ∈ Rn̂×n̂n. Similarly, we can
now repeat this process and reshape H̄VW into the last matricization, fol-
lowed by a multiplication with VT . Finally, if we reshape the result into
the first matricization again, we end up with the same matrix we would
have obtained with WTH(V ⊗ V). Hence, we can compute the reduced sys-
tem Hessian without ever explicitly forming the matrix V ⊗ V, leading to a
storage complexity of only O(n · n̂).

4 Two-sided multimoment matching

In order to simplify the notation in this section, we will introduce the fol-
lowing two definitions concerning rational Krylov subspaces.

Definition 4.1. Let E,A ∈ Rn×n, b ∈ Rn, q ∈ N and σ ∈ C. Then we
define the associated rational Krylov subspace as

Kq (E,A, b, σ) := Kq
(
(σE −A)−1E, (σE −A)−1b

)
.

Definition 4.2. Let E,A ∈ Rn×n, j ∈ N and σ ∈ C. Then we define

AjE,σ :=
(
(σE −A)−1E

)j
(σE −A)−1

and

AT,jE,σ :=
(
(σET −AT )−1ET

)j
(σET −AT )−1.

Let us now come back to the actual topic of model order reduction.
Recall that for a given set of nonlinear dynamical equations of the form
(1), we want to construct an approximation which fulfills ŷ(t) ≈ y(t). As
we have seen in Section 2, instead of the general nonlinear system ΣNL,
for a large class of systems, we might consider a transformed equation of
quadratic-bilinear structure (3). Following the previous discussion, we know
that the input-output behavior in frequency domain can be characterized via
an infinite series of nested transfer functions

G1(s1), G2(s1, s2), G3(s1, s2, s3), . . .
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Consequently, if we can ensure that, up to a given prespecified order q, it
holds

Gi(s1, . . . , si) ≈ Ĝi(s1, . . . , si), i = 1, . . . , q,

we can certainly expect the outputs of the original and the reduced-order
model to be similar. Hence, let us have a closer look at the structure of
Gi(s1, . . . , si). Similar to [11], here we will restrict ourselves to the first two
transfer functions G1 and G2. Recall from the linear case that for a given
point σ, we can locally expand G1 in a Taylor series, see e.g. [1, 10]. In
more detail, we have

G1(s1) =
∞∑
i=0

mi(s1 − σ)i (5)

with so-called moments mi = (−1)i · cTAiE,σb. Thus, if we construct a
reduced-order system such that some of its moments coincide with the origi-
nal system, i.e. mi = m̂i, i = 1, . . . , q, the transfer functions of both systems
locally should be equal. To be more specific, since the moments mi are the
derivatives of G1 evaluated at σ, we have

∂iG1

∂si1
(σ) =

∂iĜ1

∂si1
(σ), i = 1, . . . , q. (6)

Similarly, we can expand the second transfer function of a quadratic-bilinear
system. Although there exists a lot of freedom in choosing a pair (σ1, σ2)
of interpolations points, here we stick to the case were both points coincide,
i.e. σ1 = σ2 = σ. Since the physical meaning of the frequency variables s1
and s2 is ambiguous anyway, this is not a too severe restriction. Moreover,
in the procedure described in Theorem 4.1, this assumption will allow to
recycle vectors for certain Krylov subspaces and thus reduce the required
complexity of the resulting algorithm. Accordingly, we then obtain the
following multivariate Taylor expansion of the second transfer function

G2(s1, s2) =
∑
i,j,k

mi,j,k(s1 + s2 − 2σ)i(s1 − σ)j(s2 − σ)k

+
∑
i,`1,`2

mi,`1,`2(s1 + s2 − 2σ)i
(

(s1 − σ)l + (s2 − σ)m
)
,

with multimoments given as

mi,j,k = (−1)i+j+k+1 · 1

2
cTAiE,2σ H

(
AjE,σb⊗A

k
E,σb+AkE,σb⊗A

j
E,σb

)
,

mi,`1,`2 = (−1)i+`1 · 1

2
cTAiE,2σ NA

`1
E,σb+ (−1)i+`2

1

2
· cTAiE,2σ NA

`2
E,σb.
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Analog to the transfer function G1 of the linear subsystem, it is easily seen
that mi,j,k and mi,`1,`2 basically determine the derivatives of the second
transfer function G2. Hence, it seems reasonable to construct a reduced-
order system in such a way that for a given pair of interpolation points (σ, σ),
the derivatives of Ĝ2 coincide with those of the original transfer function
up to a certain order q. The following result now states how to choose an
appropriate sequence of nested Krylov subspaces that extends the known
results for one-sided projections specified in [11].

Theorem 4.1. Let Σ = (E,A,H,N, b, c) denote a system of quadratic-
bilinear differential algebraic equations of dimension n. Let q1, q2 ∈ N with
q2 ≤ q1. Assume that a reduced QBDAE system is constructed by a Petrov-
Galerkin type projection

Ê =WTEV, Â =WTAV, Ĥ =WTHV ⊗ V,
N̂ =WTNV, b̂ =WT b, ĉ = VT c,

where span (V) and span (W) are orthonormal bases for the union of the
following column spaces

V1 = Kq1 (E,A, b, σ) , W1 = Kq1
(
ET , AT , c, 2σ

)
for i = 1 : q2

V i
2 = Kq2−i+1 (E,A,NV1(:, i), 2σ)

W i
2 = Kq2−i+1

(
ET , AT , NTW1(:, i), σ

)
for j = 1 : min(q2 − i+ 1, i)

V i,j
3 = Kq2−i−j+2 (E,A,HV1(:, i)⊗ V1(:, j), 2σ)

W i,j
3 = Kq2−i−j+2

(
ET , AT ,H(2)V1(:, i)⊗W1(:, j), σ

)
,

i.e.,

span (V) = span (V1) ∪
⋃
i

span
(
V i
2

)
∪
⋃
i,j

span
(
V i,j
3

)
,

span (W) = span (W1) ∪
⋃
i

span
(
W i

2

)
∪
⋃
i,j

span
(
W i,j

3

)
.

Then it holds:

∂iG1

∂si1
(σ) =

∂iĜ1

∂si1
(σ),

∂iG1

∂si1
(2σ) =

∂iĜ1

∂si1
(2σ), i = 0, . . . , q1 − 1,

∂i+j

∂si1s
j
2

G2(σ) =
∂i+j

∂si1s
j
2

Ĝ2(σ), i+ j ≤ 2q2 − 1.
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Proof. The assertion for the first transfer function immediately follows from
known moment matching results for linear systems, see e.g. [1]. Hence, we
only have to consider the second transfer function. Here, it suffices to focus
on the contributions of the quadratic part of the system. For the bilinear
contributions, we refer to e.g. [5], where two-sided multimoment matching
for these systems is studied. Using that

∂

∂y

(
A(y)−1

)
= −A(y)−1

∂A(y)

∂y
A(y)−1,

aside from constant factors, we thus have to concentrate on terms of the
form

cTAjE,2σH
(
AkE,σ b⊗A`E,σb

)
,

with j + k + ` ≤ 2q2 − 1 and, w.l.o.g., k ≥ `. From the results for the first
transfer function, we know that

VÂi
Ê,σ

b̂ = AiE,σb, WÂT,i
ÊT ,σ

ĉ = AT,iE,σc, (7)

for i = 1, . . . , q1 − 1. This yields the statement for j, k, ` ≤ q2 − 1. Let us
now assume that j = 2q2 − 1, k = ` = 0. Note that we have

VVTA0
E,2σH

(
A0
E,σb⊗A0

E,σb
)

= A0
E,2σH

(
A0
E,σb⊗A0

E,σb
)
. (8)

This follows from the construction of span (V) and the property of V being
orthonormal. Next, it holds

VÂ0
Ê,2σ

Ĥ
(
Â0
Ê,σ

b̂⊗ Â0
Ê,σ

b̂
)

= VÂ0
Ê,2σ
WTH

(
VÂ0

Ê,σ
b̂⊗ VÂ0

Ê,σ
b̂
)

= VÂ0
Ê,2σ
WTH

(
A0
E,σb⊗A0

E,σb
)

= VÂ0
Ê,2σ
WT

(
A0
E,2σ

)−1A0
E,2σH

(
A0
E,σb⊗A0

E,σb
)

= VÂ0
Ê,2σ
WT

(
A0
E,2σ

)−1 VVTA0
E,2σH

(
A0
E,σb⊗A0

E,σb
)

= VVTA0
E,2σH

(
A0
E,σb⊗A0

E,σb
)

= A0
E,2σH

(
A0
E,σb⊗A0

E,σb
)
.

With the same arguments, one can iteratively show that

VÂi
Ê,2σ

Ĥ
(
Â0
Ê,σ

b̂⊗ Â0
Ê,σ

b̂
)

= AiE,2σH
(
A0
E,σb⊗A0

E,σb
)
, (9)

for i = 0, . . . , q2 − 1. Hence, let us consider

ĉT Â2q2−1
Ê,2σ

Ĥ
(
Â0
Ê,σ

b̂⊗ Â0
Ê,σ

b̂
)
.

11



By Definition 4.2, we have

Â2q2−1
Ê,2σ

=
(

(2σÊ − Â)−1Ê
)q2−1 (

(2σÊ − Â)−1Ê
)(

(2σÊ − Â)−1Ê
)q2−1

= Âq2−1
Ê,2σ
WTEVÂq2−1

Ê,2σ
.

Thus, it follows

ĉT Â2q2−1
Ê,2σ

Ĥ
(
Â0
Ê,σ

b̂⊗ Â0
Ê,σ

b̂
)

= ĉT Âq2−1
Ê,2σ
WTEVÂq2−1

Ê,2σ
Ĥ
(
Â0
Ê,σ

b̂⊗ Â0
Ê,σ

b̂
)

From (7) and (9), we can conclude that this is equal to

cTAq2−1E,2σEA
q2−1
E,2σH

(
A0
E,σb⊗A0

E,σb
)
.

However, this is the same as

cTA2q2−1
E,2σ H

(
A0
E,σb⊗A0

E,σb
)
.

In the following, we will now assume that k = 2q2 − 1, j = ` = 0. Analog to
(8), one easily obtains

WWTAT,0E,σH
(2)
(
A0
E,σb⊗A

T,0
E,σc

)
= AT,0E,σH

(2)
(
A0
E,σb⊗A

T,0
E,σc

)
.

Again, this is true since

AT,0E,σH
(2)
(
A0
E,σb⊗A

T,0
E,σc

)
∈ span (W)

and WTW = I. With this in mind, we subsequently observe

WÂT,0
Ê,σ
VTH(2)

(
VÂ0

Ê,σ
b̂⊗WÂT,0

Ê,2σ
ĉ
)

=WÂT,0
Ê,σ
VTH(2)

(
A0
E,σb⊗A

T,0
E,2σc

)
=WÂT,0

Ê,σ
VT
(
AT,0E,σ

)−1
AT,0E,σH

(2)
(
A0
E,σb⊗A

T,0
E,2σc

)
=WÂT,0

Ê,σ
VT
(
AT,0E,σ

)−1
WWTAT,0E,σH

(2)
(
A0
E,σb⊗A

T,0
E,2σc

)
=WWTAT,0E,σH

(2)
(
A0
E,σb⊗A

T,0
E,2σc

)
= AT,0E,σH

(2)
(
A0
E,σb⊗A

T,0
E,2σc

)
.

Iteratively using the above arguments, we finally get

WÂT,i
Ê,σ
VTH(2)

(
VÂ0

Ê,σ
b̂⊗WÂT,0

Ê,2σ
ĉ
)

= AT,iE,σH
(2)
(
A0
E,σb⊗A

T,0
E,2σc

)
,

(10)

12



for i = 0, . . . , q2 − 1. What we have to consider for k = 2q2 − 1, j = ` = 0 is

ĉT Â0
Ê,2σ

Ĥ
(
Â2q2−1
Ê,σ

b̂⊗ Â0
Ê,σ

b̂
)
.

According to Definition 4.2 and (7) and (9), this term is rewritten as

ĉT Â0
Ê,2σ

Ĥ
(
Âq2−1
Ê,σ
WTEVÂq2−1

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)

= ĉT Â0
Ê,2σ

Ĥ
(
Âq2−1
Ê,σ
WTEAq2−1E,σ b⊗ Â

0
Ê,σ

b̂
)

= ĉT Â0
Ê,2σ
WTH

(
VÂq2−1

Ê,σ
WTEAq2−1E,σ b⊗ VÂ

0
Ê,σ

b̂
)

= bTAT,q2−1E,σ ETWÂT,q2−1
Ê,σ

VTH(2)
(
VÂ0

Ê,σ
b̂⊗WÂT,0

Ê,2σ
ĉ
)

= bTAT,q2−1E,σ ETAT,q2−1E,σ H(2)
(
A0
E,σb⊗A

T,0
E,2σc

)
= cTA0

E,2σH
(
Aq2−1E,σ EA

q2−1
E,σ b⊗A

0
E,σb

)
= cTA0

E,2σH
(
A2q2−1
E,σ b⊗A0

E,σb
)
.

Since the previous extremal cases contain the essential ideas, we omit a
detailed derivation for the remaining combinations j, k, ` with j + k + ` ≤
2q2 − 1.

To sum up, we have seen that we indeed can construct two-sided projec-
tion methods for systems of QBDAEs. At least theoretically, making use of
such a projection essentially doubles the number of interpolated derivatives
of the first two transfer functions and thus should lead to better approxima-
tions by the reduced-order model. However, as has already been indicated
in [5], in context of nonlinear model reduction, the benefit of matching more
multimoments might come along with a loss of numerical stability and thus
has to be treated with care.

5 Numerical examples

In this section, we now want to study the procedure specified in Theo-
rem 4.1 by means of some numerical examples. Besides a very common
and well-known model reduction benchmark arising in circuit theory, we
investigate different large-scale ODEs resulting from the semi-discretization
of several nonlinear partial differential equations. Here, we refrain from
sophisticated finite element discretizations and instead use a simple finite
difference scheme for all test cases.

In general, moment matching type methods only allow to make an as-
sertion on the approximation of the input-output behavior of a dynamical
system. However, we will see that one can often reconstruct the full state

13
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Figure 1: A nonlinear RC circuit. Comparison of moment matching
methods and POD subject to boundary control u(t) = e−t.

vector x ≈ Vx̂ by a prolongation with the projection matrix V. Moreover,
for some problems one might only be interested in the steady state behavior
without controlling the process. In this context, we investigate the approxi-
mation quality for two uncontrolled systems with nonzero initial condition.

All simulations were generated on an Intel R© Dual-Core CPU E5400,
2 MB cache, 3 GB RAM, Ubuntu Linux 10.04 (i686), MATLAB R© Version
7.11.0 (R2010b) 32-bit (glnx86).

5.1 A nonlinear RC circuit

The first example we want to study is a scalable nonlinear transmission line
circuit which is one of the standard test examples in the context of moment
matching based reduction techniques, see e.g. [3, 5, 11, 19, 20]. Since the
applications have been studied and discussed in the given references, here
we will refrain from a more detailed analysis. However, we want to point out
that the nonlinearities result from the diode I-V characteristic iD = e40vD −
1. As has been discussed in [11], by a suitable change of state variables,
the dynamics can be described by a quadratic-bilinear control systems of
dimension 2n, where n denotes the number of capacitors and resistors of the
circuit, respectively.

In Figure 1, we see a comparison between the new method discussed
here and the classical one-sided method discussed in [11]. Moreover, we
compute a POD-based approximation by taking 100 snapshots of the original
solution for the input excitation u(t) = e−t. Obviously, the POD reduced-
order model performs the best. However, the two-sided method exhibits a
comparable approximation quality while the one-sided approach performs
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Figure 2: A nonlinear RC circuit. Comparison of moment matching
methods and POD subject to boundary control u(t) = (cos(2π t

10) + 1)/2.

the worst. All reduced-order models are of dimension n̂ = 11. The moment
matching based techniques are generated according to Theorem 4.1 with
values σ = 1, q1 = 5, q2 = 2.

In order to test our method with respect to input variations, in Figure
2, we show the approximations for the input signal u(t) = (cos(2π t

10) +
1)/2. Clearly, the POD approximation shows a significant deviation from
the original output. On the other side, the two-sided method still reflects
the dynamics very accurately and also outperforms the one-sided technique
as well.

5.2 Burgers’ equation

Let us now consider the one-dimensional Burgers’ equation on Ω = (0, 1)×
(0, T ), leading to the following set of equations

vt + v · vx = ν · vxx, in (0, 1)× (0, T ), (11)

αv(0, ·) + βvx(0, ·) = u(t), in (0, T ), (12)

vx(1, ·) = 0, in (0, T ), (13)

v(x, 0) = v0(x), in (0, 1), (14)

where ν is the viscosity parameter and v0(x) denotes the initial condition
of the system. This equation can be seen as a standard numerical test
example for nonlinear model reduction and optimal control, respectively,
and has already been extensively studied in e.g. [15, 16]. In the context of
this paper, the above PDE is of particular interest since a semi-discretization
automatically leads to a quadratic-bilinear control system of the form (3).
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Figure 3: Burgers’ equation. Comparison of moment matching methods
and POD subject to boundary control (ν = 0.02).

5.2.1 Boundary control

Let us assume that the equation is subject to a boundary control on the left
side of the interval, i.e. α = 1 and β = 0. Furthermore, we assume the initial
state of the system to be zero, i.e. v0(x) = 0. For the viscosity parameter
ν we start by choosing the value 0.02. However, while for larger values of ν,
the accuracy of the reduced-order models often become better, decreasing ν
makes the model more difficult to reduce.

In Figure 3, we show the results for the reduction of an original system
which was spatially discretized using n = 1000 points and T = (0, 10). The
reduced-order models are of dimension n̂ = 9 and are generated by the pro-
cedure specified in Theorem 4.1 with σ = 0.0288, q1 = 4 and q2 = 2. The
specific interpolation point σ is chosen to minimize the H2-optimal model
reduction problem for the linearized system, see e.g. [12]. This minimiza-
tion is done by the iterative rational Krylov algorithm from [12]. For the
one-sided projection method, we simply set W = V. The measured output
of the system is assumed to be the value at the right boundary, leading to an

output vector c =
[
0 . . . 0 1

]T
. Besides a comparison between one-sided

and two-sided projection, we compute a POD approximation by making use
of the SVD of the solution matrix of the original problem over the whole
interval range. The 100 snapshots are chosen uniformly within this interval.
As can be seen in Figure 3, for the control u(t) = cos(πt), all approaches
faithfully reproduce the dynamics of the original system although the one-
sided approach exhibits some smaller oscillations. In order to investigate the
methods with regard to robustness to input variations, we slightly change
the control to u(t) = 2 sin(πt). Increasing the amplitude of u(t) seems to
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Figure 4: Burgers’ equation. Comparison of moment matching methods
and POD subject to boundary control (ν = 0.01).

make the reduction process more difficult. For the POD approximation, we
use the projection subspace derived by the first input signal. As expected,
we see that this results in a less accurate reduced-order model indicating the
input dependency of POD. On the other hand, for the two-sided projection
we observe overshoots at the sharper fronts of the curve. Nevertheless, al-
together for this parameter configuration of σ, q1, q2, we can conclude that
the new method performs well and seems to outperform the one-sided pro-
jection. Though, it has to be mentioned that for the two-sided approach
many of the parameter constellations lead to instable reduced-order mod-
els. A similar observation already was discussed in [5]. Hence, a reasonable
choice of the interpolation points together with the order of the matched
derivatives seems to be an important aspect of further research.

5.2.2 The uncontrolled case

In order to test the efficiency of the reduction method, we also want to
investigate the performance when the system under consideration exhibits
a non-zero initial condition. In view of the above mentioned setting, we use
α = 0, β = 1 and v0(x) = 1+sin((2x+1)π). After a semi-discretization with
n = 1000, the system is rewritten to a system with zero initial condition,
leading to a single-input and single-output (SISO) QBDAE system with
constant input vector u(t). Again, the viscosity parameter is ν = 0.01 while
we choose T = (0, 2). In contrast to the previous example, we now consider
the entire state x. Since we want to compare the results for a two-sided
reduction method, we artificially have to choose a certain output matrix
c such that we can run the procedure from Theorem 4.1. Here, we use
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Figure 5: Comparison of uncontrolled solutions for the Burgers equation.

c = 1
k

[
1 . . . 1

]T
, i.e. the average value of v(x, t) on the interval (0, 1).

In Figure 5, we show the different steady state solutions for the original
system (Figure 5(a)), the reduced-order system obtained by an orthogonal
projection (Figure 5(b)) and the reduced-order system resulting from an
oblique projection (Figure 5(c)). For the reduction process we choose σ =
5, q1 = 10 and q2 = 2, leading to reduced-order models of dimension n̂ = 13.
Here, the interpolation point now is chosen as the one performing the best
among several random choices. Obviously, the one-sided approach deviates
significantly from the original solution, while the two-sided method produces
some undesired peaks. However, one still has to keep in mind that we cannot
make a theoretical assertion on the reconstruction of a state vector but only
on the input-output behavior of the system. If we keep this in mind, the
approximations still might be appropriate for the analysis of the uncontrolled
dynamics. Note that we do not compare the results with POD at this point
since we do have a specific constant input which does not vary. Hence, it is
clear that POD will outperform the moment matching approaches due to its
intrinsic properties. To be more precise, recall that for a given input which
is not subject to variation, the approximation given by POD is optimal due
the properties of the singular value decomposition.
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5.3 Chafee-Infante equation

Next, we consider the one-dimensional Chafee-Infante equation. For more
details on this nonlinear PDE, we refer to [7, 13]. The equation exhibits a
cubic nonlinearity and is subject to similar initial and boundary conditions
as the Burgers’ equation, namely

vt + v3 = vxx + v in (0, 1)× (0, T ), (15)

αv(0, ·) + βvx(0, ·) = u(t), in (0, T ), (16)

vx(1, ·) = 0, in (0, T ), (17)

v(x, 0) = v0(x), in (0, 1). (18)

Following the discussion in [13], we once more use a finite difference scheme
for the spatial discretization. The resulting system of nonlinear ODEs then
has to be transformed to quadratic-bilinear structure. This is done by intro-
ducing a new state variable wi = v2i . Computing the derivative of wi leads
to ẇi = 2viv̇i which can be rewritten in the desired QBDAE form (3).

5.3.1 Boundary control

Completely analog to Section 5.2, we start with the boundary controlled
equation on T = (0, 10) and a zero initial condition v0(x) = 0. We further use
the same output, i.e. the value at the right boundary, leading to an output

vector c =
[
0 . . . 0 1

]T
. The discretization was done with n = 750

points. Hence, after transformation to QBDAE form, the system consists of
2 · 750 states.

The reductions are generated with σ = 1, q1 = 4 and q2 = 3, yielding
systems of dimension n̂ = 9. Similar to the Burgers’ equation, we run IRKA
in order to get an H2-optimal interpolation point for the linearized system,
leading to the specific choice σ = 1. Again, in Figure 6, we visualize the
approximations of our new method and compare them with a one-sided
projection as well as POD. For the input u(t) = (1 + cos(πt))/2, we see
that the new approach clearly outperforms the one-sided projection. On the
other hand, it cannot compete with POD.

Now we slightly change the input signal to u(t) = 25 · (1 + sin(πt))/2.
The corresponding results are given in Figure 7. Though a bit surprising, we
observe that the reduced order model for the one-sided approach completely
fails in reproducing the original dynamics. Once more, we do not vary the
projection subspace of POD but simply use the one for the first test signal
specified above. Here, we now see that POD indeed also has problems in
the approximation of the maxima of the transient response which is not the
case for the two-sided approach.

19



0 2 4 6 8 10

0

0.5

1

Time (t)

y
(t

)

Transient response

0 2 4 6 8 10
10−12

10−7

10−2

Time (t)

Relative error

Orig. system, n = 1500 1-sided proj., n̂ = 9
2-sided proj., n̂ = 9 POD, n̂ = 9

Figure 6: Chafee-Infante equation. Comparison of moment matching
methods and POD subject to boundary control u(t) = (1 + cos(πt))/2.

5.3.2 The uncontrolled case

For the uncontrolled case, we set α = 0, β = 1 and implement a non-zero
initial condition which was already discussed in [13]. To be more precise,
we have v0(x) = 1

10 + 7
10 · sin

2((2 · x+ 1)π). In Figure 8, we compare the full
state vector for the time interval T = (0, 0.02) for a semi-discretization with
n = 750. The reduced-order systems are of dimension n̂ = 10 and result
from the model reduction parameters σ = 3, q1 = 3, q2 = 3, which basically
are chosen at random. As we can see, both approaches yield very accurate
reconstructions. However, due to several parameter studies, it seems that the
one-sided projection method performs more robust with respect to stability
issues of the reduced-order model.

5.4 FitzHugh-Nagumo system

Finally, as a last example we study the FitzHugh-Nagumo system modeling
activation and deactivation dynamics of a spiking neuron which has been
under consideration in the context of POD-based model reduction in [8].
Formally, the model is described by the following system of coupled nonlinear
PDEs

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + g, (19)

wt(x, t) = hv(x, t)− γw(x, t) + g, (20)
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Figure 7: Chafee-Infante equation. Comparison of moment matching
methods and POD subject to boundary control u(t) = 25 · (1 + sin(πt))/2.

with f(v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, 1], (21)

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0, (22)

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 5 · 104t3 exp(−15t).
Again, one can easily use a finite difference scheme, resulting in a system of
nonlinear (cubic) ODEs. Similar to the Chafee-Infante equation, introducing
an additional dynamical variable zi = v2i allows to reformulate the dynamics
as a system of QBDAEs of dimension 3 ·n, where n is the number of degrees
of freedom used in the finite difference scheme. However, in contrast to the
first two examples, the system no longer is of SISO type since the constant
parameter g as well as the stimulus i0(t) have to be incorporated within
the modeling process. In order to apply the previously discussed reduction
techniques, we run the corresponding algorithm once for each column of the
input vector.

Here, we follow the setting in [8] and use a discretization with n = 1000
points. In Figure 9, we show the reduction results measured in terms of the
limit cycle behavior which is a typical phenomenon when modeling neuronal
dynamics. For the comparison between one-sided and two-sided projections,
we assume the output matrix C ∈ R2×3n to sort out the values v(0, t) and
w(0, t), i.e. the limit cycle at the left boundary. The results shown in
Figure 9(a) are constructed with parameter values σ = 100, q1 = 2, q2 = 2
and the reduced-order models both are of dimension n̂ = 14. Although the
approximation of the two-sided reduced model performs better, based on
this specific example we cannot recommend using the new approach. This
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Figure 8: Steady state solution for the Chafee-Infante equation

is simply due to the fact that nearly all generated reduced-order models
become instable and it does not seem to be obvious how to circumvent this
significant drawback. On the other hand, most reductions obtained by using
random interpolation points yield accurate approximations for the one-sided
technique. For example, in Figure 9(b) we plot the limit cycle behavior
similar to the one studied in [8] for a discretization of n = 1000 and the
parameter setting σ = 14, q1 = 5, q2 = 2 and a reduced-order system of
dimension n̂ = 18. Although the results are not as accurate as in [8], where
a sufficient reduction to a system of dimension n̂ = 10 is reported, we are
certainly able to construct an appropriate reduced-order model.

6 Conclusions

In this paper, we have studied a recently introduced new approach for model
order reduction of nonlinear control systems. In contrast to other methods
in this field of research, the technique relies on generalized moment match-
ing and thus is input independent, i.e., no training trajectories are needed.
Besides a slight extension of existing results for the case of σ = 0, we have
shown how the sequence of nested Krylov subspaces has to be chosen in or-
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Figure 9: FitzHugh-Nagumo system. Limit cycle behavior for original
and reduced-order systems.

der to interpolate at arbitrary interpolation points σ 6= 0. Moreover, we used
some basic tools and properties known from tensor theory in order to show
how one can improve the efficiency of the necessary projection step leading
to the reduced-order system. In particular, we have seen that one can avoid
building up the matrix V ⊗ V which easily might exceed the given memory
capacity. The main contribution of this paper then is the construction of an
appropriate two-sided projection method which theoretically allows to dou-
ble the number of interpolated derivatives of the first two transfer functions.
However, here one has to be careful in applying the new method since the
gain of accuracy sometimes destroys the stability of the underlying system
making a reduction unreliable. Nevertheless, by means of a standard non-
linear model reduction test example and several nonlinear partial differen-
tial equations, we have proven that the moment matching approach indeed
seems to have potential and even allows to reconstruct typical dynamics
observed in fluid mechanics and neuron modeling, respectively. Moreover,
for three examples we could show that the new method can compete with
proper orthogonal decomposition and, in some cases, might be advantageous
if the input signal is known to exhibit larger variations. Hence, it might be
an interesting field of further research. In particular, the study of suitable
or somehow optimal interpolation points seems to be an important issue.
Similarly, investigating possible structure preserving methods which pre-
vent from constructing unstable reduced-order models should be one of the
major challenges in order to improve the applicability of the new method.
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