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NUMERICAL SOLUTION OF THE INFINITE-DIMENSIONAL
LQR-PROBLEM AND THE ASSOCIATED DIFFERENTIAL RICCATI

EQUATIONS

PETER BENNER∗ AND HERMANN MENA†

Abstract. The numerical analysis of linear quadratic regulator design problems for parabolic
partial differential equations requires solving large-scale Riccati equations. In the finite time horizon
case, the differential Riccati equation (DRE) arises. Typically, the coefficient matrices of the resulting
DRE have a given structure,e.g., sparse, symmetric or low rank. Moreover, in most control problems,
fast and slow modes are present. This implies that the associated DRE will be fairly stiff. Therefore,
implicit schemes have to be used to solve such DREs numerically. In this paper we derive efficient
numerical methods for solving DREs capable of exploiting this structure, which are based on a
matrix-valued implementation of the BDF and Rosenbrock methods. We show that these methods
are particularly suitable for large-scale problems by working only on low-rank factors of the solutions.
Step size and order control strategies can also be implemented based only on information contained
in the solution factors. Finally, we briefly show that within a Galerkin projection framework the
solutions of the finite-dimensional DREs converge in the strong operator topology to the solutions
of the infinite-dimensional DREs. The performance of each of these methods is tested in numerical
experiments.

Key words. DRE, large-scale, Rosenbrock, BDF methods

1. Introduction. The differential Riccati equation (DRE) is one of the most
deeply studied nonlinear matrix differential equations arising in optimal control, op-
timal filtering, H∞ control of linear-time varying systems, differential games, etc.
[1, 28, 37]). In the literature, there is a large variety of approaches to compute the
solution of the DRE, e.g., [16, 20]), however, none of these methods seems to be suit-
able for large-scale control problems, since the computational effort grows like n3,
where n is the dimension of the state of the control system. In this paper we con-
sider the numerical solution of large-scale DREs arising in optimal control problems
for parabolic partial differential equations. Hence, let consider nonlinear parabolic
diffusion-convection and diffusion-reaction systems of the form

∂x
∂t

+∇ · (c(x)− k(∇x)) + q(x) = Bu(t), t ∈ [0, Tf ], (1.1)

in Ω ⊂ Rd, d = 1, 2, 3, with appropriate initial and boundary conditions. The equation
can be split into the convective term c, the diffusive part k and the uncontrolled
reaction given by q. The state x of the system depends on ξ ∈ Ω and the time
t ∈ [0, Tf ] and is denoted by x(ξ, t). Moreover, we will focus on applications where
the control u(t) is assumed to depend only on the time t ∈ [0, Tf ], while the linear
operator B may depend on ξ ∈ Ω.
If (1.1) is linear, then a variational formulation leads to an abstract Cauchy problem
for a linear evolution equation of the form

ẋ = Ax + Bu, x(0) = x0 ∈ H, (1.2)

for linear operators A : dom(A) ⊂ H → H, B : U → H, C : H → Y; where the
state space H, the observation space Y, and the control space U are assumed to be
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separable Hilbert spaces. Additionally, U is assumed to be finite-dimensional, i.e.,
there is only a finite number of independent control inputs to (1.1). Here C maps the
states of the system into its outputs, i.e., y = Cx.
If (1.1) is nonlinear, model predictive control technics can be applied [25, 26]. There
the equation is linearized at certain working points or around reference trajectories
and linear problems for equations as in (1.2) have to be solved on subintervals of [0, Tf ].

Let us consider that the cost functional Ĵ(x,u) is given in a quadratic form, i.e.,

J(u) =
1
2

Tf∫
0

〈x,Qx〉H + 〈u,Ru〉U dt+ 〈xTf
,GxTf

〉H, (1.3)

where Q, G are self-adjoint operators on the state space H, R is a self-adjoint positive
definitive operator on the control space U , xTf

denotes x(., Tf ) and Tf <∞. As often
only a few measurements of the state are available as the outputs of the system, the
operator Q := C∗Q̃C generally is only positive semidefinite as well as G. If the
standard assumptions that: A is the infinitesimal generator of a strongly continuous
semigroup T (t), B,C are linear bounded operators and for every initial value there
exists an admissible control u ∈ L2(0,∞;U) hold, then the solution of the abstract
LQR problem can be obtained analogously to the finite-dimensional case [18, 22, 31,
43] as a feedback control

u∗(t) = −R−1B∗X∞(t)x∗(t), (1.4)

where X∞(t) represents the unique nonnegative solution of the differential operator
Riccati equation

Ẋ(t) = −(C∗QC + A∗X(t) + X(t)A−X(t)BR−1B∗X(t)) (1.5)

with terminal condition XTf
= G. Most of the required conditions, particularly the

restrictive assumption that B is bounded, can be weakened [30, 31, 39].
In order to solve the infinite-dimensional LQR problem numerically, we use a Galerkin
projection of the variational formulation of (1.1) onto a finite-dimensional space HN
spanned by a finite set of basis functions and then solve the discrete problem. Hence,
we need to solve the large-scale DREs resulting from the semi-discretization. Typi-
cally, the coefficient matrices of the DRE have a given structure (e.g. sparse, sym-
metric, or low rank). Moreover, we expect to treat stiff DREs, so we will focus on
methods that can efficiently deal with stiffness. Here, we derive numerical methods
capable of exploiting this structure. Particularly, we propose efficient matrix val-
ued implementations of the backward differentiation formulae (BDF) and Rosenbrock
type methods based on a low rank approximation of the solution. Step size and order
control strategies can also be implemented based only on information contained in
the solution factors.
The task of solving large-scale DREs has also become an important issue in nonlinear
optimal control problems of tracking type and stabilization. Linear-quadratic Gaus-
sian (LQG) design on short time intervals is the main computational ingredient in
recently proposed receding horizon (RHC) and model predictive control (MPC) ap-
proaches. There, linear problems have to be solved on the time frames [25, 26, 27].
This paper is organized as follows: in the next section we present an approximation
framework for computation of Riccati operators. After that, efficient matrix valued
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algorithms of the BDF and Rosenbrock methods for large-scale DREs are proposed
in Section 3. The crucial question of suitable stepsize and order selection strategies
is also addressed. In Section 4 numerical examples for linear and nonlinear control
problems show the performance of the methods. Some conclusions and outlook are
summarized in 5.

2. Theoretical aspects. The linear-quadratic control problem for infinite-di-
mensional systems has been deeply studied [11, 12, 31, 32]. Particularly, approxima-
tion schemes for Riccati equations in infinite-dimensional spaces have been proposed
in the last years. Chronologically, the first reference is Gibson [22], who presented
an approximation technique to reduce the inherently infinite-dimensional problems
to finite-dimensional ones using Riccati integral equations. The result proposed by
Gibson requires the approximating problems to be defined on the entire original state
space, this leads to some technical difficulties. Assuming that the dynamics is modeled
by an analytic semigroup, Banks/Kunisch [5] avoid these difficulties for the infinite-
time horizon case. Moreover, convergence rates for some types of problems have been
proved [29, 31, 32].
For the finite-time horizon case, we propose an approximation scheme in terms of dif-
ferential Riccati equations. The finite-dimensional approximating problems are each
defined on a subspace of the state space of the original problem. The proof follows
from the abstract theory developed by Gibson [22], and from the ideas for the infinite-
time horizon case presented in [5]. The result that is shown here can be seen as a
corollary of the ones proposed by Gibson [22] and Banks/Kunisch [5]. However, for
completeness we included it.
If we semi-discretize an infinite-dimensional linear-quadratic regulator (LQR) prob-
lem in space, we obtain a finite-dimensional LQR problem. In this section, for the
finite-time horizon case, we study the convergence of the finite-dimensional Riccati
operators (i.e., the operators related to a matrix DRE) to the infinite-dimensional
ones. For simplicity we consider first the autonomous case, i.e., the case in which the
coefficients of the partial differential equation are time-invariant.
Let H and U be Hilbert spaces and assume that A: dom(A)⊂ H → H is the infinites-
imal generator of a strongly continuous semigroup T (t) on H, B ∈ L(U ,H).
We consider a control system in H given by (1.2) and the cost functional (1.3). We
assume that (1.2) has a unique solution [31, 19]. Here Q := C∗Q̃C, G ∈ L(H),
R ∈ L(U) are self-adjoint with Q̃ ≥ 0, R > 0, G ≥ 0 and xTf

denotes x(., Tf ).
We will say that a function u ∈ L2(0, Tf ;U) is an admissible control for the initial
state x0 ∈ H if J(x0,u) in (1.3) is finite. Let us consider the operator differential
Riccati equation. We define a solution of (1.5) in the interval [0, Tf ] as an operator
Π(t) such that Π(Tf ) = G and for all ϕ, ψ ∈ dom(A), 〈ϕ,Π(.)ψ〉 is differentiable in
[0, Tf ] and satisfies the equation,

d
dt 〈ϕ,Π(t)ψ〉 = −(〈ϕ,Qψ〉+ 〈Aϕ,Π(t)ψ〉+ 〈Π(t)ϕ,Aψ〉

−〈Π(t)BR−1B∗Π(t)ϕ,ψ〉) (2.1)

as is defined in [11, Def. 2.1, pp. 142]. Note that any solution of (1.5) is self-
adjoint, and that Π(.) is nonnegative if G is. In order to solve numerically the
operator differential Riccati equation for practical problems, we have to find suitable
finite-dimension approximations to its solution. Therefore, let HN , N = 1, 2 . . . ,
be a sequence of finite-dimensional linear subspaces of H and PN : H → HN be
the canonical orthogonal projections. Assume that TN (t) is a sequence of strongly
continuous semigroups on HN with infinitesimal generator AN ∈ L(HN ). Given
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operators BN ∈ L(U ,HN ), GN , QN ∈ L(HN ), GN ≥ 0, we consider the family of
linear-quadratic regulator problems on HN :

Minimize:
J(xN0 ,u) :=

∫ Tf

0
〈xN , QNxN 〉HN + 〈u,Ru〉Udt

+〈xNTf
, GNxNTf

〉NH.
with respect to

ẋN (t) = ANxN (t) +BNu(t), t > 0,
xN (0) = xN0 := PNx0.

(RN )

(RN ) is a linear regulator problem in the finite-dimensional state space HN . If QN ≥
0, R > 0, then the optimal control for (RN ) is given in feedback form by

u∗(t)N = −R−1BN∗ΠN (t)xN∗ (t)

where ΠN (t) ∈ L(HN ) is the unique nonnegative self-adjoint solution of the differen-
tial Riccati equation:

Π̇N (t) = −(QN +AN∗ΠN (t) + ΠN (t)AN −ΠN (t)BNR−1BN∗ΠN (t)),
ΠN (Tf ) = GN ,

(2.2)

and xN∗ (t) is the corresponding solution of the state equation with u(t) = u∗(t)N , [1].
Let us now consider a related family of regulator problems, in which the operators
are defined on the whole space,

Minimize:
J(xN0 ,u) :=

∫ Tf

0
〈xN , Q̄NxN 〉H + 〈u,Ru〉Udt

+〈xNTf
, ḠNxNTf

〉H
with respect to

ẋN (t) = ĀNxN (t) +BNu(t), t > 0,
xN (0) = xN0 := PNx0,

(R̄N )

where ḠN := GNPN , Q̄N := QNPN , ĀN := ANPN on H. The problem (R̄N ) is
considered as a problem in H even though we note that xN (t) ∈ HN for each t, so
that Q̄NxN (t) = QNxN (t) and ḠNxN (tf ) = GNxN (tf ).
The optimal control is given in terms of the solution of

˙̄Π
N

(t) = −(Q̄N + ĀN∗Π̄N (t) + Π̄N (t)ĀN − Π̄N (t)BNR−1BN∗Π̄N (t)),
Π̄N (Tf ) = ḠN .

(2.3)

Note that

Π̄N (t) = ΠN (t)PN . (2.4)

In fact, if in (2.2) we replace QN , AN , GN by QNPN , ANPN , GNPN , respectively,
then it can be considered as an equation on H. Moreover, (2.3) and (2.2) are the
same equation and ΠN (t)PN is an extension of ΠN (t) ∈ L(HN ) to the whole space
H, so (2.4) holds.
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2.1. Convergence statement. The convergence result of this section is essen-
tially contained in [22]. The difference here, similar to [5], is that each of the finite-
dimensional approximation problems are defined in a subspace of the state space,
whereas in [22] the approximation problems have to be defined in the entire state
space. Then, the result is formulated using (RN ) rather than (R̄N ). This avoids
some technical difficulties as explained in [5].
We will assume, similar to [5, (H2)], for N →∞

(i) For all ϕ ∈ H it holds that TN (t)PNϕ→ T (t)ϕ uniformly
on any bounded subinterval of [0, Tf ].

(ii) For all φ ∈ H it holds that TN (t)∗PNφ→ T (t)∗φ uniformly
on any bounded subinterval of [0, Tf ].

(iii) For all v ∈ U it holds BNv → Bv and for all ϕ ∈ H it holds
that BN∗PNϕ→ B∗ϕ.

(iv) For all ϕ ∈ H it holds that QNPNϕ→ Qϕ.
(v) For all ϕ ∈ H it holds that GNPNϕ→ Gϕ.

(H)

Assumption (ii) implies that PNϕ→ ϕ for all ϕ ∈ H, in this sense the subspaces HN
approximate H.

Theorem 2.1. Let (H) hold, then for N →∞

uN → u uniformly on [0, Tf ],
xN → x uniformly on [0, Tf ],

and for ϕ ∈ H,

ΠN (t)PNϕ→ Π(t)ϕ uniformly in t ∈ [0, Tf ]. (2.5)

Here uN , u, xN , x denote optimal controls and trajectories of the problems (RN ) and
the infinite dimensional problem, respectively.

Proof. Let Π(t) be the unique element of B∞(0,Tf ;H,H), is the set of all such
functions essentially bounded on [0, Tf ], which satisfies the first Riccati integral equa-
tion. By calculations in [22, pp. 544-546], Π(t) is also the unique solution of the
Riccati integral equation of Curtain and Pritchard [17]. Moreover, Π(t) uniquely
satisfies the infinite-dimensional differential Riccati equation (2.1). Let Π̄N (t) be the
Riccati operator related to the problem (R̄N ). By (2.4) the theorem is a direct con-
sequence of the result proposed in [22, Theorem 5.1, p. 560] �.
We point out that it is possible to prove an analogue to Theorem 2.1 without the
requirement HN ⊆ H. If we assume that (H, ‖.‖), (HN , ‖.‖N ) are Hilbert spaces (in
general HN * H), with T (t), TN (t) strongly continuous semigroups on H and HN ,
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respectively, and if we modify hypotheses (H), for N →∞, to:

(0) There exist bounded linear operators PN : H → HN
satisfying

∥∥PNφ∥∥
N
→ ‖φ‖ for all φ ∈ H.

(i) There exist constants M, ω such that
∥∥TN (t)

∥∥
N
≤Meωt

for all N and for each φ ∈ H,
∥∥TN (t)PNφ− PNT (t)φ

∥∥
N
→ 0

as N →∞,uniformly on any bounded subinterval of [0, Tf ].
(ii) For all φ ∈ H it holds

∥∥TN∗(t)PNφ− PNT ∗(t)φ∥∥
N
→ 0 as

N →∞, uniformly on any bounded subinterval of [0, Tf ].
(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN )

satisfy
∥∥BNv − PNBv

∥∥
N
→ 0 and for all ϕ ∈ H it holds

that
∥∥BN∗PNϕ−B∗ϕ

∥∥
U
→ 0.

(iv) There exist operators QN ∈ L(HN ) with
∥∥QN∥∥

N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that∥∥QNPNϕ− PNQϕ
∥∥
N
→ 0.

(v) There exist operators GN ∈ L(HN ) with
∥∥GN∥∥

N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that∥∥GNPNϕ− PNGϕ
∥∥
N
→ 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.

(H’)

given these assumptions we can state a similar result as in Theorem 2.1, where the
convergence in (2.5) is attained in norm, i.e.,∥∥ΠN (t)PNϕ− PNΠ(t)ϕ

∥∥
N
→ 0 uniformly in t ∈ [0, Tf ]. (2.6)

The proof of this result follows very close to the one of Theorem 2.1 once an analogue
to [22, Theorem 5.1, p. 560], which permits HN * H, has been proven. Note that
[22, Theorem 5.1, p. 560] relies directly on [22, Lemma 5.1, p. 560]. This Lemma can
be modified as:

Lemma 2.2. Let X be a Banach space, let {XN}N≥2 be a sequence of Ba-
nach spaces and let PN : X → XN be bounded linear operators satisfying (H′)(0).
Let Ω be a compact subset of Rn and let A(·) : Ω → L(X), and for N ≥ 2, let
AN (·) : Ω → L(XN , X). Suppose that ‖AN (ξ)‖ is uniformly bounded in N and ξ,
and that, for each x ∈ X, AN (ξ)PNx converges to PNA(ξ)x uniformly in ξ. Let
g(·) : Ω→ X be continuous and suppose there is a sequence of functions gN (·) which
converge uniformly to g(·). Then, the sequence {AN (·)PNgN (·)} converges uniformly
to PNA(·)g(·).

Proof. Let ξ ∈ Ω, note that∥∥AN (ξ)PNgN (ξ)− PNA(ξ)g(ξ)
∥∥
N
≤
∥∥AN (ξ)PNgN (ξ)−AN (ξ)PNg(ξ)

∥∥
N

+
∥∥AN (ξ)PNg(ξ)− PNA(ξ)g(ξ)

∥∥
N

≤ ‖AN (ξ)‖
∥∥PN∥∥ ‖gN (ξ)− g(ξ)‖X

+
∥∥AN (ξ)PNg(ξ)− PNA(ξ)g(ξ)

∥∥
N
,

then, by the hypotheses assumed the lemma holds �.

The repeated application of Lemma 2.2, and Lemma 5.1 [22, p. 560] allows
also to prove an analogous result for the non-autonomous case which permits HN *
H. This version of the theorem could be very useful for developing certain types of
approximation schemes, e.g., finite differences or spectral methods.
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2.1.1. Non-autonomous case. The approximation results presented above can
be extended to the non-autonomous case, i.e., the case, in which partial differential
equations with time-varying coefficients are considered. These can be particularly
useful when solving nonlinear problems in model predictive control and receding hori-
zon context. There the LQG approach is applied to a linearization around a reference
trajectory. This requires the solution of DREs, in which the coefficient matrices are
time dependent, [25, 27].

We consider now partial differential equations with time-varying coefficients. Then,
the system dynamics is modeled by an evolution operator. LetH and U be real Hilbert
spaces and consider an evolution process defined by

x(t) = U(t, s)x(s) +
∫ t

0

U(t, ν)B(ν)u(ν)dν, (2.7)

where 0 ≤ s ≤ t ≤ Tf < ∞, U(., .) is a strong evolution operator on H, u ∈
L2(0, Tf ;U), x0 ∈ H, and B ∈ B∞(0, Tf ;H,H).
Note that (2.7) can be differentiated using

∂

∂t
〈y, U(t, s)x〉 = 〈y,A(s)U(t, s)x〉 for x ∈ DA, y ∈ H, t > s,

where A(.) is the generator of U(., .) and DA is the domain, in which U(., .) is a mild
evolution family. We use the integral form of (2.7) in our presentation to closely follow
[17, 22]. We consider the cost functional

J (u, x0) =
∫ Tf

0

(〈x(s),Q(s)x(s)〉+ 〈u(s),Ru(s)〉)ds+ 〈x(Tf ),Gx(Tf )〉,

where x(t) is given by (2.7), G ∈ L(H) is self-adjoint and nonnegative, Q ∈ B∞(0, Tf ;H,H),
R ∈ B∞(0, Tf ;U ,U) and for each t, Q(t), R(t) are nonnegative and self-adjoint and
R(t) satisfies

〈y,R(t)y〉 ≥ µ ‖y‖2 a.e. for someµ > 0.

Then, the quadratic cost problem is:

Find the optimal controlu0 ∈ L2(T ;U) which
minimizes J (u; t0, x0). (NAR)

Again let HN , N = 1, 2 . . . , be a sequence of finite-dimensional linear subspaces of H
and PN : H → HN be the corresponding canonical orthogonal projections. Assume
that {UN (·, ·)} is a sequence of evolution operators on HN with generator AN (·) ∈
L(HN ) and that {BN (·)}, {QN (·)}, {RN (·)}, and {GN} are sequences of operators
in B∞(t0, T ;U ,HN ), B∞(t0, T ;HN ,HN ), B∞(t0, T ; U ,U) and L(HN ), respectively,
with QN (·), RN (·), and GN semidefinite and self-adjoint. As in the last section we
consider the sequences of optimal control problems corresponding to these sequences
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of operators. Suppose that, for each ϕ ∈ H and v ∈ U ,

(i) UN (t, s)PNϕ→ U(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(ii) UN∗(t, s)PNϕ→ U∗(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(iii) BN (t)v → B(t)v strongly a.e.,
(iv) BN∗(t)PNϕ→ B∗(t)ϕ strongly a.e.,
(v) QN (t)PNϕ→ Q(t)ϕ strongly a.e.,
(vi) RN (t)v → R(t)v strongly a.e.,
(vii) GNPNϕ→ Gϕ strongly,

as N →∞.

(G’)

In addition we require∥∥UN (t, s)
∥∥ , ∥∥BN∥∥B∞ , ∥∥QN∥∥B∞ , ∥∥RN

∥∥
B∞

,
∥∥GN∥∥ (G”)

to be uniformly bounded in N , t, and s and require a constant m such that for each
N , QN (t) ≥ m > 0 for almost all t.
We call the previous assumptions (G’) and (G”) because they are a slight modification
of the hypothesis formulated by Gibson in [22]. Specifically, in (G’) the evolution
operators corresponding to the approximating problems are defined in subspaces of
the original state space of the original problem, whereas in [22] they are defined in
the whole space.
As before the subspaces HN approximate H in the sense that PNϕ→ ϕ for all ϕ ∈ H.

Theorem 2.3. Let (G′) and (G′′) hold. For our sequence of control problems,
denote the initial states by xN (0), and let xN (0)→ x(0); denote the optimal controls
by uN (·), the optimal trajectories by xN (·), and the solutions of the differential Riccati
equations by ΠN (·). For the problem (NAR), denote the corresponding quantities by
x(0), u(·), x(·), and Π(·). Then we have

uN (t)→ u(t) strongly a.e. and inL2(0, Tf ;U),
xN (t)→ x(t) strongly pointwise and inL2(0, Tf ;H), (2.8)

and for ϕ ∈ H,

ΠN (t)PNϕ→ Π(t)ϕ strongly pointwise and inL2(0, Tf ;H). (2.9)

If U(·, ·) is strongly continuous and B(·), B∗(·), Q(·), and R(·) are piecewise strongly
continuous, uniform convergence in (G′) implies uniform convergence in (2.8)–(2.9).
Proof. As for the autonomous case the sequence of control problems are defined in a
subspaces of the original state space similar to (RN ). Let us denote these problems
as (NARN ). If we consider a related family of control problems (NARN ) which,
are defined in the whole space analogous to (R̄N ), and assuming similar arguments
on Π(t) to the ones in the proof of Theorem 2.1, the proof of Theorem 2.3 follows
directly from [22, Theorem 5.1, p. 560].�
Like in the autonomous case, it is possible to prove an analogue to Theorem 2.3 with-
out the requirement HN ⊆ H. Let us assume that (H, ‖.‖), (HN , ‖.‖N ) are Hilbert
spaces (in general HN * H), with U(t, s), UN (t, s) strongly continuous evolution
operators on H and HN , respectively. For this, we modify (G’) to:
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(0) There exist bounded linear operators PN : H → HN
satisfying

∥∥PNφ∥∥
N
→ ‖φ‖ for all φ ∈ H.

(i) There exist M, ω such that
∥∥UN (t, s)

∥∥
N
≤Meω(t−s), t ≥ s,

for all N and for each φ ∈ H,
∥∥U(t, s)NPNφ− PNU(t, s)φ

∥∥
N
→ 0

as N →∞,uniformly on any bounded subinterval of [0, Tf ].
(ii) For all φ ∈ H it holds

∥∥UN∗(t, s)PNφ− PNU∗(t, s)φ∥∥
N
→ 0 as

N →∞, uniformly on any bounded subinterval of [0, Tf ].
(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN )

satisfy
∥∥BNv − PNBv

∥∥
N
→ 0 and for all ϕ ∈ H it holds

that
∥∥BN∗PNϕ−B∗ϕ

∥∥
U
→ 0.

(iv) There exist operators QN ∈ L(HN ) with
∥∥QN∥∥

N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that∥∥QNPNϕ− PNQϕ
∥∥
N
→ 0.

(v) There exist operators GN ∈ L(HN ) with
∥∥GN∥∥

N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that∥∥GNPNϕ− PNGϕ
∥∥
N
→ 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.

(GN’)

We can state a similar result as in Theorem 2.3, where the convergence is attained in
norm. As in the previous section this can be proved as a consequence of the repeated
application of Lemma 2.2 and Lemma 5.1 [22, p. 560].

Remark 2.4. The results proposed in this subsection will be particularly useful
solving nonlinear problems in model predictive control and receding horizon context.
There the LQG approach is applied to a linearization around a reference trajectory.
This requires the solution of DREs, in which the coefficient matrices are time depen-
dent.

We have seen that solving infinite-dimensional LQR problems numerically re-
quires the solution of finite-dimensional DREs obtained from appropriate discretiza-
tion schemes satisfying assumptions (H), (H’) or (G’), (GN’).

3. Numerical methods for large scale DREs. Note that making a simply
change of variables we can solve DRE with terminal condition forward in time and
afterwards recover the original solution. Then, let us consider time-varying symmetric
DREs of the form

Ẋ(t) = Q(t) +X(t)A(t) +AT (t)X(t)−X(t)S(t)X(t),
X(t0) = X0,

(3.1)

where t ∈ [t0, tf ] and Q(t), A(t), S(t), ∈ Rn×n, X(t) ∈ Rm×n. We assume that the
coefficient matrices are piecewise continuous locally bounded matrix-valued functions,
which ensure existence of the solution and uniqueness of (3.1), see, e.g., [1, Theorem.
4.1.6]. Moreover, in most control problems, fast and slow modes are present. This
implies that the associated DRE will be fairly stiff, which in turn demands for implicit
methods to solve such DREs numerically. Therefore, we will focus here on the stiff
case.

3.1. BDF methods for large-scale DREs. In the following we briefly describe
the BDF method for DREs in matrix-valued form similar to [16] and discuss an
efficient implementation for large-scale problems. Parts of this section are contained
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p β α0 α1 α2 α3 α4

1 1 1
2 2

3
4
3 − 1

3

3 6
11

18
11 − 9

11
2
11

4 12
25

48
25 − 36

25
16
25 − 3

25

5 60
137

300
137 − 300

137
200
137 − 75

137 − 12
137

Table 3.1
coefficients of the BDF p-step methods for p < 6.

in [8]. Let us define

F (t,X(t)) ≡ Q(t) +X(t)A(t) +AT (t)X(t)−X(t)S(t)X(t). (3.2)

The fixed-coefficients BDF methods applied to the DRE (3.1) yield

Xk+1 =
p∑
j=1

−αj+1Xk−j + hβF (tk+1, Xk+1),

where h is the step size, tk+1 = h+ tk, Xk+1 ≈ X(tk+1) and αj , β are the coefficients
for the p-step BDF formula, given in Table 3.1, [3].

Hence, noting Qk+1 ≈ Q(tk+1), Ak+1 ≈ A(tk+1), Sk+1 ≈ S(tk+1), we obtain the
Riccati-BDF difference equation

−Xk+1 + hβ(Qk+1 +ATk+1Xk+1 +Xk+1Ak+1 −Xk+1Sk+1Xk+1)

−
p∑
j=1

αj+1Xk−j = 0.

Re-arranging terms, we see that this is an algebraic Riccati equation (ARE) for Xk+1,

(hβQk+1 −
∑p−1
j=0 αjXk−j) + (hβAk+1 − 1

2I)TXk+1+
+ Xk+1(hβAk+1 − 1

2I) − Xk+1(hβSk+1)Xk+1 = 0,
(3.3)

that can be solved via any method for AREs. In large-scale applications it is not
possible to construct explicitly the matrices Xk, because they are in general dense.
However, Xk is usually of low numerical rank, see [2, 36], i.e., it can be well approx-
imated by a low rank factor (LRF) Zk with zk � n for all times. Moreover, usually
Qk and Sk can also be represented in factored form. Thus, assuming that

Qk = CTk Ck, Ck ∈ Rp×n,
Sk = BkB

T
k , Bk ∈ Rn×m, (3.4)

Xk = ZkZ
T
k , Zk ∈ Rn×zk ,

the ARE (3.3) can be written as

ĈTk+1Ĉk+1 + ÂTk+1Zk+1Z
T
k+1 + Zk+1Z

T
k+1Âk+1

− Zk+1Z
T
k+1B̂k+1B̂

T
k+1Zk+1Z

T
k+1 = 0,

(3.5)

10



where

Âk+1 = hβAk+1 −
1
2
I,

B̂k+1 =
√
hβBk+1,

ĈTk+1 = [
√
hβCTk+1,

√
−α1Zk, . . . ,

√
−αpZk+1−p ].

If zk � n for all times, and (3.5) can be solved efficiently by exploiting sparsity
in Ak+1 as well as the low rank nature of the constant and quadratic terms, this can
serve as the basis for a DRE solver for large-scale problems.
In our numerical implementation, we benefit from recent algorithmic progress in solv-
ing large-scale AREs resulting from semi-discretized control problems [6]. There the
main idea is to solve AREs using Newton’s method as a one step iteration. It results
in solving one Lyapunov equation in each step. The structure of the coefficient matrix
in this equation has the form “sparse + low-rank perturbation”. So, we need a solver,
which exploits efficiently this structure. The implementation of the BDF methods for
DREs is sketched in Algorithm 3.1.

Remark 3.1. It should be noted that for p ≥ 2, some of the αj are negative.
This can be treated using complex arithmetic and replacing all transposes in (3.5)
by conjugate complex transposes, but in general it will be more efficient to split the
constant term into

ĈTk+1Ĉk+1 − C̃Tk+1C̃k+1

where Ĉk+1 only contains the factors corresponding to positive αj and C̃k+1 the factors
corresponding to negative αj. Therefore, we split the Lyapunov equation into the two
equations

AT` P̂`+1 + P̂`+1A` = −ĈT Ĉ − P`BBTP`,
AT` P̃`+1 + P̃`+1A` = −C̃T C̃.

Then the solution of the original equation in step ` is computed as P̂`+1 − P̃`+1. The
two Lyapunov equations can be solved simultaneously as a linear systems of equations
to be solved in each step that have the same coefficient matrices.

3.1.1. Adaptive step size and order control. In most applications, varying
the step size and order is crucial for the efficient performance of a discretization
method. We start forming estimates of the error which we expect would be incurred
on the next step and choosing the next order so that the step size at that order is the
largest possible.
The local truncation error for the BDF methods can be written as in [21]:

hkω̇k(tk)[xk, xk−1, . . . , xk−p], (3.6)

where

ωk(t) =
p∏
i=0

(t− tk−i),

and

ω̇k(tk) =
p∏
i=1

(tk − tk−i) =
p∏
i=1

(h+ ψi−1(k))

11



Algorithm 3.1 LRF BDF method of order p
Require: A(t), S(t), Q(t), ∈ Rn×n smooth matrix-valued functions satisfying (3.4),

t ∈ [a, b], and h step size.
Ensure: (Zk, tk) such that Xk ≈ ZkZTk .

1: t0 = a.
2: for k = 0 to d b−ah e do
3: tk+1 = tk + h.
4: Âk+1 = hβAk+1 − 1

2I.
5: B̂k+1 =

√
hβBk+1.

6: Ĉk+1 = [
√
hβCk+1;

√
−α0Z

T
k ; . . . ;

√−αp−1Z
T
k+1−p ].

7: for j = 1 to jmax do
8: Determine (sub)optimal ADI shift parameters pJ1 , p

J
2 , . . . with respect to the

matrix F j = Âk+1 −KjB̂Tk+1.
9: Gj = [ĈTk+1K

j−1].
10: Compute Zj by Algorithm 3.5 such that the low rank factor product ZjZjT

approximates the solution of F jTXj +XjF j = −GjGjT .
11: Kj = Zj(ZjTB).
12: end for
13: Zk+1 = Zjmax .
14: end for

for ψj(k) := tk − tk−j . Having the local truncation error for the BDF methods ex-
pressed as (3.6) will allow us to compute it directly for low rank factors approximating
the solution of DREs.
Note that if we want to vary the step and order of a linear multistep method the
solution values at past times on an equidistant mesh are needed. For the BDF meth-
ods we can approximate these values using an interpolating polynomial described by
Neville’s algorithm, which in matrix valued form can be expressed as in Algorithm
3.2.

Algorithm 3.2 Neville’s Algorithm
Require: {(ti, Xi)}0≤i≤n, ti ∈ I ⊂ R, Xi ≈ X(ti) ∈ Rn×n.

1: Ti,o := Xi 0 ≤ i ≤ n.
2: Ti,k := (t−ti−k)Ti,k−1−(t−ti)Ti−1,k−1

ti−ti−k
0 ≤ i < k ≤ n.

Assuming that

Xi = ZiZ
T
i , Zi ∈ Rn×zi ,

we get

Zi,kZ
T
i,k :=

(t− ti−k)Zi,k−1Z
T
i,k−1 − (t− ti)Zi−1,k−1Z

T
i−1,k−1

ti − ti−k

=
[√

t− ti−k
ti − ti−k

Zi,k−1

√
t− ti

ti−k − ti
Zi−1,k−1

]
×[√

t− ti−k
ti − ti−k

Zi,k−1

√
t− ti

ti−k − ti
Zi−1,k−1

]T
12



so that

Zi,k =
[√

t− ti−k
ti − ti−k

Zi,k−1

√
t− ti

ti−k − ti
Zi−1,k−1

]
.

Hence Algorithm 3.2 can be written in terms of the low rank factors LRFs, see Algo-
rithm 3.3.

Algorithm 3.3 LRF Neville’s Algorithm
Require: {(ti, Zi)}0≤i≤n, ti ∈ I ⊂ R and Zi ≈ Z(ti) ∈ Rn×zi .

1: Zi,o := Zi 0 ≤ i ≤ n.

2: Zi,k :=
[√

t−ti−k

ti−ti−k
Zi,k−1

√
t−ti

ti−k−tiZi−1,k−1

]
, 0 ≤ i < k ≤ n.

Since the size of Zi,k increases in every step, the computation becomes expensive.
We can avoid the recursion formula expressing the final value given by the algorithm
like

Zk,k = [
√
λ0Z0,0

√
λ1Z1,0 . . .

√
λkZk,0].

For instance, if we consider {(ti, Zi)}1≤i≤2, then

Z2,2 = [
√
α220α110Z0,0

√
−(α020α221 + α220α010)Z1,0

√
α020α121Z2,0]

where

αijk =
t− ti
tj − tk

i, j, k = 0, 1, 2.

Algorithm 3.3 will in general generate complex factors. However, we can still get real
factor as solutions of the DRE in every step rewriting

Zk,k = [Zp ıZn]

where Zp, Zn are formed grouping the positive and negative λ′s respectively, and
computing the operations involving Zk,k separately for Zp and Zn, i.e. never forming
Zk,k explicitly.
Once the solution values at past times are approximated, we are ready to apply step
size and order control. For this we need to compute local error estimators, this can
be done using (3.6) and computing the divided differences directly for the factors, see
Algorithm 3.4.

Algorithm 3.4 LRF Divided differences
Require: {(ti, Zi)}0≤i≤n, ti ∈ I ⊂ R and Zi ≈ Z(ti) ∈ Rn×zi .

1: Zi,o := Zi 0 ≤ i ≤ 0.

2: Zi,k :=
[√

1
ti−ti−k

Zi,k−1

√
1

ti−k−tiZi−1,k−1

]
0 ≤ i < k ≤ 0.

Analogous to Algorithm 3.3, Algorithm 3.4 can be implemented avoiding the re-
cursive formula. Moreover, it generates in general complex factors, which is not a
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problem here, because we are interested in the norm of the resulting factor to esti-
mate the local truncation error using (3.6).

Another option to cheaply implement an adaptive algorithm is to consider a
variable-coefficient formula of the method. Thus, changing the step size and order of
the method is performed as for the one step methods for solving ODEs.

Variable-coefficient BDF methods. Using the variable-coefficient BDF methods
(3.7) we avoid to compute the solution values at past times on an equidistant mesh.
The application of this method to (3.1) yields an equation similar to (3.5) in which
Âk+1, B̂k+1 and Ĉk+1 depend on α̃i(hn, hn−1, . . . , hn−k+1), β̃(hn, hn−1, . . . , hn−k+1).
The computation of these coefficients is cheap and does not outweigh the iteration.
We will see this in the following.
Working on unequally spaced meshes, we can derive the variable-coefficient BDF by
rewriting the method as a general multistep like

p∑
i=0

α̃ixk−i = hkβ̃f(tk, xk), (3.7)

where the coefficients α̃i, β̃ depend on the p− 1 past steps, i.e.

α̃i = α̃i(hk, hk−1, . . . , hk−p+1),

β̃ = β̃(hk, hk−1, . . . , hk−p+1).

If the coefficients are computed in every step, changing the step size and the order of
the method can be performed as for the single step methods. We review a strategy
for this in the next section.
The variable coeffients for the second order BDF method are

β̃0 =
hk + hk−1

2hk + hk−1
,

α̃0 = 1,

α̃1 = −
(
hk + hk−1

2hk + hk−1

)(
1 +

hk
hk + hk−1

(
1 +

hk
hk−1

))
,

α̃2 =
(
hk + hk−1

2hk + hk−1

)(
hk
hk−1

)(
hk

hk + hk−1

)
.

where hk, hk−1, are the step sizes. The variable coeffients for the third order BDF
method can be found in [34].
An adaptive algorithm for the BDF methods can be implemented similar to the one
which underlies the program DASSL of L.R. Petzold [38]. There the error estimators,
which we used to decide whether to accept the current step or to redo this with a
smaller step size can be computed by (3.6) instead of using the predictor polynomials
involving the steps p− 1, p, p+ 1; see [15, Algorithm on p. 373].

3.2. Lyapunov equation solver. For the problems we consider the spectrum
of the solution often decays to zero rapidly. There are partial results explaining the
decay of the eigenvalues of Lyapunov and Riccati solutions; bounds and estimates for
the decay are given in [2, 36].
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Methods based on this observation are proposed in [6, 35]. We will briefly describe
them here. Let us consider Lyapunov equations of the form

FTY + Y F = −WWT

with F stable, and W ∈ Rn×nw . The alternating directions implicit (ADI) iteration
applied to (3.2) yields

(FT + pjI)Yj− 1
2

= −WWT − Yj−1(F − pjI),
(FT + pjI)Y Tj = −WWT − Yj− 1

2
(F − pjI), (3.8)

where p denotes the complex conjugate of p ∈ C, see [42] . If the shift parameters
pj are chosen appropriately, then limj→∞ Yj = Y with a superlinear convergence
rate. An efficient way to compute these parameters is described in [10]. Starting this
iteration with Y0 = 0 and observing that for stable F , Y is positive semidefinite, it
follows that Yj = ZjZ

T
j for some Zj ∈ Rn×rj . Inserting this factorization into the

above iteration, re-arranging terms and combining two iteration steps, we obtain a
factored ADI iteration that in each iteration step yields nw new columns of a full
rank factor of Y (see [6, 33, 35] for several variants of this method). The method is
described in Algorithm 3.5.

Algorithm 3.5 LRF ADI iteration
Require: F , W and set of ADI parameters {p1, . . . , pk}
Ensure: Z = Zimax

∈ Cn,imaxnω such that ZZT ≈ Y .
1: V1 =

√
−2Re (p1)(FT + p1I)−1W

2: Z1 = V1

3: for j = 2, 3, . . . do

4: Vj =

√
Re(pj)√

Re(pj−1)

(
I − (pj + pj−1)(FT + pjI)−1

)
Vj−1

5: Zj =
[
Zj−1 Vj

]
6: end for

It should be noted that all Vj ’s have the same number of columns as W ∈ Rn×nw ,
i.e., at each iteration j, we have to solve w linear systems of equations with the
same coefficient matrix FT + pjI. If convergence of the factored ADI iteration with
respect to a suitable stopping criterion is achieved after imax steps, then Zimax =
[V1, . . . , Vimax ] ∈ Rn×imaxnw , where Vj ∈ Rn×nw . For large n and small nw we
therefore expect that ri := imaxnw � n. In that case, we have computed a low rank
approximation Zimax to a factor Z of the solution, that is Y = ZZT ≈ ZimaxZ

T
imax

. In
case, nw · imax becomes large, a column compression technique [13, 23] can be applied
to reduce the number of columns in Zimax without adding a significant error. Note that
if the tolerance of the rank-revealing QR factorization is chosen according to the order
of the method and the current step size we can apply a column compression technique
without adding a significant error, [13]. This is not the case if QR factorization with
normal pivoting strategy is applied. There the error that we are introducing can not
be controlled.

Stopping criteria for the modified ADI iteration can be based either on the fact
that ‖Vj‖ → 0 very rapidly or on the residual norm ‖FZjZTj + ZjZ

T
j F

T + WWT ‖;
see [36] for an efficient way to compute the Frobenius norms of the residuals. On the
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other hand, the Newton iteration inside is usually stopped when∥∥Zj+1Z
T
j+1 − ZjZTj

∥∥∥∥ZjZTj ∥∥ < τ

after few iterations, for a given tolerance threshold τ . However, this criterion is
difficult to evaluate as it requires the explicit formation of iterates Xj . To overcome
this difficulty we use a modified stopping criterion proposed in [4]. This criterion
can be efficiently evaluated in case we use the Frobenious norm and the number of
columns of the factors is much smaller than n. Moreover, the stopping criteria should
be based on the tolerance for solving the differential equation.

3.3. Low rank Rosenbrock method. Linear multi-step methods require fewer
function evaluations per step than one step methods, and they allow a more simple
streamlined method design from the point of view of order and error estimation.
However, the associated overhead is higher, e.g., for changing the step size.
Runge-Kutta methods work well for the numerical solution of ODEs that are non-stiff.
When stiffness becomes an issue: diagonally implicit Runge-Kutta (DIRK) methods or
collocation methods offer an alternative to the BDF methods. In particular, linearly
implicit one-step methods (better known as Rosenbrock methods) give satisfactory
results [15, 24]. The idea of these methods can be interpreted as the application
of one Newton iteration to each stage of an implicit Runge-Kutta method and the
derivation of stable formulae by working with the Jacobian matrix directly within
the integration formulae. We focus on solving autonomous DREs by an efficient
implementation of Rosenbrock methods based on a low rank version of the alternating
direction implicit (ADI) described in the previous section. Although we just describe
here the linearly implicit Euler method and a method of order two, the ideas in this
can be straightforwardly applied to higher order Rosenbrock methods.

Linearly implicit Euler method. The one stage Rosenbrock method applied, as a
matrix valued algorithm, to autonomous DREs of the form (3.1) can be written as

ĀTkK1 +K1Āk = −F (Xk)− hFtk ,
Xk+1 = Xk +K1,

(3.9)

where Āk = Ak − RkXk − 1
2hI and F defined as in (3.2). Moreover, (3.9) can be re-

written such that the next iterate is computed directly from the Lyapunov equation,
i.e.,

ĀTkXk+1 +Xk+1Āk = −Q−XkSXk −
1
h
Xk. (3.10)

The right hand side of (3.10) is simpler to evaluate than the one in (3.9), so the
implementation of (3.10) is more efficient [9]. If we assume,

Q = CTC, C ∈ Rp×n,
S = BBT , B ∈ Rn×m, (3.11)
Xk = ZkZ

T
k , Zk ∈ Rn×zk .

with p, m, zk � n and denoting Nk = [CT Zk(ZTk B)
√
h−1Zk ], then the Lyapunov

equation (3.10) results in

ĀTkXk+1 +Xk+1Āk = −NkNT
k , (3.12)
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where Āk = A−B(Zk(ZTk B))T − 1
2hI. Observing that rank(Nk) ≤ p+m+ zk � n,

we can use the modified version of the alternating directions implicit (ADI) iteration
to solve (3.12). The application of Algorithm 3.5 to (3.12) will ensure low rank factors
Zk+1, of Xk+1, such that Xk+1 ≈ Zk+1Z

T
k+1, where Zk+1 ∈ Rn×zk+1 with zk+1 � n.

This is described in Algorithm 3.6, for an equidistant mesh.

Algorithm 3.6 LRF linearly implicit Euler method
Require: A ∈ Rn×n, B, C, Z0 satisfying (3.11), t ∈ [a, b], and h step size.
Ensure: (Zk, tk) such that Xk ≈ ZkZTk , Zk ∈ Rn×zi with zi � n.

1: t0 = a.
2: for k = 0 to d b−ah e do
3: Āk = A−B(Zk(ZTk B))T − 1

2hI.
4: Nk = [CT Zk(ZTk B)

√
h−1Zk ].

5: Determine (sub)optimal ADI shift parameters p1, p2, . . . with respect to the
matrix Āk.

6: Compute Zk+1 by Algorithm 3.5 such that the low rank factor product
Zk+1Z

T
k+1 approximates the solution of ĀTkXk+1 +Xk+1Āk = −NkNT

k .
7: tk+1 = tk + h.
8: end for

Rosenbrock method of second order. Let us now turn our attention to a second
order method originally proposed in [14]. There the method is applied to atmo-
spheric dispersion problems describing photochemistry, advective, and turbulent dif-
fusive transport. As explained in [9] for solving autonomous DREs the method can
be efficiently computed as:

Xk+1 = Xk +
3
2
hK1 +

1
2
hK2, (3.13)

ĀTkK1 +K1Āk = −F (Xk), (3.14)

ĀTkK21 +K21Āk = −h2K1SK1 +
(

1
hγ

+ 2
)
K1, (3.15)

K2 = K21 + (1− h)K1, (3.16)

where Āk = A−SXk− 1
2hγ I and γ is a parameter which can be chosen as 1. Moreover,

note that (3.13) and (3.16) can be computed directly as one step iteration like

Xk+1 = Xk +
(

2h+ h2

2

)
K1 +

1
2
hK21, (3.17)

As for the linearly implicit Euler method we want to apply the ADI iteration to solve
the Lyapunov equations (3.14) and (3.15). Once again let us assume (3.11) and note
that,

ATZkZ
T
k + ZkZ

T
k A = ATZk(ZTk A+ ZTk ) + Zk(ZTk A+ ZTk )

−ATZkZTk A− ZkZTk ,
= (ATZk + Zk)(ZTk A+ ZTk )−ATZkZTk A
−ZkZTk ,

= (ATZk + Zk)(ATZk + Zk)T

−[ATZk Zk ][ATZk Zk ]T .
17



Denoting Uk = [CT ATZk + Zk ] and Nk = [ATZk Zk Zk(ZTk B) ] then,

F (Xk) = UkU
T
k −NkNT

k , (3.18)

thus, in order to solve (3.14) we can split the Lypunov equation as in Remark 3.1.
The second equation (3.15) is solved using the factored form, for the right hand side,

N̄k =
[
CT hT 1

k ((T 1
k )TB) i

√
1
hγ

+ 2T 1
k

]
where K1 = T 1

k (T 1
k )T , i.e., T 1

k represents the low rank factor of K1 in step k. The
method is sketched in Algorithm 3.7. There, Steps 6. and 8. of Algorithm 3.7 can
be computed simultaneously by the factored ADI iteration as the linear systems of
equations to be solved in each step have the same coefficient matrices.

Algorithm 3.7 LRF Rosenbrock method of second order
Require: A ∈ Rn×n, B, C, Z0 satisfying (3.11), t ∈ [a, b], and step size h.
Ensure: (Zk, tk) such that Xk ≈ ZkZTk , Zk ∈ Rn×zi with zi � n.

1: t0 = a.
2: for k = 0 to d b−ah e do
3: Āk = A− SXk − 1

2hγ I.
4: Determine (sub)optimal ADI shift parameters p1, p2, . . . with respect to the

matrix Āk.
5: Uk = [CT ATZk + Zk ].
6: Compute T̃ k1 by Algorithm 3.5 such that the low rank factor product T̃ k1 (T̃ k1 )T

approximates the solution of ĀTk K̃1 + K̃1Āk = −UkUTk .
7: Nk = [ATZk Zk Zk(ZTk B) ].
8: Compute T̂ k1 by Algorithm 3.5 such that the low rank factor product T̂ k1 (T̂ k1 )T

approximates the solution of ĀTk K̂1 + K̂1Āk = −NkNT
k .

9: T 1
k = [ T̃ k1 iT̂ k1 ].

10: N̄k =
[
CT hT 1

k ((T 1
k )TB) i

√
1
hγ + 2T 1

k

]
11: Compute T 2

k by Algorithm 3.5 such that the low rank factor product T 2
k (T 2

k )T

approximates the solution of ĀTk K̂21 + K̂21Āk = −N̄kN̄T
k .

12: Zk+1 =
[
Zk

√
2h+h2

2 T 1
k

√
1
2hT

2
k

]
.

13: tk+1 = tk + h.
14: end for

Remark 3.2. The computation of Algorithm 3.7 is performed in complex arith-
metics as in steps 9. and 10. complex factors are computed. It is possible to keep the
computation in real arithmetics such that the method works only with factors of the
form (T̂k, T̃k) which approximate the solution Xk ≈ Z0Z

T
0 +h(T̂kT̂Tk −T̃kT̃Tk ). In order

to do this, (3.15) is split in two Lyapunov equations, N̄k is redefined and Ūk has to
be defined; these two matrices contain the positive and negative factors, respectively.
However, the number of columns of them increases considerably in each step. Even
though a column compression technique could be applied the convergence of the ADI
iteration slows down considerably [34].

Note that adaptive code for the method of order two described below, in terms
of the low rank factors, can be easily implemented taking into account that the first
stage of the method could be used to estimate the error and changing the step size.
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Figure 4.1. Initial mesh with points of minimization (left) and partition of the boundary (right).

The non-autonomous case. So far we have presented low rank versions of the
Rosenbrock methods for autonomous DREs. We will now see that they can easily be
extended to the non-autonomous case. In this case, ∂F

∂t appears, so to obtain a low
rank version of the method this term, or an approximation of it, has to be represented
as a low rank matrix product combination.
If we approximate the derivatives involved in Ftk using central differences as:

Q̇k :=
Qk+1 −Qk−1

2h
, Ȧk :=

Ak+1 −Ak−1

2h
, Ṡk :=

Sk+1 − Sk−1

2h
,

(note that, in the context of DREs arising in optimal control the matrix Q(t) is
generally constant, it represents the output matrix), then Ftk can be approximated
by

Ftk ≈ 1
2h

[
(Qk+1 −Qk−1) + 2hATk F (Xk) + (ATk+1 −ATk−1)Xk

+2hF (Xk)Ak +Xk(Ak+1 −Ak−1)− 2hF (Xk)SkXk

−Xk(Sk+1 − Sk−1)Xk − 2hXkSkF (Xk)
]
.

(3.19)

By (3.18) we know that F (Xk) can be expressed as a combination of low rank factor
matrix products, then re-arranging terms we can obtain a low rank matrix representa-
tion of (3.19). Finally, we point out that although we have focused on two particular
Rosenbrock methods the ideas described in this section can be straightforwardly ap-
plied to a general s-stage Rosenbrock method or to an embedded method, [9].

4. Numerical results.
Optimal cooling of steel profiles. Let us consider the problem of optimal cooling

of steel profiles, [7, 40, 41]. This problem arises in a rolling mill when different steps
in the production process require different temperatures of the raw material. An
infinitely long steel profile is assumed so that a 2-dimensional heat diffusion process
is considered. Exploiting the symmetry of the workpiece, an artificial boundary Γ0 is
introduced on the symmetry axis, see Figure 4.1. A (linearized) version of the model
has the form

c%xt(ξ, t) = λ∆x(ξ, t) in Ω× (0, T ),
−λ∂νx(ξ, t) = gi(t, x, u) on Γi where i = 0, . . . , 7,
x(ξ, 0) = x0(ξ) in Ω,

(4.1)
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Test n Q R G Tf h

1 371 I I 0 20 0.01
2 1357 I I 0 20 0.01
3 5177 I I 0 20 0.01
4 20209 I I 0 20 0.01

Table 4.1
Parameters for cooling of steel profiles problem.

n DRE
371 9.1375 e+07
1357 5.0823 e+07
5177 4.0613 e+07
20209 3.9508 e+07

Table 4.2
Cost functional values for the fine time horizon (DRE).

where x(ξ, t) represent the temperature at time t in point ξ, gi includes tempera-
ture differences between cooling fluid and profile surface, intensity parameters for the
cooling nozzles and heat transfer coefficients modeling the heat transfer to cooling
fluid.

We applied the BDF method of order one with fixed step size for n = 371, 1357;
and for the refined meshes n = 5177, 20209, the linearly implicit Euler method (Rosen-
brock method of order one) was applied.
The problem parameters chosen can be found in Table 4.1. There n is the dimension,
Q, R, G are the operators from the finite-dimensional LQR problem and h is the step
size. We can see the behavior of the control parameter Γ6 over time in Figure 4.2 for
n = 1357, 5177. They converge to zero because G = 0 and therefore the final feedback
matrix as well as the control are equal zero. In Table 4.2 the cost functional values are
shown. Finally, in Figure 4.3 the convergence of the functional cost, which is defined
in terms of the DREs, over the mesh size is plotted.

5. Conclusions. The numerical treatment of linear quadratic regulator prob-
lems for parabolic partial differential equations on a finite-time horizon requires solv-
ing large-scale DREs resulting from the semi-discretization. In order to give us an
approximation framework for the computation of the finite-dimensional Riccati equa-
tions we have shown the convergence of the infnite-dimensional Riccati operators to
the finite-dimensional ones for the (non)autonomous case. Typically the coefficient
matrices of the resulting DRE there have a given structure (e.g. sparse, symmetric,
low rank). We develop efficient numerical methods capable of exploiting this structure
based on matrix-valued version of the BDF and Rosenbrock methods. The implemen-
tation uses a low-rank ADI iteration for solving the Lyapunov equations arising in
the methods. The crucial question of suitable step-size and order selection strategies
is also addressed in terms of the low rank factors of the solution. The numerical
experiments confirm the good performance of the proposed methods and show their
potential for being used in large-scale problems.
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Figure 4.2. Cooling of steel profiles control Γ6 plotted over time for n=1357 4.2(a) and for
n=5177 4.2(b).
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Figure 4.3. Functional cost for different mesh sizes for the Optimal cooling of steel profiles
example
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[41] F. Tröltzsch and A. Unger. Fast solution of optimal control problems in the selective cooling
of steel. Z. Angew. Math. Mech., 81:447–456, 2001. 19

[42] E.L. Wachspress. Iterative solution of the Lyapunov matrix equation. Appl. Math. Letters,
107:87–90, 1988. 15

[43] J. Zabczyk. Remarks on the algebraic Riccati equation. Appl. Math. Optim., 2:251–258, 1976.
2

23


	cover
	bm10

