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MPI Magdeburg, Germany

July 15, 2013

Abstract

We investigate the factored ADI iteration for large and sparse Sylvester equa-
tions. A novel low-rank expression for the associated Sylvester residual is estab-
lished which enables cheap computations of the residual norm along the iteration,
and which yields a reformulated factored ADI iteration. The application to gen-
eralized Sylvester equations is considered as well.

We also discuss the efficient handling of complex shift parameters and reveal
interconnections between the ADI iterates w.r.t. to those complex shifts. This
yields a further modification of the factored ADI iteration which employs only
an absolutely necessary amount of complex arithmetic operations and storage,
and which produces low-rank solution factors consisting of entirely real data.

Certain linear matrix equations, such as, e.g., cross-Gramian Sylvester, and
discrete-time Lyapunov equations, are in fact special cases of generalized Sylvester
equations and we show how specially tailored low-rank ADI iterations can be de-
duced from the generalized factored ADI iteration.

1 Introduction

We consider the numerical solution of Sylvester equations of the form

AX −XB = FGT (1)

with A ∈ Rn×n, B ∈ Rm×m, F ∈ Rn×r, G ∈ Rm×r, and the sought solution X ∈
Rn×m, as well as generalized Sylvester equations

AXC − EXB = FGT (2)

with nonsingular matrices C ∈ Rm×m, E ∈ Rn×n. We assume throughout this paper
that the spectra Λ(A, E) and Λ(B, C) are disjoint which ensures the existence of a
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unique solution of (1), (2), see e.g., [33, 29]. We also assume that A, E, C, B are
large, sparse matrices. Special cases of the above matrix equations are, e.g., standard
Lyapunov equations, B = −AT , G = −F in (1), and generalized Lyapunov equations,
B = −AT , C = ET , G = −F in (2).

For small to medium scale equations, methods based on (generalized) Schur, eigen-
value, or Hessenberg decompositions of the involved coefficient matrices can be applied
[3, 46, 28, 26, 22, 25]. Another class of methods based on the matrix sign function
iteration was investigated, e.g., in [39, 16]. Since these methods have a cubic com-
plexity and quadratic storage requirements, they are not feasible for large and sparse
matrices. There are special methods for the case when only one of the pairs (A, E)
or (B, C) is large and sparse, but the other one is much smaller and dense [44, 9].

For large and sparse problems there is a variety of Krylov subspace methods for
Sylvester equations, e.g., [21, 1, 2, 32, 30, 17]. Another approach based in some sense
on H2 interpolation is proposed in [6].

Here, we focus on methods based on low-rank versions of the alternating directions
implicit (ADI) iteration [47, 18] for matrix equations. The term low-rank refers to
the computation of an approximate solution X̃ ≈ X with rank(X̃) = t � n,m. This
is motivated by an often observed very small (numerical) rank of the exact solution
X, provided the right hand side FGT has a low rank, i.e., r � n,m. For Lyapunov
equations this phenomena was also subject to theoretical investigations [45, 27]. Low-
rank (Cholesky factor) ADI methods [38, 4, 40, 14, 34] exploit this low-rank property
and represent frequently used and well understood iterative methods for large-scale
Lyapunov equations. This approach was generalized to Sylvester equations in [15, 36]
leading to the factored ADI method which is the subject of this paper. ADI based
methods require a number of shift parameters to attain a fast convergence. These shifts
are in one way or another related to Λ(A, E) and Λ(B, C), where we explicitly focus on
the case when there are complex eigenvalues in at least one of these spectra. This might
lead to complex shift parameters for the ADI, which will produce a complex (low-rank)
solution, or complex solution factors. Since the original Sylvester equation involves
only real data, but the factored ADI will then contain complex arithmetic operations
and storage, which yields higher computational costs as in the real case, this is an
undesirable property. Therefore, our goal is to investigate strategies for computing real
low-rank solutions with modified versions of the factored ADI, which should employ
no, or at least only an absolutely necessary amount of complex arithmetic operations
and storage. For this purpose, we generalize results from [12] where a real low-rank
ADI method for the symmetric case of Lyapunov equations is discussed.

The remainder of this paper is organized as follows. We review the factored ADI
iteration in Section 2, where we also give new properties of the residual, modify the
algorithm for generalized Sylvester equations, discuss the shift parameter problem, and
discuss some ideas for stopping criteria. In Section 3 the handling of complex shifts
and the generation of real low-rank solution factors is discussed. Modifications to solve
certain special Sylvester equations are considered in Section 4. Numerical experiments
showing the performance of the investigated approaches are given in Section 5 and
Section 6 summarizes and gives future research directions.
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The following notation is used in this paper: R and C denote the real and complex
numbers and R± refers to the set of strictly positive or negative numbers, where
C± stands for the set of complex numbers in the open right or left half plane (i.e.,
they have strictly positive or negative real parts). In the matrix case, Rn×m, Cn×m
denote n × m real and complex matrices, respectively. For any complex quantity
X = Re (X) +  Im (X), Re (X), Im (X) are its real and imaginary parts with  being
the imaginary unit. The complex conjugate of X is denoted by X = Re (X)− Im (X).
The absolute value of ξ ∈ C is denoted by |ξ|. The matrix AT is the transpose of a

real n × m matrix and XH = X
T

is the complex conjugate transpose of a complex
one. Note that we make explicit use of both T and H depending on the considered
matrix being a real or complex one. The inverse of a nonsingular matrix X is denoted
by X−1 and, moreover, X−T = (XT )−1 and X−H = (XH)−1. Throughout the paper
g = X−1f should be understood as solving the linear system of equations Xg = f for
g. The identity matrix of dimension k is indicated by Ik. The symbol ⊗ denotes the
Kronecker product. If not stated otherwise, ‖X‖ is the spectral norm of X.

2 Factored ADI Iteration for Large-Scale Sylvester
Equations

2.1 The ADI Iteration for Standard Sylvester Equations

The alternating directions implicit (ADI) iteration for (1) and two sets of shift param-
eters {αk}, {βk} is given by

(A− βkIn)Xk− 1
2

= Xk−1(B − βkIm) + FGT ,

Xk(B − αkIn) = (A− αkIn)Xk− 1
2
− FGT ,

(3)

see [47]. As detailed in [5, 36], rewriting the above two half steps into one single
step, setting X0 = 0, exploiting the structure of the iterates given by the low-rank
right hand side FGT , and reordering the shifts, leads to the factored ADI method
(fADI) [15, 36] for solving (1) which is shown in Algorithm 1. It computes low-rank
solution factors Zkmax ∈ Cn×rkmax , Ykmax ∈ Cm×rkmax , Dkmax ∈ Crkmax×rkmax such that
the product Zkmax

Dkmax
Y Hkmax

∈ Cn×m approximates the solution X. Note that for

Lyapunov equations (B = −AT , G = −F , βk = −αk) the above algorithm gives the
low-rank (Cholesky factor) ADI method (LR-ADI) [38, 35, 40, 14]. In each iteration
of Algorithm 1, r new columns are added to the low-rank factors Yk−1, Zk−1, and
Dk−1 is augmented by an r × r diagonal matrix. The main computational tasks are
the solutions of the linear systems of equations with the shifted A, B matrices. We
assume that A, B are large, but sparse matrices and we are able to employ sparse-
direct or iterative Krylov subspace methods for solving the linear systems. Moreover,
it should hold that r � n since the column dimension r of F , G determines the
number of right hand sides in the linear systems. A small value of r is also crucial for
the existence of a low-rank solution of the Sylvester equation. The shift parameters
{αk}, {βk} steer the convergence of the iteration and are discussed in Subsection 2.4
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Algorithm 1: Original factored ADI (fADI) for (1)

Input : A, B, F, G as in (1) and shift parameters {α1, . . . , αkmax
},

{β1, . . . , βkmax}.
Output: Zkmax ∈ Cn×rkmax , Ykmax ∈ Cm×rkmax , Dkmax ∈ Crkmax×rkmax such

that Zkmax
Dkmax

Y Hkmax
≈ X.

for k = 1, 2, . . . , kmax do1

if k = 1 then2

V1 = (A− β1In)−1F , W1 = (B − α1Im)−HG.3

else4

Vk = Vk−1 + (βk − αk−1)(A− βkIn)−1Vk−1.5

Wk = Wk−1 + (αk − βk−1)(B − αkIn)−HWk−1.6

Update the low-rank solution factors7

Zk = [Zk−1, Vk], Yk = [Yk−1,Wk], Dk = diag (Dk−1, γkIr) , γk := βk − αk.

which is followed by some ideas for suitable stopping criteria in Subsection 2.5. The
above algorithm obviously employs complex arithmetic operations and storage if some
of the used shifts are complex numbers. This undesirable property is the main issue
of this work and will be investigated in detail in Section 3. Before we continue we will
investigate the structure of the Sylvester residual obtained with Algorithm 1 which will
give us a novel reformulated version of fADI. After that we generalize Algorithm 1 for
solving (2) in order to stick with this more general class of problems in the remainder.

2.2 The fADI Sylvester Residual

The following lemmas are helpful for providing insights into the fADI iteration and
the structure of the residual.

Lemma 1. For each M ∈ Cn×n and ξ, µ ∈ C the matrices (M ± ξIn)±1 and (M ±
νIn)±1 commute, provided the inverses exist.

Lemma 2 (Generalization of [31, Lemma 3.1.1], [23, Lemma 5.1]). For every complex
β /∈ Λ(A), α /∈ Λ(B), α 6= β, (1) is equivalent to the discrete-time Sylvester equation

X = C(A, β, α)XC(B,α, β) + T (α, β), (4)

where T (α, β) := (β − α)(A− βIn)−1FGT (B − αIm)−1 and C is a generalized Cayley
type transformation:

C(M, ξ, ν) := (M − ξI)−1(M − νI). (5)

Proof. Equation (1) is obviously equivalent to

(A− βIn)X(B − αIm)− (A− αIn)X(B − βIm)− (β − α)FGT = 0

from which the result follows since the inverses of A− βIn, B − αIm exist.
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Let in the remainder βj /∈ Λ(A), αj /∈ Λ(B), αj 6= βj hold for all j = 1, 2, . . . , kmax

in (3).

Lemma 3 (Generalization of [31, Lemma 3.5.1], [23, Lemma 5.2]). The error after k
steps of the Sylvester ADI can be expressed as

Xk −X =

 k∏
j=1

C(A, βj , αj)

 (X0 −X)

 k∏
j=1

C(B,αj , βj)

 . (6)

Proof. From (3) we have, using the notation of the above lemma, that the ADI ap-
proximation at iteration k can be expressed as

Xk = C(A, βk, αk)Xk−1C(B,αk, βk) + T (αk, βk)

which yields with (4)

Xk −X = C(A, βk, αk)(Xk−1 −X)C(B,αk, βk).

The result follows from an repeated application of this identity.

Lemma 4 (Generalization of [31, Lemma 3.5.2], [23, Lemma 5.3]). For the residual
Rk after k iterations of (3) it holds

Rk = AXk −XkB − FGT =

 k∏
j=1

C(A, βj , αj)

R0

 k∏
j=1

C(B,αj , βj)

 . (7)

Proof. Using

AXk −XkB − FGT = A(Xk −X)− (Xk −X)B

yields with (6) the sought expression because A and C(A, βj , αj), as well as B and
C(B,αj , βj), commute for all j.

The following theorem generalizes a result for the LR-ADI iteration applied to Lya-
punov equations [13].

Theorem 5 (Generalization of [13, Theorem 1]). Assume that rank (G) = rank (F ) =
r. Then the residual at step k of fADI (Algorithm 1) is of rank at most r and given
by

Rk := AZkDkY
H
k − ZkDkY

H
k B − FGT = −V̂kŴH

k ,

V̂k := V̂k−1 + γkVk ∈ Cn×r, V̂0 := F,

Ŵk := Ŵk−1 − γkWk ∈ Cn×r, Ŵ0 := G,

where γk := βk − αk.
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Proof. Note that Algorithm 1 starts from X0 = 0. Thus, R0 = −FGT and the
expression (7) yields already Rk = −V̂kŴH

k with

V̂k =

 k∏
j=1

C(A, βj , αj)

F, Ŵk =

 k∏
j=1

C(B,αj , βj)H
G. (8)

This shows that rank (Rk) = r if βj , αj /∈ Λ(A) ∪ Λ(B). If αj ∈ Λ(A) or βj ∈ Λ(B)
for some j, the inverses still exist but A− αjIn, or respectively B − βjIm, is singular,

such that the column rank of V̂k or Ŵk can be smaller than r. Exploiting again
the commutativity relations from Lemma 1, the increments Vk, Wk in steps 5, 6 of
Algorithm 1 can be expressed as

Vk = (A− αk−1In)(A− βkIn)−1Vk−1

= (A− βkIn)−1(A− αk−1In)(A− αk−2In)(A− βk−1In)−1Vk−2

= (A− βkIn)−1C(A, βk−1, αk−1)(A− αk−2In)Vk−2

= . . . = (A− βkIn)−1

k−1∏
j=1

C(A, βj , αj)

F, (9a)

Wk = (B − αkIm)−H

k−1∏
j=1

C(B,αj , βj)H
G. (9b)

A comparison of (8) with (9) yields ∀k ≥ 1

V̂k = (A− αkIn)Vk, Ŵk = (B − βkIn)HWk

from which we conclude that the increments can be written as

Vk = (A− βkIn)−1V̂k−1, Wk = (B − αkIn)−HŴk. (10)

Consequently,

V̂k = (A− αkIn)(A− βkIn)−1V̂k−1

= (In + (βk − αk)(A− βkIn)−1)V̂k−1 = V̂k−1 + γkVk, (11a)

Ŵk = (B − βkIm)H(B − αkIm)−HŴk−1

= (Im + (αk − βk)(B − αkIm)−H)Ŵk−1 = Ŵk−1 − γkWk, (11b)

which are the desired formulas for the low-rank factors of Rk.

With (10) and (11), Algorithm 1 can be reformulated as given in Algorithm 2, where
the low-rank factors V̂k, Ŵk of the residual matrix Rk are now integral part of the
iteration. Note that this result enables cheap evaluations of ‖Rk‖ = ‖V̂kŴH

k ‖ such
that Algorithm 2 can be terminated using a stopping criterion based on the normalized
residual norm, see Section 2.5.
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Algorithm 2: Reformulated Factored ADI iteration (fADI) for (1)

Input : A, B, F, G as in (1) and shift parameters {α1, . . . , αkmax
},

{β1, . . . , βkmax}, tolerance 0 < τ � 1.
Output: Zkmax ∈ Cn×rkmax , Ykmax ∈ Cm×rkmax , Dkmax ∈ Crkmax×rkmax such

that Zkmax
Dkmax

Y Hkmax
≈ X.

V̂0 = F, Ŵ0 = G, k = 1.1

while ‖V̂k−1ŴH
k−1‖ ≥ τ‖FGT ‖ do2

Vk = (A− βkIn)−1V̂k−1, Wk = (B − αkIm)−HŴk−1.3

V̂k = V̂k−1 + γkVk, Ŵk = Ŵk−1 − γkWk, γk = βk − αk.4

Update the low-rank solution factors5

Zk = [Zk−1, Vk], Yk = [Yk−1,Wk], Dk = diag (Dk−1, γkIr) .

k = k + 1.6

2.3 Application to Generalized Sylvester Equations

Motivated by the derivation of the generalized low-rank ADI (G-LR-ADI) iteration
[4, 40] for computing low-rank solution factors of generalized Lyapunov equations, we
investigate how Algorithm 2 can be modified accordingly to treat generalized Sylvester
equations (2). Due to the assumed nonsingularity of E and C, (2) is equivalent to the
standard Sylvester equation

ÃX −XB̃ = F̃ G̃T (12)

with Ã := E−1A, B̃ := BC−1, F̃ := E−1F, G̃ := C−TG

to which Algorithm 1 can be applied directly. However, in a large scale setting forming
Ã, B̃ is infeasible and moreover, depending on the sparsity pattern of E and C, the
sparsity of Ã and B̃ might be worse or even completely lost. This can be circumvented
by rewriting the associated steps, especially the linear systems in Algorithm 2. The
residual of the equivalent standard Sylvester equation is R̃k = ÃXk −XkB̃ − F̃ G̃T =
−V̌kW̌H

k , where

V̌k = V̌k−1 + γkVk, W̌k = W̌k−1 − γkWk, V̌0 := F̃ , W̌0 := G̃.

Clearly, it holds for the residual w.r.t. (2) that Rk = ER̃kC = −V̂kŴk with

V̂k := EV̌k = V̂k−1 + γkEVk, Ŵk := CT W̌k = Ŵk−1 − γkCTWk, (13)

where Vk, Wk are obtained from the linear systems

Vk = (Ã− βkIn)−1V̌k−1 = (A− βkE)−1V̂k−1,

Wk = (B̃ − αkIm)−HW̌k−1 = (B − αkC)−HŴk−1.
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Algorithm 3: Generalized factored ADI iteration (G-fADI) for (2)

Input : A, B, E, C, F, G as in (2) and shift parameters {α1, . . . , αkmax
},

{β1, . . . , βkmax}, tolerance 0 < τ � 1.
Output: Zkmax ∈ Cn×rkmax , Ykmax ∈ Cm×rkmax , Dkmax ∈ Crkmax×rkmax such

that Zkmax
Dkmax

(Ykmax
)H ≈ X.

V̂0 = F, Ŵ0 = G, k = 1.1

while ‖V̂k−1ŴH
k−1‖ ≥ τ‖FGT ‖ do2

Vk = (A− βkE)−1V̂k−1, Wk = (B − αkC)−HŴk−1.3

V̂k = V̂k−1 + γkEVk, Ŵk = Ŵk−1 − γkCTWk, γk = βk − αk.4

Update the low-rank solution factors5

Zk = [Zk−1, Vk], Yk = [Yk−1,Wk], Dk = diag (Dk−1, γkIr) .

k = k + 1.6

This result is the generalized factored ADI (G-fADI) iteration given in Algorithm 3. It
reduces for generalized Lyapunov equations (B = −AT , G = −F , C = ET , βi = −αi)
to the G-LR-ADI iteration [4]. All the other results of Section 2.2 can be carried over
to the generalized case by employing a generalized Cayley type transformation

C(M,N, ξ, ν) := (M − ξN)−1(M − νN) (14)

with M,N replaced by A,E and B,C as required.

2.4 Shift Parameters

Good shift parameters are essential for a fast convergence of the method. For normal
matrices (i.e. the left coincide with the right eigenvectors) A and B of (1), the shift
parameters for k iterations of Algorithm 1 satisfy the optimization problem

min
αj∈C
βj∈C

max
λ∈E
µ∈F

k∏
j=1

∣∣∣∣ (λ− αj)(µ− βj)(λ− βj)(µ− αj)

∣∣∣∣ , (15)

where E = Λ(A) and F = Λ(B), see [41]. For the generalized Sylvester equation
involving normal pencils A − λE, B − µC and Algorithm 3, one uses E = Λ(A, E),
F = Λ(B, C) in (15). For large-scale matrices, E, F are not known and not cheaply
available. Hence, as proposed in [15, 36] the heuristic approach by Penzl [38] for
the LR-ADI shifts can be easily extended for (G-)fADI by setting E, F in (15) as
sets containing a small number of approximate eigenvalues of (A, E), (B, C), and
then solving this reduced min-max problem. Usually, the approximate eigenvalues are
chosen as Ritz values generated with a few steps of an Arnoldi process. The complete
algorithm of this strategy is given in [15, Algorithm 2] and more detailed information
regarding its efficient implementation can be found in [36]. In our examples we just
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took a number of the obtained Ritz values as shifts since this seemed to work quiet
well. Moreover, this work is concerned with the handling of complex shift parameters
within Algorithms 1 and 3 no matter how they are derived. Another rather costly
strategy for computing suboptimal shifts was recently proposed in [6, 24].

2.5 Stopping Criteria

One common way to stop Algorithms 2,3 is when the residual

Rk := A(ZkDkY
H
k )C − E(ZkDkY

H
k )B − FGT ∈ Cn×m

is small enough, e.g., ‖Rk‖ < τ‖FGT ‖ in some matrix norm where τ is a small
prescribed tolerance. Using (11), the spectral- and Frobenius norm can be computed
efficiently via

‖Rk‖ =
√
‖RHk Rk‖ =

√
‖Ŵk(V̂ Hk V̂k)ŴH

k ‖ =

√
‖HkŴH

k ŴkHH
k ‖, (16a)

=
√
‖RkRHk ‖ =

√
‖V̂k(ŴH

k Ŵk)V̂ Hk ‖ =

√
‖JkV̂ Hk V̂kJHk ‖, (16b)

where Hk, Jk are the lower triangular factors of thin QR factorizations of V̂k, Ŵk. This
essentially reduces the residual norm computation to the computation of the norm of
an r×r matrix (HH

k Ŵ
H
k ŴkHk or JHk V̂

H
k V̂kJk). Counting the required flops shows that

(16a) and (16b) should be chosen when m < n and m > n, respectively. This approach
is significantly cheaper than, e.g., estimating the spectral norm indirectly via a Lanczos
process on RHk Rk or RkR

H
k . There, the main work for each Lanczos iteration would

be matrix-vector products y = Rkx, x ∈ Cm, and z = RHk y, y ∈ Cn. These products
can be formed without an explicit construction of Rk, which requires 2 matrix-vector
products with an m × m as well as an n × n sparse matrix, and 6 with thin, dense
rectangular matrices (GTu, Fu, (DkY

H
k )u, Zku with u having a suitable dimension

in each case). In total, a matrix-vector product z = RHk (Rkx) requires 4 n × n, 4
m×m and 12 rectangular matrix-vector products. Additionally, a diagonalization of
the produced tridiagonal matrix Tk for finding an approximation of λmax in needed.
This approach might, however, still be useful if the low-rank solution is improved by
Galerkin projection approaches [15] since then (11) does not hold anymore. Some
numerical evidence that computing the residual norm via (16) is more efficient than
using Lanczos can be found in Section 5 and in [13, Section 5] for generalized Lyapunov
equations.

Alternatively, the relative changes of the low-rank factors Z, Y can be used as
stopping criteria, as it is also used in the LR-ADI for Lyapunov equations [14]. There
one stops the iteration if

‖Vk‖F
‖Zk‖F

≤ εrc,
‖Wk‖F
‖Yk‖F

≤ εrc,

where εrc is a tiny prescribed tolerance. Using the Frobenius-norm allows a cheap
accumulation since ‖Zk‖2F = ‖Vk‖2F +‖Zk−1‖2F and similarly for ‖Yk‖2F . However, it is
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theoretically possible that this stopping criterion is fulfilled for the Z-, but not for the
Y -factors, or wise-versa. There, one could in principle still continue the Y -iterations
alone which would, after fulfilling the relative change criterion there as well, produce
Z- and Y -factors with different column dimensions and a rectangular D-factor. For
instance, if Z- and Y -sequences are stopped after kZ and, respectively, kY iterations,
then ZjZ ∈ Cn×kZr, YkY ∈ Cm×kY r, and D ∈ CkZr×kY r. We leave this for further
research since we exclusively used the residual based stopping criterion in this paper.

3 Computing Real Low-Rank Factors in the Presence of
Complex Shift Parameters

Here we present an approach for generating real low-rank solutions within the fADI
method. Next to the matrices defining (1), (2) being real, the main ingredient for all
of these approaches is that both sets of shift parameters are proper, i.e., they are of
the form

{α1, . . . , αKa} = {ν1, . . . , νLa} ⊂ C,
{β1, . . . , βKb

} = {µ1, . . . , µLb
} ⊂ C,

where νk, k = 1, . . . , La, is either a real number or a pair of complex conjugate
numbers {αk, αk}. Similarly for µk, k = 1, . . . , Lb. This is no restrictive but a natural
assumption since the (approximate) eigenvalues of the real matrix pairs (A, E) and
(B, C) used for generating the shift parameters come in complex conjugate pairs, too.
Moreover, we restrict the set of pairs (νk, µk) to the following cases:

1. Both νk and µk are real numbers αk and βk.

2. Both νk = {αk, αk+1 = αk} and µk = {βk, βk+1 = βk} are pairs of complex
conjugate numbers.

3. A complex pair meets two real shifts:

a) νk, νk+1 are real numbers and µk is a complex pair,

b) νk is a complex pair and µk, µk+1 are real numbers.

This is not a severe restriction since it can be achieved by a simple and usually slight
reordering and rearrangement of the sets of shifts. Moreover, due to the commutativity
relation in Lemma 1, the iterates of the (G-)fADI iteration after a number of iterations
do not change if the order of the processed shifts is changed. The above restrictions,
however, drastically simplify the encountered equations for generating real low-rank
factors which will become clear later.

3.1 Interconnections Between Complex Iterates

Our approach for computing real solution factors is motivated by [12] for the (G-)LR-
ADI iteration for (generalized) Lyapunov equations. There, the connection between

10



the iterates Vk, Vk+1 w.r.t. the consecutive complex shifts αk, αk is carefully exploited
leading to a significant reduction of the required (complex) arithmetic operations. It
is shown that

Vk+1 = Vk + 2Re (αk)
Im (αk)

Im (Vk),

which reveals that the second complex linear system with the coefficient matrixA+αkE
is not required anymore. We now investigate the adaption of this technique to the (G-
)fADI iteration. Eventually this will lead to a generalization of [12, Theorem 1]. It will
turn out that, depending on the current and previous shift parameters, Z- and Y -block-
iterates can be constructed from the real and imaginary parts of previous iterates. As
in the proof for [12, Theorem 1] we work through different possible subsequences of
shift parameters and begin with case 2) since nothing has to be taken care of in case
1).

Theorem 6. Let V̂k−1, Ŵk−1 ∈ Rn×r, {αk, αk+1 := αk}, and {βk, βk+1 := βk}.
Then the iterates at step k + 1 of Algorithm 3 are given by

Vk+1 = Vk + γk
Im (βk)

Im (Vk), (17a)

V̂k+1 = V̂k−1 + 2 Re (γk)E Re (Vk) +
(
|γk|2

Im (βk)
− 2 Im (γk)

)
E Im (Vk) ∈ Rn×r, (17b)

Wk+1 = Wk + γk
Im (αk)

Im (Wk), (17c)

Ŵk+1 = Ŵk−1 − 2 Re (γk)CT Re (Wk)

−
(
|γk|2

Im (αk)
+ 2 Im (γk)

)
CT Im (Wk) ∈ Rm×r.

(17d)

Proof. At step 3 of Algorithm 3, Vk is obtained from (A − βkE)Vk = V̂k−1 ∈ Rn×r.
Splitting βk and Vk into their real and imaginary parts gives

(A− Re (βk)E) Re (Vk) = V̂k,

(A− Re (βk)E) Im (Vk) = Im (βk)E Re (Vk). (18)

For Vk+1 this yields, employing (18),

Vk+1 = (A− βkE)−1V̂k = (A− βkE)−1(V̂k−1 + γkEVk)

= Vk + γk(A− βkE)−1
(

1
Im (βk)

(A− Re (βk)E) Im (Vk) + E Im (Vk)
)

= Vk + γk
Im (βk)

(A− βkE)−1(A− βkE) Im (Vk)

and (17a) is established. The relation (17b) follows from

V̂k+1 = V̂k + γk+1EVk+1

= V̂k−1 + γkEVk + γkE
(
Vk + γk

Im (βk)
E Im (Vk)

)
= V̂k−1 + 2 Re (γk)E Re (Vk) +

(
|γk|2

Im (βk)
− 2 Im (γk)

)
E Im (Vk).

11



For Wk we have (B − Re (αk)C)T Im (Wk) = − Im (αk)CT Re (Wk) and thus

Wk+1 = (B − αkC)−H
(
Ŵk−1 − γkCTWk

)
= Wk − γk(B − αkC)−H

(
−1

Im (αk)
(B − Re (αk)C)T Im (Wk) + CT Im (Wk)

)
= Wk+ γk

Im (αk)
(B−αkC)−H

(
(B−Re (αk)C)T Im (Wk)− Im (αk)CT Im (Wk)

)
giving (17c) and consequently (17d) via

Ŵk+1 = Ŵk − γk+1C
TWk+1

= Ŵk−1 − γkCTWk − γkCT
(
Wk + γk

Im (αk)
CT Im (Wk)

)
= Ŵk−1 − 2 Re (γk)CT Re (Wk)−

(
|γk|2

Im (αk)
+ 2 Im (γk)

)
CT Im (Wk).

Note that only V̂k+1, Ŵk+1 are needed to continue the iteration and since both are
real, the result also holds if the algorithm is continued with another pair of complex
conjugate shifts. Exactly as in the result for the G-LR-ADI for Lyapunov equations,
the data corresponding to iteration k+1 is constructed from quantities already available
after iteration k such that the linear systems w.r.t. the complex conjugate shifts αk, βk
are obsolete which significantly reduces the overall computational costs.

We can now investigate the associated part of the low-rank solution. There, Zk−1,
Yk−1, and Dk−1 are augmented by

[Vk, Vk+1] = [Re (Vk) +  Im (Vk), Re (Vk+1) +  Im (Vk+1)]

= [Re (Vk), Im (Vk)]︸ ︷︷ ︸
=:Ẑk

[
1 1


Re (βk)−αk

Im (βk)

]
⊗ Ir︸ ︷︷ ︸

=:SZk

,

[Wk, Wk+1] = [Re (Wk), Im (Wk)]︸ ︷︷ ︸
=:Ŷk

[
1 1


βk−Re (αk)

Im (αk)

]
⊗ Ir︸ ︷︷ ︸

=:SYk

,

D(k,k+1) := diag (γk, γk)⊗ Ir.

The corresponding part of the solution Xk+1 is

[Vk, Vk+1]D(k,k+1)[Wk, Wk+1]H = ẐkD̂kŶ
T
k ∈ Rn×m

with

D̂k := SZk
D(k,k+1)S

H
Yk

=

 2Re (γk)
|γk|2

Im (αk)
+2 Im (γk)

|γk|2
Im (βk)

−2 Im (γk)

(
|γk|2

Im (βk) Im (αk)
+2

)
Re (γk)

⊗ Ir ∈ R2r×2r,
(19)
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such that only real data is added to the existing low-rank factors. This finishes the
treatment of case 2).

In case 3), i.e., if only one of the two pairs is complex and the other two involved
shifts are real, the situation changes slightly but follows directly from the previous
Theorem.

Corollary 7. Let V̂k−1, Ŵk−1 be real. For case 3a), i.e., βk, βk+1 := βk and
αk, αk+1 ∈ R it holds

Vk+1 = Re (Vk) + Re (γk)
Im (βk)

Im (Vk) ∈ Rn×r, (20a)

V̂k+1 = V̂k−1 + (Re (γk) + Re (γk+1))E Re (Vk)

+ Re (γk) Re (γk+1)−Im (βk)
2

Im (βk)
E Im (Vk) ∈ Rn×r,

(20b)

Wk+1 = Wk − γk+1W̃k+1 ∈ Cm×r, W̃k+1 := (B − αk+1C)−TCTWk ∈ Rn×r, (20c)

Ŵk+1 = Ŵk−1 − (Re (γk) + Re (γk+1))CTWk + δkC
T W̃k+1 ∈ Rm×r, (20d)

where δk := α2
k+1 − 2 Re (βk)αk+1 + |βk|2. For case 3b), i.e. βk, βk+1 ∈ R and

αk, αk+1 = αk ∈ C we have

Vk+1 = Vk + γk+1Ṽk+1 ∈ Cn×r, Ṽk+1 := (A− βk+1E)−1EVk ∈ Rn×r, (21a)

V̂k+1 = V̂k−1 + (Re (γk) + Re (γk+1))EVk + δkEṼk+1 ∈ Rn×r, (21b)

Wk+1 = Re (Wk) + Re (γk)
Im (αk)

Im (Wk) ∈ Rm×r, (21c)

Ŵk+1 = Ŵk−1 − (Re (γk) + Re (γk+1))CT Re (Wk)

+ −Re (γk) Re (γk+1)+Im (αk)
2

Im (αk)
CT Im (Wk) ∈ Rm×r,

(21d)

where δk := β2
k+1 − 2 Re (αk)βk+1 + |αk|2.

Proof. In case 3a) the relation (20a) follows directly from (17a) by using Im (αk) = 0.
Plugging this into the constituting equations for V̂k+1 leads, after some simplifications,
to (20b). The equation (20c) is nothing else than the original constructing formula
for Wk+1 = Wk − γk+1

(
(B − αk+1C)−T (CTWk)

)
and exploiting that the solution of

the occurring linear system is real due to αk,k+1 ∈ R, Wk ∈ Rm×r. Using this with
some simple rearrangements leads then to (20d). The case 3b) is proved using similar
steps.

Along the lines of case 2) it can be revealed that the new parts in the low-rank factors
in case 3a) are given by the real blocks Ẑk := [Re (Vk), Im (Vk)], Ŷk := [Wk, W̃k+1],
and

D̂k =

[
Re (γk)+Re (γk+1) −δk

Re (γk) Re (γk+1)−Im (βk)
2

Im (βk)
−Re (γk)δk

Im (βk)

]
⊗ Ir ∈ R2r×2r. (22)
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Similarly, the low-rank factors in case 3b) are augmented by Ẑk := [Vk, Ṽk+1], Ŷk :=
[Re (Wk), Im (Wk)], and

D̂k :=

[
Re (γk)+Re (γk+1)

Re (γk) Re (γk+1)−Im (αk)
2

Im (αk)

δk
δk Re (γk)
Im (αk)

]
⊗ Ir ∈ R2r×2r (23)

which finishes the discussion regarding case 3).

Remark 1. Without the restrictions on the possible shift subsequences (case 1 – case
3) it is possible that there are longer recurrences of the Vk, Wk iterates. Consider,
for instance, the sequence βk, βk+1 = βk, βk+2, βk+3 = βk+2 ∈ C, αk ∈ R, αk+1,
αk+2 = αk+1 and αk+3 ∈ R. Using the same techniques as above, it is possible to
show, e.g., that

Vk+3 = Im (βk+2)−Im (αk+1)
Im (βk+2)

Re (Vk+2) + Re (βk+2)−Re (αk+1)
Im (βk+2)

Im (Vk+2)

− Im (αk+1)
Im (βk+2)

Re (Vk)− Im (αk+1)
Im (βk+2)

Re (βk)−αk

Im (βk)
Im (Vk) ∈ Rn×r

and similar, equally complicated relations exist for V̂k+3, Wk+3, and Ŵk+3. Hence, 4r
new columns are added to Zk−1, Yk−1, and Dk−1 is augmented by an 4r× 4r block at
its diagonal. However, if αk+3 is complex, the expressions get even longer and more
complicated. Real extensions for the low-rank factors can only be generated if the
shift sequence ends with either an α or β shift being real. However, since ADI type
iterations are independent of the order of the shifts, these longer relations are not
needed.

Using the relations and real expansions discovered in the previous section, we are
now able to provide a modified G-fADI algorithm which takes proper care of complex
shifts with respect to the above considered cases. Note that the Ṽ , W̃ quantities
encountered in case 3) do not require additional storage of an n× r array in a clever
implementation. Algorithm 4 illustrates the complete G-fADI iteration for generating
real low-rank solution factors (G-fADI-R). Moreover, some of the constants needed
in the computation of the V̂ , Ŵ matrices can be reused in the D̂ factor. It is also
reasonable to test for convergence via the residual norm when the V̂ , Ŵ variables are
real, i.e., after the current case has been processed. The same holds if one wishes to
improve the solution Xk via Galerkin projection ideas [15, 36], or decrease the storage
requirements by employing column compression techniques on the low-rank factors
[40], which can then be carried out in real arithmetic only.

3.2 Avoiding All Complex Operations

Algorithm 4 computes real low-rank solution factors but temporarily employs some
complex arithmetic operations and storage although the amount is significantly re-
duced compared to the original Algorithm 3. In this section we mention two ap-
proaches to get rid of the remaining complex arithmetic computations and storage. In
particular, these are the solutions of the linear systems when a shift is complex, and
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Algorithm 4: G-fADI-R for generating real low-rank solutions of (2)

Input : A, B, E, C, F, G as in (2) and proper, suitably ordered shift
parameters {α1, . . . , αkmax}, {β1, . . . , βkmax}, tolerance 0 < τ � 1.

Output: Zkmax ∈ Rn×rkmax , Ykmax ∈ Rm×rkmax , Dkmax ∈ Rrkmax×rkmax such
that Zkmax

Dkmax
Y Tkmax

≈ X.

V̂0 = F, Ŵ0 = G, k = 1.1

while ‖V̂k−1ŴT
k−1‖ ≥ τ‖FGT ‖ do2

Vk = (A− βkE)−1V̂k−1, Wk = (B − αkC)−HŴk−1.3

γk = βk − αk.4

if βk ∈ R ∧ αk ∈ R then5

V̂k = V̂k−1 + γkEVk, Ŵk = Ŵj−1 − γkCTWk.6

Zk = [Zk−1, Vk], Yk = [Yk−1,Wk], Dk = diag (Dk−1, γkIr), k = k + 1.7

if βk ∈ C ∧ αk ∈ C then8

V̂k+1 = V̂k−1 + 2 Re (γk)E Re (Vk) +
(
|γk|2

Im (βk)
− 2 Im (γk)

)
E Im (Vk).9

Ŵk+1 = Ŵk−1 − 2 Re (γk)CT Re (Wk)10

−
(
|γk|2

Im (αk)
+ 2 Im (γk)

)
CT Im (Wk).11

Zk+1 = [Zk−1,Re (Vk), Im (Vk)], Yk+1 = [Yk−1,Re (Wk), Im (Wk)]12

Dk = diag
(
Dk−1, D̂k

)
with D̂k from (19), k = k + 2.13

if βk ∈ C ∧ αk ∈ R ∧ αk+1 ∈ R then14

γk+1 = βk − αk+1, δk := α2
k+1 − 2 Re (βk)αk+1 + |βk|2.15

V̂k+1 = V̂k−1 + (Re (γk + γk+1))E Re (Vk)16

+ Re (γk) Re (γk+1)−Im (βk)
2

Im (βk)
E Im (Vk).17

Ŵk = Ŵk−1 − (Re (γk) + Re (γk+1))CTWk,18

Wk+1 = (B − αk+1C)−TCTWk.
Ŵk+1 = Ŵ + δkC

TWk+1.19

Zk+1 = [Zk−1,Re (Vk), Im (Vk)], Yk+1 = [Yk−1,Wk,Wk+1],20

Dk = diag
(
Dk−1, D̂k

)
with D̂k from (22), k = k + 2.21

if βk ∈ R ∧ βk+1 ∈ R ∧ αk ∈ C then22

γk+1 = βk+1 − αk, δk := β2
k+1 − 2 Re (αk)βk+1 + |αk|2.23

V̂k = V̂k−1 + (Re (γk) + Re (γk+1))EVk,24

Vk+1 := (A− βk+1E)−1EVk, V̂k+1 = V̂k + δkEVk+1.25

Ŵk+1 = Ŵk−1 − (Re (γk) + Re (γk+1))CT Re (Wk)26

+ −Re (γk) Re (γk+1)+Im (αk)
2

Im (αk)
CT Im (Wk).27

Zk+1 = [Zk−1, Vk, Vk+1], Yk+1 = [Yk−1,Re (Wk), Im (Wk)],28

Dk = diag
(
Dk−1, D̂k

)
with D̂k from (23), k = k + 2.29
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the corresponding Vk and Wk iterates. One way to get rid of these remaining complex
instances is to rewrite the complex linear systems, exemplary (A − βkE)Vk = V̂k−1,
into an equivalent real representation, for instance:[

A−Re (βk)E − Im (βk)E
Im (βk)E A−Re (βk)E

] [
Re (Vk)
Im (Vk)

]
=
[
V̂k−1

0

]
, (24)

where we exploited that the right hand side V̂k−1 (but also Ŵk−1) is a real n × r
matrix after each case has been processed in G-fADI-R. There are also other equivalent
real representations possible [20]. Using this and rewriting Algorithm 4 such that it
operates on Re (V̂k), Im (Ŵk), will give a formulation where all remaining complex
operations and storage requirements are discarded. For the G-LR-ADI for generalized
Lyapunov equations this has been carried out in [10, 11]. The price one has to pay is
that the 2n× 2n system (24) is often much more expensive to solve that the original
n×n complex one since modern computing environments are usually perfectly capable
of handling complex linear systems. We do not pursue this further since we do not
expect any run time savings from this approach as it can be seen in the numerical
examples in [10, 11].

Another way to work exclusively with real arithmetic operations is based on the
observation that

(M ± ξI)(M ± ξI) = M2 ± 2 Re (ξ)M + |ξ|2I

for all M ∈ Cn×n and ξ ∈ C. For Lyapunov equations and the LR-ADI iteration
this was used to derive a completely real algorithm [14, Algorithm 4],[35]. A similar
algorithm for generalized Lyapunov equations and the G-LR-ADI iterations can be
found in [11, Algorithm 1]. It is also possible to exploit the above identity in the G-
fADI iteration for generalized Sylvester equations. Consider for instance the first two
iterations of G-fADI for two complex conjugate pairs of shift {α1, α1} and {β1, β1}.
We have (using the original formulation as in Algorithm 1) V1 = (A− β1E)−1F and

V2 =
(
In + (β1 − α1)(A− β1E)−1E

)
V1 = (A− β1E)−1(A− α1E)(A− β1E)−1F

= (E−1A− α1In)(E−1A− β1In)−1(A− β1E)−1F

= (E−1A− α1In)(AE−1A− 2 Re (β1)A+ |β1|2E)−1F = −α1Ṽ1 + Ṽ2,

where

Ṽ1 := (AE−1A− 2 Re (β1)A+ |β1|2E)−1F, Ṽ2 := E−1(AṼ1). (25)

In a similar way one obtains

W2 = −β1W̃1 + W̃2, W̃1 := (BC−1B − 2 Re (α1)B + |α1|2B)−TG,

W̃2 := C−T (BT W̃1).
(26)

The other cases can also be handled in that way which allows to rewrite Algorithm
3 into a completely real form, where no complex computations and storage are used.
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The disadvantage, however, is that the properties of the coefficient matrices in the
required linear systems in (25),(26) are most likely much worse than those of the
original complex linear systems. Due to the squaring (E = In or C = Im) or the
involved inverses of E, C they can, except when E,C are, e.g., identity or diagonal
matrices, become easily large and dense matrices or it might not even be possible to
construct them explicitly. Hence, the efficiency of sparse-direct or iterative solvers is
severely deteriorated rendering the overall algorithm much less effective. Note that
additional solves with E and C are required in the generalized case. Some numerical
evidence of this argumentation (for Lyapunov equations) can be found in the numerical
examples in [12, 10, 11] and we do not pursue this approach either. If really no
complex operations are wanted or possible, the first approach using the augmented
linear systems should be preferred.

4 Special Sylvester Equations

It is known that for generalized Lyapunov equations (B = −AT , C = ET , G = −F ,
αk = −βk) G-fADI reduces to the G-LR-ADI iteration. Consequently, case 3) cannot
occur and G-fADI-R simplifies to [11, Algorithm 2] and to [12, Algorithm 3] if E = In.
In this section we discuss some more special cases of the general Sylvester equation
(2) which also lead to simpler versions of G-fADI-R.

4.1 Cross-Gramian Sylvester Equation

Choosing B = −A, C = E leads to Sylvester equations of the form

AXE + EXA = FGT (27)

which occur, e.g., in cross-Gramian model order reduction [44]. There, the defin-
ing matrices A,E, F,G represent an linear, time-invariant control system. With the
reasonable choice βk = −αk these changes lead to

Vk = (A+ αkE)−1V̂k−1, Wk = −(A+ αkE)−HŴk−1,

V̂k = V̂k−1 − 2αkEVk, V̂k = Ŵk−1 + 2αkE
TWk.

If the linear system for Vk is solved using a sparse LU decomposition LU = (A+αkE),
the LU factors can be reused for solving the second linear system for Wk since UHLH =
(A+αkE)H . It is also clear that case 3) cannot happen. If αk is a complex shift followed
by its complex conjugate, using (17a)–(17d) gives

Vk+1 = Vk + 2 αk

Im (αk)
Im (Vk),

V̂k+1 = V̂k−1 − 4 Re (αk)E Re (Vk)− 4Re (αk)
2

Im (αk)
E Im (Vk),

Wk+1 = Wk + 2 αk

Im (αk)
Im (Wk),

Ŵk+1 = Ŵk−1 + 4 Re (αk)ET Re (Wk)− 4Re (αk)
2

Im (αk)
ET Im (Wk).
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Algorithm 5: G-fADI-R for generating real low-rank solutions of (27)

Input : A, E, F, G as in (27) and proper shift parameters
{α1, . . . , αkmax} ⊂ C−, tolerance 0 < τ � 1.

Output: Zkmax ∈ Rn×rkmax , Ykmax ∈ Rn×rkmax such that ZkmaxY
T
kmax

≈ X.

V̂0 = F, Ŵ0 = G, k = 1.1

while ‖V̂k−1ŴT
k−1‖ ≥ τ‖FGT ‖ do2

Vk = (A+ αkE)−1V̂k−1, Wk = −(A+ αkE)−HŴk−1.3

if αk ∈ R then4

V̂k = V̂k−1 − 2αkEVk, Ŵk = Ŵj−1 + 2αkE
TWk.5

Zk = [Zk−1,
√
−2αkVk], Yk = [Yk−1,

√
−2αkWk], k = k + 1.6

else7

δk := Re (αk)
Im (αk)

, φk := 2
√
−Re (αk).8

V̂k+1 = V̂k−1 + φ2kE (Re (Vk)− δk Im (Vk)).9

Ŵk+1 = Ŵk−1 − φ2kET (Re (Wk) + δk Im (Wk)).10

Zk+1 =
[
Zk−1, φk(Re (Vk) + δk Im (Vk)), φk

√
δ2k + 1 · Im (Vk)

]
.11

Yk+1 =
[
Yk−1, φk(Re (Wk)− δk Im (Vk)), φk

√
δ2k + 1 · Im (Wk)

]
.12

k = k + 2.13

The 2r × 2r augmentation of Dk−1 can also be deduced from (19):

D̂k = 4

 −Re (αk)
Re (αk)

2

Im (αk)

−
Re (αk)

2

Im (αk)
Re (αk)(2|αk|2−Im (αk)

2)
Im (αk)2

⊗ Ir.
Usually, the underlying system defining (27) is assumed to be asymptotically stable,
i.e., Λ(A,E) ⊂ C−. If we restrict all αk also to C−, then there exists the factorization

D̂k = −4 Re (αk)
[

1 0
δk 1

] [ 1
δ2k+1

] [
1 −δk
0 1

]
⊗ Ir

with δk := Re (αk)
Im (αk)

and the middle diagonal matrix has only positive entries. Hence,

the above factorization of D̂k can implicitly be accumulated into the augmentations of
Zk−1 and Yk−1 such that D̂k is not required. The resulting modification of G-fADI-R
for solving the cross-Gramian equation (27) is given in Algorithm 5.

4.2 Symmetric Left and Unsymmetric Right Hand Side

A similar special case is the matrix equation (B = −AT , C = ET )

AXET + EXAT = FGT (28)
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which might be considered as generalized Lyapunov equation with an unsymmetric
right hand side. A sufficient condition for a unique solution is again Λ(A,E) ⊂ C−.
Now we might set βk = −αk which yields

Vk = (A+ αkE)−1V̂k−1, Wk = −(A+ αkE)−1Ŵk−1,

V̂k = Ŵk−1 − 2 Re (αk)EVk, V̂k = Ŵk−1 + 2 Re (αk)EWk.

Since the coefficient matrices in both linear systems are identical, we can solve for
Vk, Wk simultaneously. Case 3) cannot happen and if αk is a complex shift followed
by its complex conjugate, we find using (17a),(17c) that

V̂k+1 = V̂k−1 − 4 Re (αk)E Re (Vk) + 4Re (αk)
2

Im (αk)
E Im (Vk),

Ŵk+1 = Ŵk−1 + 4 Re (αk)E Re (Wk)− 4Re (αk)
2

Im (αk)
E Im (Wk).

as well as a similar 2r × 2r augmentation of Dk−1 by the negative definite matrix

D̂k = −4 Re (αk)
[

1 δk
δk 2δ2k+1

]
⊗ Ir = −4 Re (αk)L̂kM̂kL̂

T
k ,

L̂k =
[

1 0
δk 1

]
⊗ Ir, M̂k = diag

(
1, δ2k + 1

)
⊗ Ir

which is the same LDLT factorization as used in the LR-ADI for generalized Lya-
punov equations in [12]. The factors L̂k, M̂k can again implicitly be multiplied to
[Re (Vk), Im (Vk)] and [Re (Wk), Im (Wk)]. The resulting G-fADI-R for solving (28)
is given in Algorithm 6. Note that the conjugation of αk in the linear system has been
revoked since it is not important in which order the shifts of a complex conjugated
pair are processed.

4.3 Discrete-time Lyapunov Equations

It is obvious that (2) can be seen as discrete-time Sylvester equation such that also
those equations can be solved by G-fADI and its real version. Choosing C = AT ,
B = ET and G = −F leads to a generalized discrete-time Lyapunov or Stein equation

AXAT − EXET = −FFT , (29)

which has a unique symmetric positive (semi)definite solution if |λj | < 1 for all λj ∈
Λ(A,E). There is already some work on solving large-scale Stein equations, e.g., by
Krylov subspace [42], Smith [8, 37], or ADI type methods [7],[42, Section 6.3]. Here we
follow a rather unconventional approach by solving (29) with the G-fADI iteration for
generalized Sylvester equations. There, some simplifications occur as follows where we
assume that 0 /∈ Λ(A,E) and αk 6= 0 ∀k. Since Λ(B,C) = Λ(ET , AT ) = 1/Λ(A,E),
setting βk = 1/αk appears to be the natural choice. Then the Vk, V̂k are given by

Vk = (A− βkE)−1V̂k−1 = (A− αk

|αk|2E)−1V̂k−1,

V̂k = V̂k−1 + αk
1−|αk|2
|αk|2 EVk.
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Algorithm 6: G-fADI-R for generating real low-rank solutions of (28)

Input : A, E, F, G as in (28) and proper shift parameters
{α1, . . . , αkmax} ⊂ C−, tolerance 0 < τ � 1.

Output: Zkmax ∈ Rn×rkmax , Ykmax ∈ Rn×rkmax such that ZkmaxY
T
kmax

≈ X.

V̂0 = F, Ŵ0 = G, k = 1.1

while ‖V̂k−1ŴT
k−1‖ ≥ τ‖FGT ‖ do2

[Vk,Wk] = (A+ αkE)−1[V̂k−1,−Ŵk−1].3

if αk ∈ R then4

[V̂k, Ŵk] = [V̂k−1, Ŵj−1] + 2αkE[−Vk,Wk].5

Zk = [Zk−1,
√
−2αkVk], Yk = [Yk−1,

√
−2αkWk], k = k + 1.6

else7

δk := Re (αk)
Im (αk)

, φk = 2
√
−Re (αk)8

V̂k+1 = V̂k−1 + φ2kE (Re (Vk)− δk Im (Vk))9

Ŵk+1 = Ŵk−1 − φ2kE (Re (Wk)− δk Im (Wk)).10

Zk+1 =
[
Zk−1, φk (Re (Vk) + δk Im (Vk)) , φk

√
1 + δ2k Im (Vk)

]
.11

Yk+1 =
[
Yk−1, φk (Re (Wk) + δk Im (Wk)) , φk

√
1 + δ2k Im (Wk)

]
.12

k = k + 2.13

For Wk, Ŵk we have at first

W1 = (B − α1C)−HG = (α1A− E)−1F = − 1
α1
V1,

Ŵ1 = −F + 1−|α1|2
α1

AW1 = −F + 1−|α1|2
|α1|2 AV1 = − 1

|α1|2 V̂1,

where we used that AVk = αk

|αk|2EVk + V̂k−1 = 1
1−|αk|2 V̂k −

|αk|2
1−|αk|2 V̂k−1. Subsequently

applying this procedure for k = 2, 3, . . . eventually yields

Wk = θk−1

αk
Vk, Ŵk = −θkV̂k

with θk :=
(
|α1|2 · . . . · |αk|2

)−1
, θ0 = 1. Hence, Wk, Ŵk as well as the solution

factor Yk are not required. Accumulating the constants in front of Wk in the above
expressions into the D-factor leads to the iteration scheme

Vk = (A− αk

|αk|2E)−1V̂k−1, V̂k = V̂k−1 + αk
1−|αk|2
|αk|2 EVk,

Zk = [Zk−1, Vk], Dk = diag
(
Dk−1, (1− |αk|2)θkIr

)
, θk = θk−1

|αk|2 .

The spectral norm of the residual can be computed via ‖Rk‖ = |θk|‖V̂k‖2. Note that
this iteration is different from the ADI iteration for (29) presented in [7, 42]. Now let
V̂k−1 ∈ Rn×r and αk, αk+1 = αk ∈ C. By using similar techniques as in Section 3 we
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Algorithm 7: LR-ADI-R for Stein equations (29)

Input : A, E, F as in (29) and proper shift parameters {α1, . . . , αkmax
}

with 0 < |αk| < 1, tolerance 0 < τ � 1.
Output: Zkmax ∈ Rn×rkmax such that ZkmaxZ

T
kmax

≈ X.

V̂0 = F, θ0 = 1, k = 1.1

while |θk−1|2‖V̂k−1‖2 ≥ τ‖F‖2 do2

Vk = (A− αk

|αk|2E)−1V̂k−1.3

if αk ∈ R then4

V̂k = V̂k−1 +
1−α2

k

αk
EVk, θk = θk−1

α2
k

.5

Zk = [Zk−1,
√

(1− α2
k)θkVk], k = k + 1.6

else7

V̂k+1 = V̂k−1 + 2Re (αk)(1−|αk|2)
|αk|2 E Re (Vk)8

+ (1−|αk|2)(|αk|2−|αk|4−2 Im (αk)
2)

|αk|2 Im (αk)
E Im (Vk).9

θk+1 = θk−1

|αk|4 , δk := Re (αk)
Im (αk)

, `1 :=
√

1− |αk|4, `2 := `−11 δk(1− |αk|2)2,10

`3 :=
√

(1− |αk|2)(|αk|2 + δ2k(1− 2|αk|2) + |αk|4 (1 + δ2k))− `22.

Zk+1 =
[
Zk−1,

√
θk+1 (`1 Re (Vk) + `2 Im (Vk)) ,

√
θk+1`3 Im (Vk)

]
.11

k = k + 2.12

obtain

Vk+1 = Vk + αk(1−|αk|2)
Im (αk)

Im (Vk),

V̂k+1 = V̂k−1 + 2Re (αk)(1−|αk|2)
|αk|2 E Re (Vk) + (1−|αk|2)(|αk|2−|αk|4−2 Im (αk)

2)
|αk|2 Im (αk)

E Im (Vk),

and

D̂k :=
√

(1− |αk|2)θk+1

[
1+|αk|2 δk(1−|αk|2)

δk(1−|αk|2) |αk|2+δ2k(1−2|αk|2)+|αk|4(1+δ2k)

]
⊗ Ir ∈ R2r×2r

with θk+1 = θk−1

|αk|4 , δk := Re (αk)
Im (αk)

. It can be easily shown that D̂k is positive def-

inite, provided |αk| < 1, and its Cholesky factor can implicitly be multiplied to
[Re (Vk), Im (Vk)] such that D̂k is also not required. The resulting algorithm for
computing real solutions factors for (29) in given in Algorithm 7. The constants `1,2,3
in step 10 are the entries of the Cholesky factors of D̂k(

√
θk+1)−1.

Note that Algorithm 7 can be rewritten such that the coefficient matrices in the
linear systems are |αk|2E − αkA or αkE − A. This will essentially introduce other
constants in the defining equations for Vk, V̂k leading also to slightly other entries in
D̂k. Which choice will be the best, e.g. w.r.t. numerical robustness, might a topic for
further research.

The construction of θk constitutes a weakness of Algorithm 7 since it can easily
become extremely large if |αk| � 1 for some shifts. This was also observed in some
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Table 1: The parameters for the fADI method and its modifications.

Parameter Meaning

kA+, k
A
− number of Arnoldi steps w.r.t. E−1A and A−1E

kB+ , k
B
− number of Arnoldi steps w.r.t. C−1B and B−1C

J = JR + 2JC number of shifts (real ones plus complex pairs) w.r.t. A,E
L = LR + 2LC number of shifts (real ones plus complex pairs) w.r.t. B,C
εres = 10−10 tolerance for normalized residual

numerical examples. Moreover, the case |αk| ≈ 1 can lead to cancellation. We plan
to pursue the circumvention of these issues in future work regarding ADI methods for
Stein equations.

If the right hand side of (29) is of the form FGT , similar techniques as for (28) in
Section 4.2 can be applied to construct a modified version of Algorithm 7.

5 Numerical Examples

In this section we test the considered algorithms in their complex and real implemen-
tation for different types of Sylvester equations. All experiments have been carried
out in MATLAB® 7.11.0 on an Intel®Xeon®W3503 CPU with 2.40 GHz and 6 GB
RAM. The occurring linear systems were solved with the MATLAB backslash oper-
ator which employs sparse direct techniques. The algorithms were terminated when
‖Rk‖/‖FGT ‖ < εres, εres = 10−10, where the residual norm was computed using the
novel relation (16). For the shift parameters we ran kA+ and kA− steps of an Arnoldi
process w.r.t. E−1A and A−1E, respectively. From the resulting kA++kA− Ritz values J
were selected consisting of JR real and JC pairs of complex conjugated shifts. The gen-
eration of shifts corresponding to B, C was carried out similarly. Table 1 summarizes
these and all other parameters required for the methods. If the number of required
iterations exceeded the number of shifts J or K, the respective shifts were used in a
cyclical manner. Note that we did not apply the heuristic shift selection strategy via
the approximate solution of (15) since taking the generated Ritz values alone works
surprisingly well for our examples. In some cases this approach worked even better
than selecting shifts via (15). Moreover, it is adequate enough for showing efficiency
improvements of the algorithms which compute real low-rank solution factors. We used
the following test examples, where the majority of them were constructed entirely for
testing purposes without any background in applications.

Example 1. To get a standard Sylvester equation we use, similar as in [32, Example
2], 5-point discretizations of the operator

L(x) := ∆x− f1(ξ1, ξ2)
∂x

∂ξ1
− f2(ξ1, ξ2)

∂x

∂ξ2
− f3(ξ1, ξ2)x on Ω = (0, 1)2,

where x = x(ξ1, ξ2) and with imposed homogeneous Dirichlet boundary conditions.
The matrix A is obtained from using 80 equidistant grid points for each spatial di-

22



mension and f1(ξ1, ξ2) = eξ1+ξ2 , f2(ξ1, ξ2) = 1000ξ2, f3(ξ1, ξ2) = ξ1. Likewise, B is
obtained from discretizing −L(x) using 60 grid points and f1(ξ1, ξ2) = sin(ξ1 + 2ξ2),
f2(ξ1, ξ2) = 20eξ1+ξ2 , f3(ξ1, ξ2) = ξ1ξ2. The right hand side factors F,G are random
matrices with r = 4 columns.

Example 2. Similar as Example 1, but now with 110 grid points and f1(ξ1, ξ2) =
eξ1ξ2 , f2(ξ1, ξ2) = sin(ξ1ξ2), f3(ξ1, ξ2) = ξ22 − ξ21 for A, as well as 30 grid points and
f1(ξ1, ξ2) = 100eξ1 , f2(ξ1, ξ2) = 10ξ1ξ2, f3(ξ1, ξ2) =

√
ξ22 + ξ21 to define B. This is

essentially [17, Example 1].

Example 3. We use the IFISS 3.2 package [43] to discretize ẋ = L(x) on (0, 1)2 by Q1
finite elements on a uniform grid. The same settings as in the IFISS example T-CD3
are used to set the functions f1, f2 and the boundary conditions. Motivated by the
Sylvester example in [6], two different grid sizes were used to generate A,E and B,C:
a 128× 128 and a 64× 64 grid, respectively, and F,G are random matrices with r = 5
columns.

The next four examples represent the special Sylvester equations considered in Sec-
tion 4. They were treated with both G-fADI(-R) and the adapted methods proposed
there to show additional performance gains from exploiting their special structure.

Example 4. We take the same settings as in Example 1 to generate A but now with
100 grid points and r = 1 and set B = −A. The right hand side factors F,G are random
vectors. Since the resulting equation is a cross-Gramian Sylvester equation of the form
(27), we also apply the specially tailored modification of Section 4.1 (Algorithm 5).

Example 5. The same data as in Example 4 but now B = −AT which leads to an
equation of the form (5) such that Algorithm 6 is applied as well.

Example 6. As in [42, Example 1] we set

A = CT =


0 ϑ
−ϑ 0 ϑ
−ϑ 0

. . . ϑ
−ϑ 0

 , F = −G =

 1 0
0 1
0 0
...

...
0 0

 , B = E = In

with n = 50000 and ϑ = 0.49. This leads to a Stein equation (29) which is also handled
by Algorithm 7.

Example 7. Let A,F from Example 4 define a Lyapunov equation AX + XAT =
−FFT . Then X is also the solution of a generalized Stein equation defined by Ã =
ηIn − A, Ẽ = ηIn + A and F̃ =

√
2ηF with η = 103. As in the previous example, we

apply both G-fADI(-R) and Algorithm 7. See [42, Example 2] for a similar experiment.

The dimensions of the considered Sylvester equations, the settings for the shift pa-
rameter computation, the number of the required fADI iterations kit until termination,
and the computation times tC, tR for the complex as well as real fADI algorithms are
summarized in Table 2. It is evident that for all examples the methods computing real
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Table 2: Parameters, required fADI iterations kit and computation times tC, tR in
seconds of basic and real implementations.

Ex. n,m, r kA+, k
A
−, k

B
+ , k

B
− J(JR, JC), L(LR, LC) kit tC tR

1 6400,3600,4 10,10,10,10 20 (8,6), 20 (12,4) 54 8.24 4.72
2 12100,900,4 10,10,5,5 20 (18,1), 10 (2,4) 43 12.4 6.12
3 16641,4225,5 10,20,10,20 30 (12,9), 30 (12,9) 84 54.59 29.15
4 10000,-,1 10,10,- 20 (8,6), - 140 33.52 20.27
5 10000,-,1 10,10,- 20 (8,6), - 133 31.58 19.73
6 50000,-,2 10,0,- 10 (0,5), - 68 23.59 10.89
7 10000,-,1 10,0,- 10 (2,4),- 262 66.09 44.05
4 G-fADI iteration for (27), Algorithm 5 140 33.68 20.10
5 G-fADI iteration for (28), Algorithm 6 133 19.29 12.00
6 G-fADI iteration for (29), Algorithm 7 68 11.62 6.12
7 G-fADI iteration for (29), Algorithm 7 262 32.08 22.08

solution factors required, depending on the number of processed complex shifts, sub-
stantially less time. The obtained solutions were almost identical, except for possible
rounding errors.

This can also be seen in the residual history for Example 1 shown in Figure 1(a).
Both the complex (Algorithm 2) and real version (Algorithm 4) have almost identical
residual norms throughout the iteration. Only minor deviations occurred exactly when
the complex method is in between processing a pair of complex conjugated shifts, i.e.,
cases 2) or 3). This is a similar observation as in [12, Example 1, Figure 1]. From the
sparsity pattern of the matrix Dk in Figure 1(b), one can see that the cases 2) and
3) were encountered 18 times which is revealed by the respective number of 2r × 2r
blocks along the diagonal.

Before we proceed we investigate, using Example 3, the performance of the compu-
tation of the (normalized) Sylvester residual norm in G-fADI(-R) (Algorithms 3 and 4)
exploiting the low-rank structure given bin Theorem 5 by using (16a),(16b). For com-
parison we also compute the residual norm with a Lanczos process applied to RHk Rk
using the eigs command in MATLAB. Figure 2 illustrates the history of the required
runtime of both approaches as G-fADI and G-fADI-R proceed. Obviously, using the
Lanczos process is drastically more expensive (177.8 / 65.42 seconds) than our novel
approach via the low-rank structure of Rk (0.41 / 0.13 seconds). It even considerably
exceeds the runtime of the main computations (54.59 / 29.15 seconds) of G-fADI(-R).
One can also clearly see that the Lanczos approach gets increasingly expensive as the
iterations proceed due to the increasing dimensions of the low-rank solution factors.
Obviously, the total runtimes are smaller in G-fADI-R because the residual norm is
only computed once after a complex pair of shifts has been processed and not twice as
in G-fADI. Furthermore, Figure 2 reveals that the times for computing ‖Rk‖ at each
iteration k are smaller in G-fADI-R since only real data is involved there whereas V̂k,
Ŵk in G-fADI might have (rounding error induced) non-zero imaginary parts, although

24



10 30 50
10−12

10−6

100

εres

iteration number k

‖R
k
‖

fADI (Algorithm 2)

fADI-R (Algorithm 4)

(a) Residual norm history.

50 100 150 200

50

100

150

200

nz = 432

(b) Sparsity pattern of Dk generated by
fADI-R.

Figure 1: Results for Example 1. (a) Residuals norms against iteration number k for
fADI and fADI-R. (b) Sparsity pattern of the matrix Dk in fADI-R.
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Figure 2: Time (in seconds) needed for computing the (normalized) Sylvester residual
norm Rk for Example 3 in G-fADI-R against the iteration number k, where
‖Rk‖ was computed with a Lanczos process for RHk Rk as well as the novel
approach exploiting the low-rank representation (8),(13) of Rk. The total
times are given in brackets behind the respective entry in the legend.

both quantities are real (cf. Theorem 6, Corollary 7). Similar observations, regarding
both the efficiency of the real (G-)fADI iteration and the residual norm computation,
were also made for the other examples. Similar results concerning the LR-ADI for
generalized Lyapunov equations can be found in [13].

The lines 4–7 of Table 2 belong to the special Sylvester equations of the Examples
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4–7. They are solved directly by (G-)fADI and its real modification (G-)fADI-R. The
last four lines of Table 2 give the timings for the structure exploiting modifications
and their real implementations given in Algorithms 5–7 in Section 4.

For the cross-Gramian Sylvester equation of Example 4 there is no significant dif-
ference in the timings of fADI(-R) and Algorithm 5. We did not reuse the LU factors
of A − αE in the solution of both adjoint linear systems since computing those with
the lu command in MATLAB was more costly than solving both systems separately
with the backslash command1.

For Example 6 the application of Algorithm 6 leads to a significant reduction of
the computation time. This is mainly because the factorization of the shifted linear
system has to be computed only once for constructing both Vk and Wk.

A decrease of the run times is also apparent for Examples 6 and 7 when apply-
ing Algorithm 7 instead of G-fADI(-R). However, in some cases the algorithm broke
down when some of the αk were too small in magnitude which resulted in an overflow
when computing the value θk. Hence, we set kA− = 0 and used only the Ritz values
approximating the eigenvalues with the largest magnitude. Note that for Example
7 the approximate solution can be obtained more easily by applying LR-ADI-R [12,
Algorithm 3] to the equivalent Lyapunov equation which required 230 iterations and
about 16 seconds.

6 Conclusions and Outlook

In this work we investigated the factored ADI method [15, 36] for solving large-scale
generalized Sylvester equations. We extended some results for Lyapunov equations
[31, 23, 13] which resulted in a new low-rank representation of the residual matrix
Rk. This enables a cheap way to compute the residual norm. The main part of this
paper is devoted to the handling of complex shift parameters. This lead to extensions
of the result [12, Theorem 1] which allows to formulate an fADI iteration (Algorithm
4) that constructs real low-rank solution factors by employing significantly reduced
amounts of complex arithmetic operations and storage. The occurring formulas are
more complicated compared to the low-rank ADI for Lyapunov equations. Numerical
experiments show a clear reduction of the computation time if complex shifts are
handled properly. The treatment of special generalized Sylvester equations such as
cross-Gramian equations, equations with a symmetric left but unsymmetric right hand
side, and even Stein equations was also discussed. Specially tailored modifications of
G-fADI have been proposed which also incorporate a proper handling of complex shifts.
These structure exploiting variants can lead to an additional efficiency gain as shown
in the numerical examples.

In this paper we did not extensively focus on the efficient generation of shift param-
eters of high quality. This might be regarded as very pressing matter in context to
ADI type methods. The adaptive computation of shifts during the ADI iteration is

1The reason is, that to out knowledge, lu uses a different factorization algorithm then \.
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currently investigated. The use of the derived low-rank ADI iteration for Stein equa-
tions within the Newton’s method for discrete-time algebraic Riccati equations [7] will
be investigated soon. Another obvious future research perspective is the application
of the proposed ADI methods to solve the Sylvester equations which occur in Newton
methods for nonsymmetric algebraic Riccati equations

AXC + EXB − EXDXC +H = 0,

see, e.g., [19, Listing 3.11]. This might lead to generalizations of the low-rank Newton
type ADI methods [14, 31, 23] available for algebraic Riccati equations.
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