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Abstract

We consider the numerical solution of projected algebraic Riccati equations using Newton’s

method. Such equations arise, for instance, in model reduction of descriptor systems based

on positive real and bounded real balanced truncation. We also discuss the computation of

low-rank Cholesky factors of the solutions of projected Riccati equations. Numerical examples

are given that demonstrate the properties of the proposed algorithms.

Keywords. Projected Riccati equation, projected Lyapunov equation, Newton’s method, al-
ternating direction implicit (ADI) method.
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1 Introduction

Consider generalized algebraic Riccati equations of the form

H + FXET + EXFT + EXGXET = 0, (1)

where E, F , G, H ∈ R
n,n are given matrices and X ∈ R

n,n is unknown. If E is nonsingular,
then (1) can be transformed into a standard Riccati equation with E = In. Such equations arise
in many control problems for dynamical systems including the linear-quadratic optimal regulator
problem, H2/H∞ controller design, spectral factorization and balancing-related model reduction,
e.g., [19, 21, 28, 31]. The generalized Riccati equation (1) with singular E occurs in control
problems for differential-algebraic equations or descriptor systems [3, 31, 45]. Unfortunately, the
analysis of such an equation is more complicated compared to the standard case. In the literature,
different types of generalized Riccati equations have been introduced for descriptor systems, e.g.,
[25, 26, 36, 50]. However, most of them are restricted to index one problems.

In this paper, we study the projected algebraic Riccati equation (PARE) of the form

PlHPT
l + FXET + EXFT + EXGXET = 0, X = PrXPT

r , (2)

where the pencil λE−F is assumed to be regular, i.e., det(λE−F ) 6= 0 for some λ ∈ C, and Pr and
Pl are the spectral projectors onto the right and left deflating subspaces of λE−F corresponding to
the finite eigenvalues along the right and left deflating subspaces corresponding to the eigenvalue
at infinity. We will also assume that G and H are both symmetric and positive semidefinite. Such
equations play a fundamental role in positive real and bounded real balanced truncation model
reduction of descriptor systems [35, 36].

∗Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.

benner@mpi-magdeburg.mpg.de
†Institut für Mathematik, Universität Augsburg, Universitätsstraße 14, 86159 Augsburg, Germany.
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For standard Riccati equations many different numerical methods have been proposed over the
last thirty years. These are the Schur vector method [29], the sign function method [13], the
structured doubling algorithm [14], Krylov subspace methods [22, 23] and symplectic methods
[12]. All these methods rely on a Hamiltonian eigenvalue problem. Another approach is based
on considering the Riccati equation (1) with E = In as a system of nonlinear equations. Such
a system can be solved by Newton’s method [4, 9, 27, 44]. In this paper, we present an extension
of this method to the PARE (2).
Throughout the paper, the open left half-plane is denoted by C−. The matrices AT and A∗ stand

for the transpose and conjugate transpose of A, respectively, and A−T = (A−1)T . An identity
matrix of order n is denoted by In or simply by I. For symmetric matrices A,B ∈ R

n,n, we write
A > B (A ≥ B) if A − B is positive definite (semidefinite). We denote by ‖A‖2 and ‖A‖F the
spectral and Frobenius matrix norms of A ∈ R

n,m.
This paper is organized as follows. In Section 2, we discuss the solvability of the PARE (2). In

Section 3, we present Newton and Newton-Kleinman iterations for solving this equation. We also
study the convergence of these methods and discuss the computation of a stabilizing initial guess.
Section 4 contains low-rank versions of Newton-type methods. Finally, some results of numerical
experiments for the presented algorithms are reported in Section 5.

2 Preliminaries

In this section, we give basic definitions and some notations from matrix analysis and control
theory that will be used in the following. We also study the solvability of the PARE (2).

Any regular pencil λE − F can be transformed into its Weierstrass canonical form

E = Tl

[
Inf 0
0 E∞

]

Tr, F = Tl

[
Ff 0
0 In∞

]

Tr, (3)

where Tl and Tr are the left and right nonsingular transformation matrices, Ff ∈ R
nf ,nf and

E∞ ∈ R
n∞,n∞ are matrices in Jordan canonical form, and E∞ is nilpotent with index of nilpotency

ν, see [17]. The eigenvalues of Ff are the finite eigenvalues of λE − F , and E∞ corresponds to
an eigenvalue at infinity. The number ν is called the index of λE−F . The pencil λE−F is called
stable if all its finite eigenvalues have negative real part. Using the Weierstrass canonical form (3),
the spectral projectors Pr and Pl onto the right and left deflating subspaces of the pencil λE −F
corresponding to the finite eigenvalues can be represented as

Pr = T−1
r

[
Inf 0
0 0

]

Tr, Pl = Tl

[
Inf 0
0 0

]

T−1
l . (4)

A triple (E,F,G) is called stabilizable if rank[λE − F, G ] = n for all λ ∈ C \ C−. A triple
(E,F,H) is called detectable if rank[λET −FT , HT ] = n for all λ ∈ C\C−. A solution X∗ of the
PARE (2) is called stabilizing if X∗ is symmetric and the pencil λE − F − EX∗GPr is stable. If
this pencil has all finite eigenvalues in the closed left-half plane, then the symmetric solution X∗

of (2) is called semi-stabilizing. The following theorem gives sufficient conditions for the existence
of a unique stabilizing solution of (2).

Theorem 2.1 Consider the PARE (2) with G = GT ≥ 0 and H = HT ≥ 0. If (E,F,G) is
stabilizable and (E,F,H) is detectable, then (2) has a unique stabilizing solution X∗.

Proof. Let λE − F be in Weierstrass canonical form (3) and let the matrices

G = TT
r

[
G11 G12

GT
12 G22

]

Tr, H = Tl

[
H11 H12

HT
12 H22

]

TT
l ,

X = T−1
r

[
X11 X12

X21 X22

]

T−T
r

(5)
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be partitioned into blocks accordingly to E and F . Since G and H are both symmetric and positive
semidefinite, the matrices G11 and H11 are also symmetric and positive semidefinite. Substituting
(3), (4) and (5) into the PARE (2), we obtain that any solution of (2) has the form

X = T−1
r

[
X11 0
0 0

]

T−T
r , (6)

where X11 satisfies the standard Riccati equation

H11 + FfX11 +X11F
T
f +X11G11X11 = 0. (7)

Since (E,F,G) is stabilizable, we have

n = rank[λE − F, G ] = rank

[
λI − Ff 0 G11 G12

0 λE∞ − I GT
12 G22

]

= n∞ + rank[λI − Ff , G11, G12 ]

for all λ ∈ C \ C−. Then

rank[λI − Ff , G11, G12 ] = nf for all λ ∈ C \ C−. (8)

We now show that rank[λI−Ff , G11 ] = nf for all λ ∈ C\C−, i.e., the pair (Ff , G11) is stabilizable
in the classical sense. For this purpose, consider the Cholesky factorization G = G1G

T
1 . Then for

T−T
r G1 = [TT

1 , TT
2 ]T , we have

[
G11 G12

GT
12 G22

]

= T−T
r GT−1

r =

[
T1T

T
1 T1T

T
2

T2T
T
1 T2T

T
2

]

.

Assume that rank[λ0I−Ff , G11 ] < nf for some λ0 ∈ C\C−. In this case, there exists v 6= 0 such
that v∗[λ0I − Ff , G11 ] = 0. Then 0 = v∗G11v = v∗T1T

T
1 v implies v∗T1 = 0 and, hence,

v∗[λ0I − Ff , G11, G12 ] = v∗[λ0I − Ff , T1T
T
1 , T1T

T
2 ] = 0.

This contradicts (8).
Analogously, we can show that the detectability of (E,F,H) implies the detectability of the

pair (Ff , H11) in the classical sense. In this case, the Riccati equation (7) has a unique symmetric
solution X11 such that all the eigenvalues of Ff +X11G11 have negative real part, see [28, Chap-
ter 8]. For this X11, the matrix X in (6) is symmetric and the pencil λE −F −EXGPr is stable.
Thus, the PARE (2) has a unique stabilizing solution.
Note that in Theorem 2.1 we make no assumptions about the index of the pencil λE − F .

Similarly to the standard case with E = I, see [28, Section 8.5], the detectability condition can
be weakened. If only a semi-stabilizable solution of (2) is required, then also stabilizability can
be relaxed. Moreover, for projected Riccati equations arising in passivity-preserving balanced
truncation of structured passive circuit equations, these conditions can be removed at all [35].

3 Newton’s method

Observing that the first equation in (2) is a system of nonlinear equations, it suggests itself to
solve it using Newton’s method.
Let P be a projector and let SP = {X ∈ R

n,n : X = XT andX = PXPT }. Consider a Riccati
operator R : SPr

→ SPl
given by

R(X) = PlHPT
l + FXET + EXFT + EXGXET .

The Frechét derivative of R at X ∈ SPr
is a linear operator R′

X : SPr
→ SPl

defined as

R′
X(N) = lim

δ→0

1

δ

(
R(X + δN)−R(X)

)
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for N ∈ SPr
. Taking into account that N = PrN = NPT

r , we have

R′
X(N) = (F + EXGPr)NET + EN(F + EXGPr)

T .

Then Newton’s method for the PARE (2) can be written as

Nj = −(R′
Xj

)−1(R(Xj)),

Xj+1 = Xj +Nj .

The standard formulation of this method is given in Algorithm 1.

Algorithm 1 Newton’s method

Input: E,F,G,H ∈ R
n,n, projectors Pr and Pl, a stabilizing initial guess X0 ∈ SPr

.
Output: An approximate solution of the PARE (2).
FOR j = 0, 1, 2, . . .

1. Compute Fj = F + EXjGPr.

2. Solve the projected algebraic Lyapunov equation (PALE)

FjNjE
T + ENjF

T
j = −PlR(Xj)P

T
l , Nj = PrNjP

T
r . (9)

3. Compute Xj+1 = Xj +Nj .

END FOR

As in the standard case [27], we can combine the second and third steps in Algorithm 1 and
compute the new iterate Xj+1 directly from the projected Lyapunov equation as presented in
Algorithm 2.

Algorithm 2 Newton-Kleinman method

Input: E,F,G,H ∈ R
n,n, projectors Pr and Pl, a stabilizing initial guess X0 ∈ SPr

.
Output: An approximate solution of the PARE (2).
FOR j = 0, 1, 2, . . .

1. Compute Fj = F + EXjGPr.

2. Solve the PALE

FjXj+1E
T + EXj+1F

T
j = −Pl(H − EXjGXjE

T )PT
l ,

Xj+1 = PrXj+1P
T
r .

(10)

END FOR

Although Algorithms 1 and 2 are mathematically equivalent, they behave differently in finite
precision arithmetic and there are significant differences in their implementation especially for
large-scale problems. We will compare the Newton and Newton-Kleinman methods in Section 4.5.

Remark 3.1 Due Xj = PrXj and PlE = EPr, the matrices Fj in Algorithms 1 and 2 satisfy Fj =
F+EXjGPr = F+PlEXjGPr. Then using the Weierstrass canonical form (3) and representations
(4), we obtain that Pl and Pr are the spectral projectors onto the left and right deflating subspaces
corresponding to the finite eigenvalues not only of λE − F but also of λE − Fj.

3.1 Convergence

First, we investigate the convergence of Algorithms 1 and 2. The following theorem establishes
that the PALEs (9) and (10) are solvable and the iterate Xj converges in both algorithms to
a stabilizing solution of the PARE (2) for every stabilizing X0 ∈ SPr

.
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Theorem 3.2 Let X0 ∈ SPr
be chosen such that the pencil λE −F −EX0GPr is stable. Assume

that the PARE (2) with G = GT ≥ 0 has a unique stabilizing solution X∗.
Then for the iterate Xj in Algorithm 1 or 2, we have:

(i) the pencil λE − Fj with Fj = F + EXjGPr is stable for all j ≥ 0;

(ii) X1 ≤ X2 ≤ . . . ≤ Xj ≤ Xj+1 ≤ . . . ≤ X∗;

(iii) lim
j→∞

Xj = X∗ and lim
j→∞

R(Xj) = 0;

(iv) there exists a constant γ > 0 such that ‖X∗ − Xj+1‖ ≤ γ‖X∗ − Xj‖2 for j ≥ 1, i.e., the
iterate Xj converges globally and quadratic to X∗.

Proof. This theorem can be proved in two different ways. The first approach is based on
transforming the pencil λE−F into the Weierstrass canonical form (3) and applying the classical
convergence results [5, 44] to the standard Riccati equation (7). On the other hand, these results
can be reformulated in terms of the original data. We choose the second approach.

(i) The stability of λE−Fj with Fj = F+EXjGPr, j = 0, 1, . . ., can be proved by induction. The
pencil λE−F0 is stable by the choice of X0. Assume now that λE−Fj is stable. Then the PALE
(9) has a unique symmetric solution Nj [40]. Since X0 is symmetric, the iterate Xj+1 = Xj +Nj

is also symmetric. Subtracting equation (10) for Xj+1 from the PARE (2) with X replaced by
X∗, we obtain that the difference Dj+1 = X∗ −Xj+1 satisfies the PALE

FjDj+1E
T + EDj+1F

T
j = −PlEDjGDjE

TPT
l , Dj+1 = PrDj+1P

T
r . (11)

Since λE − Fj is stable and the right-hand side in the first equation in (11) is symmetric and
negative semidefinite, then (11) has a unique symmetric, positive semidefinite solution Dj+1, see
[40]. Thus, Xj+1 ≤ X∗.
We now show that λE − Fj+1 is stable. The first equation in (11) can be written as

Fj+1Dj+1E
T + EDj+1F

T
j+1 = −EDj+1GDj+1E

T − ENjGNjE
T . (12)

Assume that λE − Fj+1 has an eigenvalue λ0 with Re(λ0) ≥ 0. Let v = Plv be a left eigenvector
of λE − Fj+1 corresponding to λ0, i.e., λ0v

∗E = v∗Fj+1. Pre-multiplying (12) by v∗ and post-
multiplying by v, we obtain that

2Re(λ0)v
∗EDj+1E

T v = −v∗EDj+1GDj+1E
T v − v∗ENjGNjE

T v.

SinceDj+1 andG are both symmetric, positive semidefinite and Re(λ0) ≥ 0, we haveGDj+1E
T v =

0 and GNjE
T v = 0. Then

v∗Fj = v∗(F + EXjGPr) = v∗(F + EXj+1GPr) = v∗Fj+1 = λ0v
∗E.

This contradicts the stability of λE − Fj . Thus, λE − Fj+1 is stable.
(ii) It follows from the equations (2) with X = X∗ and (9) that

R(Xj) = ENj−1GNj−1E
T , j ≥ 1. (13)

Since λE−Fj is stable and R(Xj) is symmetric, positive semidefinite, the PALE (9) has a unique
symmetric, positive semidefinite solution Nj = Xj+1 −Xj . Hence, Xj ≤ Xj+1 for j ≥ 1.
(iii) Since the sequence {Xj}j≥1 is non-decreasing and bounded above by X∗, this sequence is

convergent, i.e., limj→∞ Xj = X∞ with symmetric X∞ ≤ X∗. Hence the relation (13) implies
limj→∞R(Xj) = 0. Passing to the limit in (10), we obtain that X∞ solves the PARE (2).
Replacing X by X∞ and X∗ in (2) and considering the difference of the resulting equations, we
find that

F∗(X∞−X∗)E
T + E(X∞−X∗)F

T
∗ = −PlE(X∞−X∗)G(X∞−X∗)E

TPT
l ,

X∞ −X∗ = Pr(X∞ −X∗)P
T
r

(14)
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with F∗ = F + EX∗GPr. Since λE − F∗ is stable and G is symmetric, positive semidefinite, the
PALE (14) has a unique symmetric, positive semidefinite solution X∞−X∗, i.e., X∞ ≥ X∗. Thus,
X∞ = X∗.
(iv) Subtracting equation (10) for Xj+1 from the PARE (2) with X replaced by X∗, we obtain

that the difference Dj+1 = X∗ −Xj+1 satisfies the PALE

F∗Dj+1E
T + EDj+1F

T
∗ = −PlE(NjGNj −Dj+1GDj+1)E

TPT
l ,

Dj+1 = PrDj+1P
T
r .

(15)

Since λE − F∗ is stable, this equation has a unique solution given by

0 ≤ Dj+1 =
1

2π

∫ ∞

−∞

(iωE−F∗)
−1PlE(NjGNj −Dj+1GDj+1)E

TPT
l (−iωE−F∗)

−T dω,

see [40]. Taking norms, we get

‖X∗ −Xj+1‖ ≤
∥
∥
1

2π

∫ ∞

−∞

(iωE − F∗)
−1PlENjGNjE

TPT
l (−iωE − F∗)

−T dω
∥
∥

≤ ‖Nj‖2‖E‖2‖G‖
∥
∥
1

2π

∫ ∞

−∞

(iωE − F∗)
−1PlP

T
l (−iωE − F∗)

−T dω
∥
∥

= γ ‖Xj+1 −Xj‖2.

Since 0 ≤ Xj+1 −Xj ≤ X∗ −Xj , we obtain that ‖X∗ −Xj+1‖ ≤ γ‖X∗ −Xj‖2.
It follows from the proof of Theorem 3.2 that the stabilizing solution X∗ of the PARE (2) is

minimal in the sense that X∗ ≤ X for all symmetric solutions X of (2). Theorem 3.2 also shows
that in each step of Algorithms 1 and 2, all iterates Xj are stabilizing once the initial guess X0

is chosen to be stabilizing. Such a matrix exists, if, for example, (E,F,G) is stabilizable. If this
condition is violated, it is still possible, similarly to the standard case [7], to construct a convergent
Newton-Kleinman iteration for computing a minimal solution of (2).
Note that the existence of a stabilizing solution of the PARE (2) guarantees a quadratic conver-

gence of the Newton iteration. However, if (2) has only a semi-stabilizing solution X∗, then the
quadratic convergence may be lost. For the standard Riccati equation with negative (semi)definite
quadratic term (G ≤ 0), a modification of the Newton iteration has been proposed in [20] which
has a linear rate of convergence under assumption that the purely imaginary eigenvalues of
λE − F − EX∗GPr are semi-simple. This result can also be extended to the PARE (2) with
positive semidefinite quadratic term.
At each iteration step of Algorithms 1 and 2, we have to solve the PALEs (9) and (10), respec-

tively. For small and medium size problems, such equations can be solved using the generalized
Schur-Bartels-Stewart method or the generalized Schur-Hammarling method [39]. For large dense
problems, we can use the modified sign function method [41], whereas projected Lyapunov equa-
tions with large-scale sparse matrix coefficients can be solved using the generalized alternating
direction implicit method [42] or Krylov subspace methods [43]. We will discuss a combination of
Lyapunov solvers with Newton iteration in Section 4 in more detail.

3.2 Computing the stabilizing initial guess

The convergence of Algorithms 1 and 2 relies on a stabilizing initial guess X0 that also satisfies
X0 ∈ SPr

. If λE−F is stable, then X0 = 0 trivially satisfies these demands. This is often the case
in applications, but certainly not always. Thus, computing such X0 is required in the unstable
situations. The stabilization of descriptor systems using partial stabilization, i.e., computing X0

such that the stable and infinite eigenvalues of λE − F remain unchanged and the unstable ones
are moved to the open left half-plane, is considered in [6]. The suggested procedures basically use
a numerically robust variant to compute a block form as in (3), where the nonzero blocks are not
required to have a special structure. Then using the decomposition as in (5), the stabilization
problem can be solved using the Bass algorithm or an algebraic Bernoulli equation as in the
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standard case. Though the symmetry condition X0 ∈ SPr
is not considered in [6], using the same

decomposition as in (5) with G = 0 and the resulting form of the solutions X as in (6) of the
Lyapunov or Bernoulli equations, it is easy to show that the associated X0 matrices satisfy this
symmetry equation. The solution of these Lyapunov or Bernoulli equations can also be obtained
in factored forms as in [1, 2, 41, 42].

4 Stabilizing solution in factored form and its low-rank
approximation

4.1 Computing the Cholesky factor of the stabilizing solution

In many control applications including positive real and bounded real balanced truncation model
reduction, the matrices G and H in the PARE (2) are given in factored form G = G̃T G̃ and
H = H̃H̃T , where G̃ ∈ R

p,n and H̃ ∈ R
n,m. In this case, the stabilizing positive semidefinite

solution of (2) can also be determined in factored form X∗ = X̃∗X̃
T
∗ . Note that the computation

of the Cholesky factorizationX∗ = X̃∗X̃
T
∗ should be avoided because the computed Cholesky factor

X̃∗ has usually lower accuracy than X∗. Fortunately, the factor X̃∗ of X∗ can be computed directly
without calculating X∗ itself. This can be done in two different ways based on Algorithms 1 and
2, respectively. We consider first Newton’s method in Algorithm 1. It follows from EPr = PlE,
FPr = PlF and Xj = PrXjP

T
r that R(Xj) = PlR(Xj)P

T
l . Then taking into account (9), we

obtain that
R(Xj+1) = R(Xj +Nj)

= R(Xj) + FjNjE
T + ENjF

T
j + ENjG̃

T G̃NjE
T

= ENjG̃
T G̃NjE

T .

(16)

In this case, the PALE (9) can be replaced by

FjNjE
T + ENjF

T
j = −PlKjK

T
j P

T
l , Nj = PrNjP

T
r (17)

with Kj = ENj−1G̃
T for j > 0. Since λE − Fj is stable, (17) has a unique symmetric, positive

semidefinite solution Nj that can be factorized as Nj = ÑjÑ
T
j .

For stable λE − F , we can start with X0 = 0 and solve the PALE

FN0E
T + EN0F

T = −PlH̃H̃TPT
l , N0 = PrN0P

T
r (18)

for a Cholesky factor Ñ0 of N0 = Ñ0Ñ
T
0 . Otherwise, we first compute the Cholesky factorization

R(X0) = K0K
T
0 for some stabilizing starting guess X0 and determine the Cholesky factor of the

solution of the PALE

F0N0E
T + EN0F

T
0 = −PlK0K

T
0 P

T
l , N0 = PrN0P

T
r (19)

with F0 = F +EX0G̃
T G̃Pr. If R(X0) is indefinite, one can compute the solution of (9) for j = 0,

and then employ (17) starting with j = 1. Once we have Xj = X̃jX̃
T
j and Nj = ÑjÑ

T
j , then the

next iterate can be obtained in factored form as

Xj+1 = Xj +Nj = X̃j+1X̃
T
j+1,

where X̃j+1 ∈ R
n,n is computed from the LQ factorization [X̃j , Ñj ] = [X̃j+1, 0]Q̃j with orthogonal

Q̃j . Note that the Cholesky factors Ñj of the solutions of the PALEs (17) – (19) can be determined
directly without computingNj itself by using the generalized Schur-Hammarling method [39]. This
method does not require the preliminary computation of the projectors Pr and Pl. It is based
on reducing the pencil λE − Fj to the generalized Schur form [18] and solving the generalized
Sylvester and Lyapunov equations. Using the fact that the pencils λE − F and λE − Fj have the
same deflating subspaces corresponding to the finite eigenvalues, we do not need to compute the
generalized Schur form of λE−Fj at every Newton iteration. It is enough to reduce λE−F into the

7



Algorithm 3 Newton-Schur-Hammarling method

Input: E,F ∈ R
n,n, G̃ ∈ R

p,n, H̃ ∈ R
n,m and a stabilizing initial guess X0 ∈ SPr

.
Output: An approximate solution X̃X̃T of the PARE (2).

1. Compute the generalized Schur form

V TEU =

[
E11 E12

0 E22

]

, V TFU =

[
F11 F12

0 F22

]

, (20)

where V and U are orthogonal, E11 is upper triangular, nonsingular and E22 is upper trian-
gular with zeros on the diagonal, F11 is upper quasi-triangular and F22 is upper triangular,
nonsingular.

2. Solve the generalized Sylvester equation

E11Y − ZE22 = −E12,
F11Y − ZF22 = −F12.

(21)

3. Compute the matrices

G̃U =
[

G̃1, G̃2

]

, V T H̃ =

[
H̃1

H̃2

]

, UTX0U =

[
X11,0 0
0 0

]

.

4. Compute the Cholesky factorizations

X11,0 = X̃11,0X̃
T
11,0,

R1(X11,0) = F11X11,0E
T
11 + E11X11,0F

T
11 + E11X11,0G̃

T
1 G̃1X11,0E

T
11

+(H̃1 − ZH̃2)(H̃1 − ZH̃2)
T = K1,0K

T
1,0

and the matrix F11,0 = F11 + E11X11,0G̃
T
1 G̃1.

5. Solve the generalized Lyapunov equation

F11,0N11,0E
T
11 + E11N11,0F

T
11,0 = −K1,0K

T
1,0 (22)

for the Cholesky factor Ñ11,0 of N11,0 = Ñ11,0Ñ
T
11,0.

6. Compute the LQ factorization [ X̃11,0, Ñ11,0 ] = [ X̃11,1, 0 ]Q1,j .

7. FOR j = 1, 2, . . . , jmax − 1

a) Compute K1,j = E11Ñ11,j−1Ñ
T
11,j−1G̃

T
1 and F11,j = F11,j−1 +K1,jG̃1.

b) Solve the generalized Lyapunov equation

F11,jN11,jE
T
11 + E11N11,jF

T
11,j = −K1,jK

T
1,j (23)

for the Cholesky factor Ñ11,j of N11,j = Ñ11,jÑ
T
11,j .

c) Compute the LQ factorization [ X̃11,j , Ñ11,j ] = [X̃11,j+1, 0 ]Q1,j .

END FOR

8. Compute

X̃ = U

[

X̃11,jmax

0

]

.
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generalized Schur form and solve the projected Lyapunov equations on the subspace corresponding
to the finite eigenvalues. We summarize the resulting Newton’s method in Algorithm 3.
For computing the generalized Schur form (20), we can use the QZ algorithm [18, 48] or the

GUPTRI algorithm [15, 16]. To solve the generalized Sylvester equation (21) one can use the
generalized Schur method [24]. The Cholesky factor of the solutions of the generalized Lyapunov
equations (22) and (23) can be determined using the generalized Hammarling method [33]. The
Newton-Schur-Hammarling method for the PARE (2) costs O(n3) flops and has the memory
complexity O(n2).

4.2 Low-rank approximation to the stabilizing solution

If the eigenvalues of the stabilizing solution X∗ decay to zero very rapidly, then X∗ can be well
approximated by a matrix of low rank. Such a low-rank approximation can be computed in
factored form X∗ ≈ X̃X̃T with X̃ ∈ R

n,k, k ≪ n, by solving the PALEs (17) and (18) for
low-rank approximate solutions. For this purpose, we can use an extension of the low-rank sign
function method, the low-rank alternating direction implicit method or Krylov subspace methods
to projected Lyapunov equations as presented in [41, 42, 43].

Algorithm 4 Low-rank Newton method

Input: E,F ∈ R
n,n such that λE−F is stable, G̃∈Rp,n, H̃∈ R

n,m, projectors Pr, Pl.
Output: A low-rank Cholesky factor of the stabilizing solution of the PARE (2).

1. Solve the PALE (18) for the low-rank Cholesky factor Ñ0 such that N0≈Ñ0Ñ
T
0 .

2. Set X̃1 = Ñ0, K1 = EÑ0Ñ
T
0 G̃T and F1 = F +K1G̃Pr.

3. FOR j = 1, 2, . . .

a) Solve the PALE (17) for the low-rank Cholesky factor Ñj such that Nj ≈ ÑjÑ
T
j .

b) Compute X̃j+1 = [ X̃j , Ñj ].

c) Compute Kj+1 = EÑjÑ
T
j G̃T and Fj+1 = Fj +Kj+1G̃Pr.

END FOR

The computation of the low-rank Cholesky factor of the stabilizing solution of the PARE (2)
with stable λE−F is summarized in Algorithm 4. Note that in each iterative step in this algorithm
the number of columns of the approximate Cholesky factor X̃j of the solution of (2) increases by

the number kj of columns of the approximate Cholesky factor Ñj of the solution of the PALE
(18). In case of large kj or slow convergence of the Newton iteration, a large workspace is required

to store X̃j+1. In order to keep low-rank structure in X̃j+1, one can replace this iterate by its
low-rank approximation computed via a rank-revealing QR decomposition

[ X̃j , Ñj ]
T = Qj

[
Rj,1 Rj,2

0 Rj,3

]

ΠT
j , (24)

where Qj has orthogonal columns, Πj is a permutation matrix, Rj,1 has full row rank and

‖Rj,3‖F ≤ τ‖[ X̃j , Ñj ]‖F for some small tolerance τ . Setting Rj,3 = 0, we can proceed with

the new iterate X̃j+1 = Πj [Rj,1, Rj,2 ]
T . Note that in (24) we do not need to accumulate the

matrix Qj .
Low-rank Cholesky factors of the stabilizing solution of the PARE (2) can also be computed

using the Newton-Kleinman method in Algorithm 2. Such an approach has been considered
previously for the case E = I in [44]. An extension of this approach is given in Algorithm 5.
If λE − F is stable, in Step 3 of Algorithm 5 we can solve the PALE

FXET + EXFT = −PlĤĤTPT
l , X = PrXPT

r (27)
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Algorithm 5 Low-rank Newton-Kleinman method

Input: E,F ∈ R
n,n, G̃ ∈ R

p,n, H̃ ∈ R
n,m, projectors Pr and Pl, a low-rank matrix

X̃0 such that X̃0 = PrX̃0 and λE − F − EX̃0X̃
T
0 G̃

TPr is stable.
Output: A low-rank Cholesky factor of the stabilizing solution of the PARE (2).

1. Set X̃1,0 = X̃0 and X̃2,0 = 0.

2. FOR j = 0, 1, 2, . . . , jmax − 1

a) Compute Kj = E(X̃1,jX̃
T
1,j − X̃2,jX̃

T
2,j)G̃

T and Fj = F +KjG̃Pr.

b) Solve the PALEs

FjX1,j+1E
T + EX1,j+1F

T
j =−PlH̃H̃TPT

l , X1,j+1=PrX1,j+1P
T
r , (25)

FjX2,j+1E
T + EX2,j+1F

T
j =−PlKjK

T
j P

T
l , X2,j+1=PrX2,j+1P

T
r (26)

for the low-rank Cholesky factors X̃1,j+1 and X̃2,j+1 such that X1,j+1 ≈ X̃1,j+1X̃
T
1,j+1

and X2,j+1 ≈ X̃2,j+1X̃
T
2,j+1.

END FOR

3. Solve the PALE
F̂XET + EXF̂T = −PlH̃H̃TPT

l , X = PrXPT
r

with F̂ = F + 1
2E(X̃1,jmax

X̃T
1,jmax

− X̃2,jmax
X̃T

2,jmax
)G̃T G̃Pr for the low-rank Cholesky factor

X̃ such that X ≈ X̃X̃T .

with Ĥ = [ H̃, E(X̃1,jmax
X̃T

1,jmax
− X̃2,jmax

X̃T
2,jmax

)G̃T ].
Note that in Algorithms 4 and 5, the projectors Pl and Pr are required in explicit form. The

computation of these projectors is, in general, very expensive. Fortunately, in many applications
including control of fluid flow, electrical circuit simulation and constrained multibody systems, the
matrices E and F have some special block structure. This structure can be exploited to construct
the projections Pl and Pr explicitly and cheaply, see [35, 42].

4.3 Low-rank ADI iteration for projected Lyapunov equations

In this section, we briefly discuss the computation of approximate solutions to the PALE

F̃ZET + EZF̃T = −PlK̃K̃TPT
l , Z = PrZPT

r (28)

with given E, F̃ ∈ R
n,n, K̃ ∈ R

n,g and unknown Z ∈ R
n,n. According to Remark 3.1 we can

assume that Pl and Pr are the spectral projectors onto the left and right deflating subspaces of
λE− F̃ corresponding to the finite eigenvalues. For solving the PALE (28), we use the alternating
direction implicit (ADI) method. This method has been first proposed for standard Lyapunov
equations [9, 30, 34, 46] and then extended in [42] to projected Lyapunov equations. Recently,
a more efficient version of the ADI iteration for standard Lyapunov equations was proposed in
[8] which allows a cheap computation of the Lyapunov residuals. Here, we extend this result to
projected Lyapunov equations.
The generalized ADI iteration for the PALE (28) is given by

(E + τkF̃ )Zk−1/2F̃
T + F̃Zk−1(E − τkF̃ )T = −PlK̃K̃TPT

l ,

(E + τkF̃ )ZT
k F̃

T + F̃ZT
k−1/2(E − τkF̃ )T = −PlK̃K̃TPT

l

(29)

with an initial matrix Z0 = 0 and shift parameters τ1, . . . , τk ∈ C−. Solving the first equation for
Zk−1/2 and the second equation for Zk, we obtain

Zk = (E + τkF̃ )−1(E − τkF̃ )Zk−1(E − τkF̃ )T (E + τkF̃ )−T

−2Re(τk)(E + τkF̃ )−1PlK̃K̃TPT
l (E + τkF̃ )−T .
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Since the solution of the PALE (28) also satisfies this equation, we get the following expression
for the error

Zk − Z = (E + τkF̃ )−1(E − τkF̃ )(Zk−1 − Z)(E − τkF̃ )T (E + τkF̃ )−T

= . . . = −AkZA∗
k,

(30)

where Ak = (E+ τkF̃ )−1(E− τkF̃ ) · · · (E+ τ1F̃ )−1(E− τ1F̃ ). If the pencil λE− F̃ is stable, then
Zk converges toward the solution of the PALE (28). The rate of convergence depends strongly
on the choice of the shift parameters. The optimal shift parameters providing the superlinear
convergence satisfy the generalized ADI minimax problem

{τ1, . . . , τq} = argmin
{τ1,...,τq}∈C−

max
t∈Spf(E,F̃ )

|(1− τ1t) · · · (1− τ q t)|
|(1 + τ1t) · · · (1 + τq t)|

,

where Spf (E, F̃ ) denotes the finite spectrum of the pencil λE−F̃ . Similarly to [34], the suboptimal
ADI parameters can be obtained from a set of largest and smallest in modulus approximate finite
eigenvalues of λE − F̃ computed by an Arnoldi procedure. Other parameter selection techniques
developed for standard Lyapunov equations [10, 38, 47] can also be used for the PALE (28).
The ADI iteration is terminated if the normalized residual satisfies the condition

̺L(Zk) =
‖L(Zk)‖F

‖PlK̃K̃TPT
l ‖F

≤ tol, (31)

where tol is a user defined tolerance, and

L(Zk) = F̃ZkE
T + EZkF̃

T + PlK̃K̃TPT
l

is the Lyapunov residual. The following theorem shows that even though L(Zk) is a large and
dense matrix, it has a low rank.

Theorem 4.1 The Lyapunov residual at step k of the ADI iteration has the form

L(Zk) = ÃkPlK̃K̃TPT
l Ã∗

k, (32)

where Ãk = (E − τkF̃ )(E + τkF̃ )−1 · · · (E − τ1F̃ )(E + τ1F̃ )−1.

Proof. It follows from (28) and (30) that

L(Zk) = F̃ZkE
T + EZkF̃

T + PlK̃K̃TPT
l = F̃ (Zk − Z)ET + E(Zk − Z)F̃T

= −F̃AkZA∗
kE

T − EAkZA∗
kF̃

T .

Since Pr and Pl are the spectral projectors onto the right and left deflating subspaces of the pencil
λE− F̃ corresponding to the finite eigenvalues, one can show using the Weierstrass canonical form
of λE − F̃ that

E(E + τkF̃ )−1(E − τkF̃ ) = (E − τkF̃ )(E + τkF̃ )−1E,

F̃ (E + τkF̃ )−1(E − τkF̃ ) = (E − τkF̃ )(E + τkF̃ )−1F̃ .

Then we have F̃AkZA∗
kE

T = ÃkF̃ZET Ã∗
k and, hence,

L(Zk) = −Ãk(F̃ZET + EZF̃T )Ã∗
k = ÃkPlK̃K̃TPT

l Ã∗
k.

It follows from (32) that L(Zk) is of rank at most g and its Frobenius norm can be computed as
‖L(Zk)‖F = ‖WkW

∗
k ‖F = ‖W ∗

kWk‖F with Wk = ÃkPlK̃ ∈ R
n,g. We now show that the matrix

Wk can be obtained iteratively at low cost.
It has been shown in [42] that the iterate Zk can be determined in factored form Zk = Z̃kZ̃

T
k ,

where

V1 = (E + τ1F̃ )−1PlK̃, Z̃1 =
√

−2Re(τ1)V1,

Vk = Vk−1 − (τk−1 + τk)(E + τkF̃ )−1F̃ Vk−1, Z̃k = [ Z̃k−1,
√

−2Re(τk)Vk ].
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The iterate Vk can also be written as

Vk = (E + τkF̃ )−1(E − τk−1F̃ )Vk−1

= (E + τkF̃ )−1(E − τk−1F̃ )(E + τk−1F̃ )−1(E − τk−2F̃ )Vk−2

= . . . = (E + τkF̃ )−1Ãk−1PlK̃ = (E + τkF̃ )−1Wk−1

for k ≥ 2. Then we have

Wk = ÃkPlK̃ = (E − τkF̃ )(E + τkF̃ )−1Ãk−1PlK̃

= (E − τkF̃ )Vk = (E − τkF̃ )(E + τkF̃ )−1Wk−1

=
(
I − 2Re(τk)F̃ (E + τkF̃ )−1

)
Wk−1 = Wk−1 − 2Re(τk)F̃ Vk.

Summarizing, we obtain the following algorithm for computing a low-rank approximate solution
of the PALE (28).

Algorithm 6 The generalized LR-ADI for the projected Lyapunov equation

Input: E, F̃ ∈ R
n,n, K̃ ∈ R

n,g, projector Pl, shift parameters τ1, . . . , τq ∈ C−, and
tolerance tol.

Output: A low-rank approximation Z ≈ Z̃kZ̃
T
k to the solution of the PALE (28).

1. V1 = (E + τ1F̃ )−1PlK̃,

2. Z̃1 =
√

−2Re(τ1)V1,

3. W1 = PlK̃ − 2Re(τ1)F̃ V1, k = 2.

4. WHILE (‖W ∗
k−1Wk−1‖/‖K̃TPT

l PlK̃‖ ≥ tol AND k ≤ kmax)

(a) Vk = (E + τkF̃ )−1Wk−1,

(b) Z̃k = [ Z̃k−1,
√

−2Re(τk)Vk ], (33)

(c) Wk = Wk−1 − 2Re(τk)F̃ Vk,

(d) k ← k + 1.

END

At each iteration we have Z̃k =
[√

−2Re(τ1)V1, . . . ,
√

−2Re(τk)Vk

]
∈ R

n,gk. To keep the

low-rank structure in Z̃k for large gk, we can compress the columns of Z̃k using the rank-revealing
QR factorization as described in [11]. Furthermore, in order to guarantee for the factors Z̃k to
be real in case of complex shift parameters, we take these parameters in complex conjugate pairs
{τk, τk+1 = τk} and compute Z̃k as in (33) if τk is real and

{
Z̃k =

[
Z̃k−1, 2|τk|

√

−Re(τk) V̂
]

Z̃k+1 =
[
Z̃k, 2

√

−Re(τk) (Vk − τk+1V̂ )
] if

{
τk is complex
τk+1 = τk

, (34)

where V̂ = (E + τk+1F̃ )−1F̃ Vk, see [42] for details.
Finally, note that if the LR-ADI method is used in the inner Newton iteration, then we need to

compute the products (E+τkF̃ )−1w with some vector w ∈ R
n and E+τkF̃ = (E+τkF )+τkKjG̃Pr

with low-rank matrices G̃Pr ∈ R
p,n and Kj ∈ R

n,p depending on the Lyapunov equation to be
solved. For this purpose, we can use the Sherman-Morrison-Woodbury formula [18, Section 2.1.3]

(E + τF̃ )−1w = w1 −MKj

(

(Ip + G̃PrMKj
)−1G̃Prw1

)

,

where w1 = (E + τkF )−1w and MKj
= τk(E + τkF )−1Kj can be determined either by comput-

ing (sparse) LU factorizations and forward/backward substitutions or by using iterative Krylov
subspace methods [37].
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4.4 Stopping criteria for Newton’s method

The iterations in Algorithms 4 and 5 can be stopped as soon as the normalized residual norm
satisfies the condition

̺R(X̃jX̃
T
j ) =

‖R(X̃jX̃
T
j )‖

‖PlH̃H̃TPT
l ‖
≤ tol, (35)

where ‖·‖ is the spectral or Frobenius matrix norm and tol is a user-defined tolerance, or a stagna-
tion of the residual norms is observed. Unfortunately, the computation of ‖R(X̃jX̃

T
j )‖ by forming

the residual matrix R(X̃jX̃
T
j ) is memory-intensive for large-scale problems. If X̃j has a small

number of columns nj , then the residual norm can be determined efficiently using a factorization
based approach proposed in [9] for standard Riccati equations. In Algorithm 4, we have

R(X̃jX̃
T
j ) =

[

PlH̃, F X̃j , EX̃j

]





Im 0 0
0 0 Inj

0 Inj
X̃T

j G̃
T G̃X̃j









H̃TPT
l

X̃T
j F

T

X̃T
j E

T



 .

Then computing an ”economy size” QR decomposition

[

PlH̃, EX̃j , F X̃j

]

= Q(j)R(j), (36)

where Q(j) has orthonormal columns and R(j) has full row rank, we find

∥
∥
∥R(X̃jX̃

T
j )

∥
∥
∥ =

∥
∥
∥
∥
∥
∥

R(j)





Im 0 0
0 0 Inj

0 Inj
X̃T

j G̃
T G̃X̃j



 (R(j))T

∥
∥
∥
∥
∥
∥

.

A similar procedure can also be applied to determine ‖R(X̃1,jX̃
T
1,j − X̃2,jX̃

T
2,j)‖ in Algorithm 5.

Thus, the evaluation of the residual norms reduces to the computation of the norm of much
smaller matrices. Though this is much cheaper than computing the residual matrix explicitly, the
verification of the stopping criterion (35) can still be much more expensive than computing X̃j

itself.
Another approach for computing the Riccati residuals in Algorithm 4 is based on the relation

(16). If the PALE (17) is solved for Nj exactly, then (16) leads to

‖R(Xj)‖ = ‖ENj−1G̃
T G̃Nj−1E

T ‖ = ‖KjK
T
j ‖ = ‖KT

j Kj‖

with a smal matrix KT
j Kj ∈ R

p,p. However, if we solve the PALE (17) approximately using the
LR-ADI method, then

R(X̃jX̃
T
j ) = KjK

T
j + Fj−1Ñj−1Ñ

T
j−1E

T + EÑj−1Ñ
T
j−1F

T
j−1+R(X̃j−1X̃

T
j−1)

= . . . = KjK
T
j + Lj−1(Ñj−1Ñ

T
j−1) + . . .+ L0(Ñ0Ñ

T
0 ), (37)

where Lk(ÑkÑ
T
k ) = FkÑkÑ

T
k ET + EÑkÑ

T
k FT

k + PlKkK
T
k P

T
l is the Lyapunov residual with

K0 = H̃, F0 = F , Kk = EÑk−1Ñ
T
k−1G̃

T , and Fk = Fk−1 +KkG̃Pr for k = 1, . . . , j − 1. Thus, the
Riccati residual can be estimated as

‖R(X̃jX̃
T
j )‖ ≤ ‖KT

j Kj‖+ ‖Lj−1(Ñj−1Ñ
T
j−1)‖+ . . .+ ‖L0(Ñ0Ñ

T
0 )‖.

Note that (37) implies that the Lyapunov residuals accumulate during the Newton iteration. This
means that the tolerance for the Lyapunov residuals should be taken smaller than the tolerance
for the Riccati residuals.
In Algorithm 4, the Newton iteration can also be stopped as soon as the changes in X̃j become

small, i.e., ‖Ñj‖F /‖X̃j‖F ≤ tol.
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4.5 Comparison of the Newton and Newton-Kleinman methods

We now compare the low-rank formulations of the Newton and Newton-Kleinman iterations with
respect to complexity and numerical robustness.
Consider first the case when λE − F is stable. While in each Newton iteration in Algorithm 4,

only one PALE (17) has to be solved, the Newton-Kleinman iteration in Algorithm 5 involves
solving two PALEs (25) and (26) in each iteration plus one PALE (27) at the end. Since equations
(25) and (26) differ in the right-hand side only, they can be solved simultaneously. If we solve the
PALE

FjZj+1E
T + EZj+1F

T
j = −Pl[H̃, Kj ][H̃, Kj ]

TPT
l , Zj+1 = PrZj+1P

T
r (38)

for the low-rank Cholesky factor Z̃
(k)
j+1 such that Zj+1 ≈ Z̃

(k)
j+1(Z̃

(k)
j+1)

T using the generalized LR-

ADI method in Algorithm 6, then the low-rank Cholesky factors X̃1,j+1 and X̃2,j+1 can be ex-
tracted from

Z̃
(k)
j+1 =

[
Z11
︸︷︷︸

m

, Z12
︸︷︷︸

p

, . . . , Zk1
︸︷︷︸

m

, Zk2
︸︷︷︸

p

]

as X̃1,j+1 = [Z11, . . . , Zk1 ] and X̃2,j+1 = [Z12, . . . , Zk2 ]. Since the right hand-side in the PALE
(17) has smaller rank than that in the PALE (38), Algorithm 4 is less expensive than Algorithm 5.
Moreover, the computation of the normalized residual in Algorithm 4 is much cheaper than that
in Algorithm 5. Finally, as numerical experiments show, each Newton (outer) iteration requires
usually less (inner) ADI iterations compared with the Newton-Kleinman step.
It should, however, be noted that Algorithm 4 can be used only if the pencil λE − F is stable,

whereas Algorithm 5 can also be applied to unstable problems provided a stabilizing initial guess
is available. Furthermore, the inexact version of the Newton method may be unstable. As shown
in Section 4.4, due to the approximate solution of the PALE (17) in Algorithm 4, the residuals
accumulate over the iterations that may even cause the iteration to diverge.

5 Numerical examples

In this section, we present some results of numerical experiments to demonstrate the properties of
the presented methods for solving the PARE (2). As mentioned earlier, projected Riccati equations
arise in balancing-related model reduction of the descriptor system

Eẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (39)

where E, A ∈ R
n,n, B ∈ R

n,m, C ∈ R
p,n, x ∈ R

n is the state, u ∈ R
m is the input and y ∈ R

p is
the output. A transfer function of (39) is given by G(s) = C(sE − A)−1B. It can be additively
decomposed as G(s) = Gsp(s) +G0(s), where Gsp(s) is a strictly proper part of G(s) satisfying
lims→∞ Gsp(s) = 0 and G0(s) = M0+sM1+ . . .+sdMd is a polynomial part. In order to compute
a reduced-order model for (39), we have to solve the PARE (2) (and also its dual), where the matrix
coefficients have one of the following form depending on the applied balanced truncation approach
[36]:

• positive real balanced truncation

E = E, F = A− PlB(M0 +MT
0 )−1CPr,

G = CT (M0 +MT
0 )−1C, H = 0;

(40)

• bounded real balanced truncation

E = E, F = A+ PlB(I −MT
0 M0)

−1MT
0 CPr,

G = CT (I −M0M
T
0 )−1C, H = B(I −MT

0 M0)
−1BT ;

(41)
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• bounded real balanced truncation via a Moebius transformation

E = E, F = A−BC − 2P̂lB(I − M̂T
0 M̂0)

−1M̂T
0 CP̂r,

G = 2CT (I − M̂0M̂
T
0 )−1C, H = 2B(I − M̂T

0 M̂0)
−1BT ,

Pr = P̂r, Pl = P̂l,

(42)

where P̂l and P̂r are the spectral projectors onto the left and right deflating subspaces of λE−
A + BC corresponding to the finite eigenvalues and
M̂0 = I − 2 lim

s→∞
C(sE −A+BC)−1B.

Note that the PARE (2) with (42) is just the bounded real PARE of the Moebius-transformed

system Ĝ(s) = (I−G(s))(I+G(s))−1 = Ĉ(sÊ−Â)−1B̂+I with Ê = E, Â = A−BC, B̂ = −
√
2B

and Ĉ =
√
2C.

Example 5.1 The first example is a three-port RC circuit. This circuit is modelled by a descriptor
system of index 1 in modified nodal analysis (MNA) form. It has n = 2007 state variables and
m = p = 3 inputs and outputs. Under some conditions on circuit topology guaranteeing that the
transfer function G is positive real, i.e., G is analytic in C+ and G(s) +G(s)∗ ≥ 0 for all s ∈ C+,
one can show that the positive real PARE (2), (40) (the PR-PARE for short) and also the PARE
(2), (42) (the BR(M)-PARE for short) are solvable. We compute the semi-stabilizing solutions of
these equations using the Newton-Schur-Hammarling method as in Algorithm 3.
Figure 1(a) shows the normalized residual ̺R(X̃X̃T) = ‖R(X̃X̃T)‖F/‖PlHPT

l ‖F . One can see
that for both Riccati equations, the Newton iteration has a linear convergence only. This can
be explained by the fact that R′

X∗

is singular. In Figure 1(b), we present the condition number
κ2(E,Fj) of the operator R′

Xj
or, equivalently, of the PALE (9), which is defined as κ2(E,Fj) =

2‖E‖2‖Fj‖2‖Zj‖2, where Zj solves the PALE

EZjF
T
j + FjZjE

T = −PlP
T
l , Zj = PrZjP

T
r ,

see [39]. As expected, in both cases, the condition number increases, as Xj approaches X∗.
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Figure 1: RC circuit: (a) the convergence history of the Newton-Schur-Hammarling method; (b)
the condition number κ2(E,Fj) of the operator R′

Xj
.

Example 5.2 Consider the 2D instationary Stokes equation that describes the flow of an incom-
pressible fluid in a domain. The spatial discretization of this equation by the finite volume method
on a uniform staggered grid leads to the descriptor system (39) of index 2. The transfer function
of this system is bounded real, i.e., G is analytic in C+ and I −G(s)G(s)∗ ≥ 0 for all s ∈ C+,
that guarantees the solvability of the bounded real PARE (2), (41). We compute the low-rank
approximations to the solution of this equation using the low-rank Newton (LR-N) and low-rank
Newton-Kleinman (LR-NK) methods as in Algorithms 4 and 5, respectively, combined with the
LR-ADI iteration. The inner ADI iterations have been stopped as soon as the normalized residuals
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for the PALE (28) satisfy (31) with tol = 10−13. In Table 1, we present the number j of outer
Newton iterations (# outer), the normalized Riccati residuals ̺R(Xj) given in (35), the number of

the inner ADI iterations (# inner) and the reached normalized Lyapunov residuals ̺L(Z̃kZ̃
T
k ) as in

(31) for the LR-N and LR-NK methods. The problem dimensions are n = 10679 and m = p = 5.
Figure 2(a) shows the normalized residuals ̺R(Xj), whereas in Figure 2(b), we present the number
of ADI iterations for both methods.

Table 1: Stokes equation: comparison of the Newton and Newton-Kleinman methods
Low-rank Newton method Low-rank Newton-Kleinman method

# outer ̺R(Xj) # inner ̺L(Z̃kZ̃
T
k ) # outer ̺R(Xj) # inner ̺L(Z̃kZ̃

T
k )

1 5.363e − 02 27 9.920e − 13 1 5.363e − 02 27 9.920e − 13
2 3.912e − 04 23 7.289e − 13 2 3.912e − 04 25 4.472e − 13
3 3.487e − 08 20 8.043e − 13 3 3.487e − 08 25 4.457e − 13
4 1.032e − 12 20 4.238e − 13 4 4.910e − 13 25 4.457e − 13
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Figure 2: Stokes equation: (a) the convergence history of the low-rank Newton and low-rank
Newton-Kleinman methods; (b) the number of ADI iterations required for solving the
projected Lyapunov equations at each Newton iteration.

Example 5.3 Consider a constrained damped mass-spring system from [32]. The vibration of this
system is described by the single-input single-output descriptor system (39) which is of index 3 and
has a bounded real transfer function. We compute the low-rank approximations to the solution
of the bounded real PARE (2), (41) using the low-rank Newton (LR-N) and low-rank Newton-
Kleinman (LR-NK) methods as in Algorithms 4 and 5, respectively, combined with the LR-ADI
iteration. For both methods, we present in Figure 3(a) a comparison of CPU time in seconds for
problems of different state space dimension ranging from 101 to 10001. This figure confirms that
the Newton-Kleinmann iteration is more expensive than the Newton iteration. Figure 3(b) shows
the convergence history (the normalized residual norms) for the problem of state space dimension
n = 10001.

6 Conclusions

In this paper, we have presented efficient and reliable numerical methods for solving projected
Riccati equations as they arise in positive real and bounded real balanced truncation of descriptor
systems. These methods are based on the Newton and Newton-Kleinman iterations. We have
also considered the computation of the Cholesky factors and low-rank Cholesky factors of the
stabilizing, positive semidefinite solutions of projected Riccati equations. The convergence analysis
has been presented for Newton’s iteration. The numerical experiments for different types of
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Figure 3: Mechanical system: (a) CPU time for the low-rank Newton and low-rank Newton-
Kleinman methods; (b) the convergence history for the low-rank Newton method.

descriptor systems and different forms of projected Riccati equations illustrate the properties of
the presented numerical algorithms.
In [49], a quadratic ADI method has been proposed for standard Riccati equations. An extension

of this method to projected Riccati equations remains for future work.
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