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Abstract

We explore the Tractability Index of Differential Algebraic Equations (DAEs) that emerge
in the simulation of gas transport networks. Depending on the complexity of the network,
systems of index 1 or index 2 can arise. We then apply Model Order Reduction (MOR)
techniques such as Proper Orthogonal Decomposition (POD) to a network of moderate
size and complexity and show that one can reduce the system size significantly. This can
be either achieved by directly reducing the original DAE formulation or by applying MOR
to an index-reduced system. First numerical results are reported on.

1 Introduction
Pipeline networks for gas transport can be modelled by a directed graph G = (A ,N ) of
edges A and nodes N , which defines the network topology, see [GHK+13, ES]. Edges
k ∈A can e. g. represent pipes, connections, compressors, valves and regulators. Within
this work we only regard a simplified network for Model Order Reduction, though, and
restrict ourselves to pipe components. This simplification may be justified by several prac-
tical applications. Consider, for example, the computation of a feasable initial solution for
the computation of a more complex network. This initialization can be subdivided into
a series of simpler problems (i. e. simpler network components) that become increasingly
more involved [GHK+13]. In order to speed up the initialization procedure, it can already
be helpful to reduce and thus accelerate the simpler sub-problems.

The set of nodes N can be partitioned into supply nodes N+, demand nodes N− and
interior nodes N0 (sometimes called junctions)

N = N++N−+N0.

2 Gas transport in Pipeline Networks
We model gas transport within a single pipe segment by a simplification of the so-called
isothermal Euler equations, see e. g. [GHK+13, Ste07, ES, HMS10, LIW04] for more
details. The isothermal Euler equations form a coupled PDE of mass and momentum
balance laws together with a constitutive relation. In particular, our system of equations
includes the continuity equation (1), the pressure loss equation (2) and the equation of the
state of a real gas (3).

As independent variables, we consider t ≥ 0 (time) and x ∈ [0,L] (space), where L is the
length of the segment. As dependent variables of the full isothermal equations (before sim-
plifications), we have a density field ρ(x, t), a velocity field v(x, t), a pressure field p(x, t)
and a temperature field T (x, t). We also define gas flow as q(x, t) = ρ(x, t)v(x, t) and
consider a given geodesic height h(x), given diameter D(x), as well as a friction coeffi-
cient λ (q), compressibility z(p,T ), and the field γ = RT , where R is a gas constant.

∂tρ +∂xq = 0 (1)

∂tq+∂x p+∂x(ρv2)+gρ ∂xh = −λ (q)
2D

ρv|v| (2)

p = γ(T )z(p,T )ρ (3)

In order to simplify this system, we follow [GHK+13] and approximate γz in the depen-
dence between p and ρ (eqn.(3)) by the square of the sound velocity a ≈ 300m/s of the



gas.

∂tρ +∂xq = 0

∂tq+∂x p+∂x(ρv2)+gρ ∂xh = − λ

2D
ρv|v|

p = a2
ρ.

Additionally, we replace v by q and ρ , neglect differences in geodesic height and tem-
perature (∀x : h(x)≡ h0,T (x)≡ T0) as well es kinetic energy, and yield

∂tρ +∂xq = 0

∂tq+a2
∂xρ =− λ

2D
q|q|
ρ

.
(4)

Given the PDE for a pipe in this way, we will need to discretize it along each individual
segment. Furthermore, we consider the network graph G and establish a mass balance
equation for all interior and demand nodes as well as the boundary conditions on the gas
density for the supply nodes. These mass balance equations equate to Kirchhoff’s first law
in electric networks. The discretization in each pipe is achieved by simple differences,
while the remaining variables are replaced by simple averages. Let di(t) be the time de-
pendent demand at the i-th demand node and let si(t) be the time dependent gas density at
the i-th supply node. We will denote the density at node i by ρi and the flow of the k-th
pipe at the left by qk

L and at the right by qk
R. In addition, we call the density at the node to

the left of the k-th pipe ρk
L and the density at the node to the right ρk

R, which leads to the
following set of equations

0 = ρi(t)− si(t) for all i ∈N+ (5a)

0 = ∑
q̄R∈Ii

R

q̄R− ∑
q̄L∈Ii

L

q̄L for all i ∈N0 (5b)

di(t) = ∑
q̄R∈Ii

R

q̄R− ∑
q̄L∈Ii

L

q̄L for all i ∈N− (5c)

∂t
ρk

R +ρk
L

2
=−

qk
R−qk

L
Lk

for all k ∈A (5d)

∂t
qk

R +qk
L

2
=−a2

k
ρk

R−ρk
L

Lk
− λk

4Dk

(qk
R +qk

L)|qk
R +qk

L|
ρk

R +ρk
L

for all k ∈A (5e)

with Ii
R the set of flows at the right of the pipes which are connected at the right to the i-th

node, and Ii
L the set of flows at the left of the pipes which are connected at the left to the

i-th node.
We will rewrite system (5) to obtain a matrix form of it. In order to do so, we use the

incidence matrix A of the directed graph for the nodes in N−
⋃

N0

(A)i j ≡


1 if edge j leaves node i,
−1 if edge j enters node i,
0 else.

The matrix A can be interpreted as the incidence matrix of the complete network reduced
by all rows related to the supply nodes. Just like any reduced incidence matrix of a graph,
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A has full row rank. The incidence matrix has a left kernel that is of dimension 1 or less.
If we, however, remove at least one row, the resulting matrix A has a trivial left kernel.
Notice the analogy to the electric networks. The incidence matrix of an electric network
is always reduced by one reference node, which is called the mass node, see [Tis99]. The
electric potential at the mass node is fixed analogously to the gas density at a supply node.

So as to set up the matrix form of (5), we also need the incidence matrix of the directed
graph for the supply nodes N+

(AS)i j ≡


1 if edge j leaves node i,
−1 if edge j enters node i,
0 else.

These are the rows of the complete incidence matrix which where not use in A. More
precisely, if you call the complete incidence matrix B, we get in Matlab notation AS =
B(supply, :) and A = B(nonsupply, :) picking either the nodes that are supplies (to form
AS) or those that are not.

Next define the incidence matrices of the undirected graph |A| and |AS| as the component-
wise absolute values of the incidence matrices of the directed graph. Notice that |A| also
has full row rank. Since the flow of a pipe on the left side must not coincide with the flow
on the right side we also define two partial incidence matrices of the directed graph for the
nodes N−

⋃
N0

(AL)i j ≡

{
−1 if edge j enters node i,
0 else.

and

(AR)i j ≡

{
1 if edge j leaves node i,
0 else.

.

These partial incidence matrices are tightly linked to the matrix A

A = AR +AL and |A|= AR−AL.

In addition to the previous definitions, let ρ =
(
ρs ρd

)
with ρs the density at the

supply nodes and ρd the density at the demand nodes and junctions. Moreover, define two

material-dependent matrices ML = diag(. . . Lk
4 . . .) and Ma = diag(. . .− a2

k
Lk
. . .), as well as

a function g, component-wise for every pipe, by

gk

(
qk

R +qk
L

2
,ρk

R,ρ
k
L

)
=− λk

Dk

qk
R+qk

L
2

∣∣∣ qk
R+qk

L
2

∣∣∣
ρk

R +ρk
L

.

By defining the vector of all right flows of all pipes qR =
(
. . . qk

R . . .
)

and all left
flows of all pipes qL =

(
. . . qk

L . . .
)

as well as the vector of demands d(t)=
(
. . . di(t) . . .

)
where for nodes in N0 the demands are 0 we are finally able to denote (5) in matrix form.
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0 = ρs− s(t) (6a)

0 = ARqR +ALqL−d(t) (6b)

|AS|T ∂tρs + |A|T ∂tρd =−M−1
L

qR−qL

2
(6c)

∂t
qR +qL

2
= Ma(AT

S ρs +AT
ρd)+g

(
qR +qL

2
,ρs,ρd

)
(6d)

One can write in short form
Eẋ = Hx+ f (x, t) (7)

where x=
(
ρs ρd qR qL

)T , f (x, t)=
(
−s(t) −d(t) 0 g

(
qR+qL

2 ,ρs,ρd

))T
and

the matrices are given by

E =


0 0 0 0
0 0 0 0
|AT

S | |AT | 0 0
0 0 1

2 I 1
2 I

 , H =


I 0 0 0
0 0 AR AL
0 0 − 1

2 M−1
L

1
2 M−1

L
MaAS MaA 0 0

 .

The parameters in the system are λk,ak,Lk,Dk. These parameters are known at least within
some range of uncertainty. It is crucial to make sure that the reduced model can handle
small variations of those parameters. The functions s(t) and d(t) are considered as input
functions. They are time dependent but within a certain class of functions. One is interested
in reduced-order models which give good results for a large class of such input functions.

3 Tractability Index
There are several different concepts for the index. For a survey refer to [Meh13]. We
will use the Tractability Index due to Maerz [LMT13]. In particular, we will apply the
concept of the Tractability Index to an equation given in the form (7). This equation is
an Ordinary Differential Equation if E has full rank. In the following, we introduce the
matrices G0,G1,G2 such that either G1 does not have full rank and the system has index 2
if G2 has full rank, or the system has index 1 if G1 already has full rank. The sequence is
given by

G0 = E (8a)

G1 = G0 +B0Q0 (8b)

G2 = G1 +B1Q1. (8c)

Here the Qi are projectors onto the kernel of Gi. Therefore, we see immediately that Q1 = 0
and G2 = G1 if G1 has full rank. Furthermore, B0 = H + Jx f and B1 = B0P0 where P0 =
1−Q0. This series will in theory also give a recipe on how to compute projection matrices
to decouple the algebraic from the differential part. This is, however, computationally
expensive. In the next section we will see that in the case of the gas network equations we
can reduce the equations to an ODE without computing the projector matrices explicitly.
The resulting ODE is easy to simulate and reduce.
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4 Index Analysis and Reduction
In this section the Tractability Index of the DAE (6) will be analyzed. Furthermore, a re-
duction procedure will be presented such that (6) can be reduced to an ordinary differential
equation in descriptor form.

For the index analysis we use the invariance of the Tractability Index with respect to
constant transformations and refactorizations, see [LMT13]. We prove that the Tractability
Index of (6) is equal or lower than two in two steps. In the first step, we prove that a certain
DAE prototype is always of index 2 or lower, and secondly, we convert (6) into a DAE of
the prototype form (9) by constant transformations and refactorizations only. Consider the
following class of DAEs

∂tx1 = f (x1,x2,y1,y2, t) (9a)

0 = x2− s(t) (9b)

0 = y1 +g(x1,x2,y2, t) (9c)

M∂tx2 = y2 (9d)

with the partial derivatives fx1 , fx2 , fy1 and fy2 of f and the partial derivatives gx1 ,gx2 and
gy2 of g.

Lemma 4.1 Equations of type (9) are always of Tractability Index 2 or lower.

Proof The first sequence of the matrix chain of the Tractability Index is given by

G0 =


I 0 0 0
0 0 0 0
0 0 0 0
0 M 0 0

 , Q0 =


0 0 0 0
0 Q 0 0
0 0 I 0
0 0 0 I

 , P0 =


I 0 0 0
0 P 0 0
0 0 0 0
0 0 0 0

 , B0 =


fx1 fx2 fy1 fy2

0 I 0 0
gx1 gx2 I gy2

0 0 0 I


with Q a projector onto kerM and P= I−Q the complementary projector. Clearly we have
then that PQ = QP = MQ = 0 and MP = M. Hence we obtain

G1 = G0 +B0Q0 =


I fx2 Q fy1 fy2

0 Q 0 0
0 gx2 Q I gy2

0 M 0 I

 , B1 = B0P0 =


fx1 fx2 P 0 0
0 P 0 0

gx1 gx2 P 0 0
0 0 0 0

 .

At this point we already see that the DAE (9) has index 1 if and only if M = 0 or (9d)
vanishes completely. Otherwise we calculate

Q1 =


0 K 0 0
0 P 0 0
0 gy2 M 0 0
0 −M 0 0

 , G2 = G1 +B1Q1 =


I fx1 K + fx2 fy1 fy2

0 I 0 0
0 gx1 K +gx2 I gy2

0 M 0 I

 .

with K ≡ ( fy2 − fy1 gy2)M. Notice that G2 is always non-singular, hence the DAE is of
index 2 or lower.

Finally, we need to show that (6) can be converted into (9) under constant transforma-
tions and refactorizations.
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Lemma 4.2 (i) System (6) has Tractability Index 2 or lower. (ii) More precisely, there
exists a conversion of (6) by index-invariant transformations to the system

∂tρm =−(V T
1 |AT |)−1q1

∂tq+ = g̃(q+,ρs,ρm)

0 = ρs− s(t)

0 = q1− (|A|MLV1)
−1(d(t)−Aq+−|A|MLW1V2q2)

0 = q3

−V T
2 W T

1 |AT
S |∂tρs = q2

(10)

for variables ρm,q1,q2,q3,q+ and projection matrices V1,V2,W1. This system, with M =
−V T

2 W T
1 |AT

S | and

x1 =

(
ρm
q+

)
, x2 =

(
ρs
)
, y1 =

(
q1
q3

)
, y2 =

(
q2
)
,

is then in the form of (9).

Proof Clearly, (i) follows from (ii), so that it suffices to show the latter. First define

q+ ≡
qR +qL

2
and q− ≡

qR−qL

2
,

which leads to a constant transformation(
qR
qL

)
=

(
I I
I −I

)(
q+
q−

)
such that (6) can be written as

|AT
S |∂tρs + |AT |∂tρd =−M−1

L q−

∂tq+ = Ma(AT
S ρs +AT

ρd)+g(q+,ρs,ρd)

0 = Aq++ |A|q−−d(t)

0 = ρs− s(t).

(11)

Next define four orthonormal bases. Let V1 be an orthonormal basis of coker |A|= im(|A|T )
and let W1 be an orthonormal basis of ker |A|. Then W1 and V1 span the whole edge space.
Let V2 be an orthonormal basis of coker |AS|W1 and let W2 be an orthonormal basis of
ker |AS|W1. These bases could be related to the topology of the network but for our pur-
poses this is not necessary. Notice that V T

1
V T

2 W T
1

W T
2 W T

1

=

I 0
0 V T

2
0 W T

2

(V T
1

W T
1

)
(12)

is a constant non-singular matrix due to the definition of the orthonormal bases. Since
kernel and cokernel partition the edge space into two complementary subspaces, (12)
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constitutes an iterated partitioning procedure. Notice also that we have |A|W1 = 0 and
|AS|W1W2 = 0. Hence we obtain

V T
1 |AT

S |∂tρs +V T
1 |AT |∂tρd =−V T

1 M−1
L q−

V T
2 W T

1 |AT
S |∂tρs =−V T

2 W T
1 M−1

L q−

∂tq+ = Ma(AT
S ρs +AT

ρd)+g(q+,ρs,ρd)

0 =−W T
2 W T

1 M−1
L q−

0 = Aq++ |A|q−−d(t)

0 = ρs− s(t)

by a constant refactorization, which means we multiplied the first equation of (11) from the
left by (12). After this refactorization we also use the bases for a constant transformation

q− = ML(W1W2q3 +W1V2q2 +V1q1),

which leads to

V T
1 |AT |∂t((V T

1 |AT |)−1V T
1 |AT

S |ρs +ρd) =−q1

V T
2 W T

1 |AT
S |∂tρs =−q2

∂tq+ = Ma(AT
S ρs +AT

ρd)+g(q+,ρs,ρd)

0 =−q3

0 =Aq++ |A|MLV1q1 + |A|MLW1V2q2

+ |A|MLW1W2q3−d(t)

0 =ρs− s(t).

The eventual transformation is defined by

ρm = (V T
1 |AT |)−1V T

1 |AT
S |ρs +ρd

which leads to the desired equations if

g̃(q+,ρs,ρm) =Ma(AT
S ρS +AT (ρm− (V T

1 |AT |)−1V T
1 |AT

S |ρs)

+g(q+,ρS,ρm− (V T
1 |AT |)−1V T

1 |AT
S |ρs).

We obtain

∂tρm =−(V T
1 |AT |)−1q1 (13a)

∂tq+ = g̃(q+,ρs,ρm) (13b)

0 = ρs− s(t) (13c)

0 = q1− (|A|MLV1)
−1(d(t)−Aq+−|A|MLW1V2q2) (13d)

0 = q3 (13e)

−V T
2 W T

1 |AT
S |∂tρs = q2. (13f)

Notice that we can eliminate q3 in (13a) and (13d) as a constant refactorization. With
M =−V T

2 W T
1 |AT

S | and

x1 =

(
ρm
q+

)
, x2 =

(
ρs
)
, y1 =

(
q1
q3

)
, y2 =

(
q2
)
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system (13) has the structure of the DAE class (9). Hence it has index 1 if V T
2 W T

1 |AT
S |= 0

or (13f) vanishes completely, else it has index 2.

Remark: This condition for index 1 can be expressed by the topological condition that
there is only one supply node in the system. To prove that the used orthonormal matrices
would have to be chosen with a topological meaning. One can then show that if the gas
network has only one supply node it is always index 1 and if it has more it has to be index
2. We will not prove this in detail here as it is not of practical interest since most realistic
examples with have more than 1 supply node and be of index 2 therefore.

For practical reasons system (13) is not necessarily well-suited, since the calculation of
V1,W1,V2,W2 might increase the overall numerical error, and additionally, we do not want
to invert V T

1 |AT | if the network is large.
Therefore, step back to (11)

|AT
S |∂tρs + |AT |∂tρd =−M−1

L q− (14a)

∂tq+ = Ma(AT
S ρs +AT

ρd)+g(q+,ρs,ρd) (14b)

0 = Aq++ |A|q−−d(t) (14c)

0 = ρs− s(t) (14d)

and remember that M−1
L is a diagonal matrix, hence it is very cheap to invert. Multiply

(14a) from the left by |A|ML and replace |A|q− and ρs with the help of the (14c) and (14d)
afterwards.

|AT
S |∂tρs + |AT |∂tρd =−M−1

L q− (15a)

⇒|A|ML |AT
S |∂tρs + |A|ML |AT |∂tρd =−|A|q− (15b)

⇒|A|ML |AT |∂tρd = Aq+−d(t)−|A|ML |AT
S |∂ts(t) (15c)

We need the derivative of the supply input functions to obtain (15c). Hence this step in-
cludes an index reduction. Since we only differentiate an input function, no complications
like the drift-off phenomena are expected. We also replace ρs in (14b) with the help of
(14d) and obtain a system in ρd and q+.

|A|ML |AT |∂tρd = Aq+−d(t)−|A|ML |AT
S |∂ts(t) (16a)

∂tq+ = MaAT
ρd +g(q+,s(t),ρd)+LaAT

S s(t) (16b)

|A|ML |AT | is positive definite and symmetric since |AT | has full column rank and ML is a
positive definite diagonal matrix, hence (16) is an implicit ODE of the form

M∂tx1 = Ax2 + f1(t)

∂tx2 = f2(x1,x2, t)
(17)

with M being symmetric and positive definite. This allows for a straightforward application
of half-implicit solvers and MOR methods. After we have calculated ρd and q+ by solving
the ODE, the rest of the variables can be computed in a post processing step.

A similar decoupling result for water transport networks can be found in [JP13]. The
general concept of this decoupling strategy is described in greater detail in [Jan13]. The
concept arises as a mix of the Tractability Index and the Strangeness Index.
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5 Model Order Reduction – POD
The gas transport equations we are considering are given in the form of (7) and thus cap-
ture (17)

E(p) ẋ = H(p)x+ f (x, p,u).

Given such an equation our goal is reduction by projection. This means we want to find
a linear subspace in which the solution trajectory lies approximately. This subspace is
defined by a projection matrix W ∈ Rn×n̂ where hopefully n̂� n. More precisely, we are
interested in finding a solution x̂(t) ∈ Rn̂ such that

x(t)≈Wx̂.

We can then reduce the given equation onto that subspace by a Galerkin projection
resulting in the reduced equation

W TE(p)W ˙̂x =W TH(p)Wx̂+W T f (Wx̂, p,u).

If E is a positive definite matrix then the reduced order matrix Ê =W TEW will also be
a positive definite matrix. If E is indefinite, possibly singular, problems are manifold. For
example, a nonsingular E does not necessarily result in a nonsingular Ê, which in general
means that projection can lead to a DAE of higher index than the original one. In order
to create a reduced order model, i. e. to find the subspace or compute W , we have to pick
a Model Order Reduction technique. We will employ a method that is very common for
nonlinear problems, the so called Proper Orthogonal Decomposition (POD). It is relatively
straightforward conceptually. POD is, however, mostly used for Ordinary Differential
Equations (ODEs), while we use it on the original DAE equations, too, for comparison.
Some related work for linear problems can be found in [RR11] In the following, POD is
introduced for the ODE case. Section 5.2 will exactly explain how we use POD in order
to create our reduced order model.

5.1 Proper Orthogonal Decomposition
We will explain the basic idea of POD-MOR first. This method is also referred to as the
method of snapshots [Sir87]. As explained above we are interested in finding a matrix W
such that the solution trajectory is well approximated. If we assume that W has orthonor-
mal columns u1, . . . ,ur we are interested in solving the following optimization problem

min
∫ T

0

∥∥x(t)−∑〈x(t),ui〉ui
∥∥2 dt where 〈ui,u j〉= δi j. (18)

The norm can be any norm, in general, but should be connected to an inner product. Since
this problem is in general not solvable we take snapshots at several time steps t0 . . . , tN and
find the best approximating linear subspace by solving the following problem instead

min
u1,...,u`

N

∑
k=1

wk

∥∥∥∥∥xk−
`

∑
i=1
〈xk,ui〉ui

∥∥∥∥∥
2

where 〈ui,u j〉= δi j. (19)

For wi = 1 and the inner product and norm being the standard Euclidean one, the solution
to this problem is directly connected to the singular value decomposition of the matrix Y =
[x1, ...,xN ]. Given the SVD of Y = UΣV T the solution to (19) for the standard Euclidean
inner product and Euclidean norm is obtained by the first ` left singular vectors which are
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the first ` columns of U . Here we assume that the singular values in Σ are ordered. Per
definition of the SVD U and V are orthogonal matrices and Σ is a diagonal matrix.

Let ui be the singular vectors of the snapshot matrix Y = [x(t1), . . . ,x(tN)] as in [GHK+13].
Then for all time steps tk

x(tk)≈
`

∑
i=1
〈x(tk),ui〉ui =

`

∑
i=1

x̂i(tk)ui =Wx̂(tk)

where W = [u1, . . . ,uN ]. Though this relation does not yield for arbitrary time steps, we
assume certain continuity properties of x(t) and as a result

x(t)≈Wx̂(t).

If we have weights wi and the inner product is given by a weighted inner product

〈x,y〉E = xT Ey

for a symmetric positive definite matrix E we can still solve

min
u1,...,u`

N

∑
k=1

wk

∥∥∥∥∥xk−
`

∑
i=1
〈xk,ui〉E ui

∥∥∥∥∥
2

E

where 〈ui,u j〉E = δi j. (20)

by a singular value decomposition. The following lemma is a known result see for example
[KV02].

Lemma 5.1 The solution to (20) is given by

ui = Y D1/2
φi/σi

where φi are the singular vectors and σ2
i the singular values of Ŷ T Ŷ = D1/2Y T EY D1/2

Proof

min
u1,...,u`

N

∑
k=1

wk

∥∥∥∥∥xk−
`

∑
i=1
〈xk,ui〉E ui

∥∥∥∥∥
2

E

⇔ min
u1,...,u`

N

∑
k=1

∥∥∥∥∥√wkxk−
`

∑
i=1
〈√wkxk,ui〉E ui

∥∥∥∥∥
2

E

⇔ min
u1,...,u`

N

∑
k=1

∥∥∥∥∥√wkE1/2xk−
`

∑
i=1
〈E1/2√wkxk,E

1/2ui〉E1/2ui

∥∥∥∥∥
2

As a result, the problem is equivalent to the above and the solution is given by finding
the singular value decomposition of Ŷ = E1/2Y D1/2 and then multiplying the resulting
vectors by E−1/2. This could possibly be too expensive as we have to find the square root
of E and its inverse. Notice, however, that the vectors we are interested in are given by
E−1/2U . Thus let us instead look at the SVD of Ŷ = E1/2Y D1/2 =UΣV T which leads to

E−1/2U = Y D1/2V Σ
−1.

Here Σ and V can be computed by the SVD of Ŷ T Ŷ = D1/2Y T EY D1/2. Consequently, we
can compute the basis functions without computing matrix functions of E.
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Given an ODE in descriptor form with a symmetric positive definite E matrix, we typi-
cally use this very E matrix as the inner product weight. In case of a DAE it is not obvious
what inner weight one should use and whether the standard Euclidean inner product should,
for example, be employed to create a reduced order model. Neither is it obvious whether
the reduction might raise the index of the equations if one compares the reduced system
to the original one. This should, in general, be avoided. For a careful application of these
concepts with reportedly good results we refer to the literature [HK12].

5.2 POD for Gas Transport Simulation
The solution of the gas transport equations gives different time series for different values
of the parameters and the input functions. One would be interested in a reduced order
model which gives good results for all or, more realistically, for a large class of input
functions and a certain parameter range. In order to achieve that, we need to solve the
full system for several parameters and input functions. Based on the obtained solution
data one can then create a reduced-order model. Most of the numerical tests show that
these equations are intrinsically significantly reducable. Actual Parametric Model Order
Reduction techniques, which consider what happens for different parameter values, have
not been applied, however. We mostly assume that we know the parameters and that they
are given.

In the case of the ODE (17) we could use standard POD techniques with the inner
product matrix E and weights depending on the times series given. For equal time steps
one would typically also want all weights to be the same, otherwise they are adjusted
accordingly, which depends on the chosen quadrature rule. We assume equal time steps
in this work, though. It turns out, however, that if we compute W directly from there and
project our equations, the resulting reduced order model is very difficult to simulate. We
therefore use POD for the time series of the pressures and for the time series of the average
fluxes independently as it was also done in [HK12]. First we create projection matrices Wp
and Wq leading to an overall projection matrix

W =

[
Wp 0
0 Wq

]
.

In the numerical examples shown in Sect. 6 for the original DAE, we just employ stan-
dard POD on the given snapshot together with the Euclidean norm.

Remark: We believe that one can get better results if the components are projected
independently but this approach has neither been tested nor explored conceptually here.
Projecting them independently will probably result in a DAE whose index is not higher
than the index of the original one.

6 Numerical Examples
The numerical example we study in most detail is a very simple one from [GHK+13] and
since it has just one supply node it actually just has Tractability Index 1. Even there, how-
ever, a lot of the difficulties in constructing a reduced order model can be experienced.
These difficulties might become crucial for larger systems. We will therefore give numer-
ical evidence that, for this simple example and a more involved one, the presented index
reduction technique results in an ODE that can be stably solved, even when the origi-
nal system experiences complications. In the following, we also give numerical results

10



segment L1,2 L2,3 L3,4 L4,5 L5,6 L5,7 L7,8 L7,9
length 46m 7m 3080m 4318m 323m 790m 1820m 1460m

segment L9,10 L10,11 L11,12 L11,13 L13,14 L13,15 L15,17 L15,16
length 2368m 1410m 296m 3979m 119m 3881m 687m 6114m

Table 1: Pipe lengths of the simple network, numbering in accordance with Fig. 1

node d4 d8 d9 d10 d12 d14 d16 d17
demand 0.21kg/s 34.86kg/s 0.22kg/s 2.83kg/s 1.81kg/s 1.04kg/s 2.85kg/s 1.45kg/s

Table 2: Fluxes at the demand nodes of the simple network, numbering in accordance with
Fig. 1

on Model Order Reduction applied to the index-reduced ODE. As expected, the results
are promising and indicate that the presented combinations of approaches may be stably
applicable in practice.

For a detailed description of the first example, see [GHK+13] and Fig. 1. Its topology
consists of 17 nodes, among which there are 8 demand nodes and a single supply, simply
connected by a net of 16 pipes. The lengths of the individual pipes are given as shown
in Table 1, while the pipe diameter and friction coefficients remain constant throughout
the entire network (D = 0.206m, λ = 0.0003328). The supply at time t0 = 0 is given by
S0 = 44.5bar, the demands vary from node to node, see Table 2. We assume a single gas
phase specified by ak = 430.5m/s for all k.

As to the simple network we report on two different scenarios or settings. In both
scenarios, we fix the demands in time and lower the supply pressure within a given time
interval. Such a situation arises in practice if variations in the supply are to be investigated.
A change in the input functions may also be relevant in the problem of finding a feasible
starting solution. For our test the supply pressure function in time is given by

s(t) = (1−0.1(cos(tπ/1000)−1))S0,

t ∈ [0,20000] in seconds, which resembles – except for a small numerical error – the

1 2 3

4

5 6

7
8

9 10

11

12

13

14

15 16

17

Demand Nodes

Supply Node

Gas Network Topology

Figure 1: Gas network graph
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reduction order 2 4 6 8 10 12 14 16 18 20
scenario 1 1.06 1.6 0.016 0.012 0.01 0.01 0.01 0.01 0.01 0.01
scenario 2 0.6 1.2 0.01 0.005 0.004 0.004 0.004 0.004 0.004 0.004
time 0.9 s 2.3 s 13 s 28 s 33 s 73 s 77 s 75 s 132 s 229 s

Table 3: Error comparison for the two scenarios together with time used for test network 1

pressure plot in Fig. 2.
Firstly, only a part of this function is used as training data, i. e. every k-th time step,

k = 9, of a simulation (∆t = 100ms) is used to set up our POD projection matrix, just as
in the simplest case described in Sect. 5. We then use all available 100 time steps in order
to compare the solution obtained by POD reduction to the original solution. Secondly, we
use all available time steps as training data to set up our second POD projection matrix,
not only every k-th time step. We then compare the solution of the reduced system and the
full system for a slight variation of the input function given by

s(t) = (1−0.085(cos(tπ/1000)−1))S0.

The latter test case is relevant from a practical point of view because it resembles the
situation, where a series of parametrized solutions has to be computed in order to either
analyse the system or find a starting solution for a periodically re-measured input.

The pressures and fluxes at the supply node as well as at node 9 are plotted in Figs. 2–
13, where Figs. 2–7 refer to the first scenario, while Figs. 8–13 illustrate the second one.
Here, the flux plots of a node refer to the sum of the qk

L of all pipes k entering at that node.
We solve the system as given in [GHK+13, Eqns. (6)–(10)] with the function fsolve
from [JOP+ ]. The implementation is not optimized, but should allow for comparing the
run time of the original solution to that of the reduced system. The average running time
of 100 executions (including computation of input, system solution, storage routines) of
the original system of size 65 (notice the additional equations in [GHK+13, Eqns. (6)–
(10)]) has been measured as 2.28958848953s. Making use of some sparse matrix routines,
we can decrease this run time to 0.685134909153s for the POD reduced system. The
measurement now also includes the expansion of the reduced state.

As emphasized before, the results we mainly report here refer to a very simplified prob-
lem. Still, this index 1 problem is already challenging to simulate in its original DAE form.
Reducing it via POD often makes the solution numerically more unstable and thus more
difficult to solve. A greater difference between the input used to set up the POD and the
input used to test the reduction can already lead to numerical problems within this set-
ting. The reported errors are acceptable, but might add up to unacceptable errors in larger
networks.

Simulating that same problem within the ODE framework described in Sect. 4 is com-
paratively simple and straightforward (Matlab’s ODE solver can be used directly to achieve
accurate and fast results). Even strongly reducing it to an order size of 4 results in but a
small error, which indicates that this method is more suitable for larger networks than the
direct approach.

Table 3 shows the errors for the two scenarios and different reduction orders.
We can see that the time grows over the time of simulating the full order system for r =

12. This is not surprising since we do not apply any technique to deal with the nonlinearity
in an efficient way. We can furthermore see that the error stagnates. We are computing an
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absolute maximum error over all variables. If we look, however, at the maximum error of
the pressure curve at node 9 for example as we did above we only have an absolute max
error of 10−6. We did not further investigate the origin of that stagnation since the reduced
order model of size 8 gives good overall results. More tests have been conducted with the
following supply function

s(t) = (1−0.2(cos(tπ/1000)−1))S0.

The maximum error for the reduced order of size 8 was 0.02 in that case.
The second example, which is a realistic part of a gas network, is a little more chal-

lenging and due to the fact that it has more than one supply it no longer has index 1. The
topology of the graph is shown in Fig. 14. This system has 45 nodes and 47 pipes. Which
leads to an ODE system of size 88 since we have 4 supply nodes. Simulating this network
in the DAE form can already be slightly challenging. Reducing it in the naive way typically
does not lead to a numerically stable system anymore in practice. Model Order Reduction
techniques for nonlinear differential algebraic systems are not very well understood and
even in the case of linear problems one typically has to address the subject and take apart
the differential and algebraic contributions [BS13].

This network has been simulated with a demand function d(t) = d0 × t/3600 in the
first hour and then constant. The network has two demands, which are set to 0.4kg/s
and 0.3kg/s. In the first hour of operation we linearly increase them and then keep them
constant. The supply is slowly lowered at one supply node in a C1 fashion over 3 hours.
We then reduce the system to size 8 and simulate again. The maximum absolute error is
then 0.1. However the mean absolute error is 0.01. These results seem very promising and
future work should include larger networks as well.

7 Discussion
In our work described here, we study the numerical simulation of gas transport within
pipeline networks that consist of pipes only. More involved components have not been
considered. Given a simplified differential system to capture the physics of gas trans-
port, mass balance laws for the network, as well as a discretization in space, we derive a
nonlinear DAE. We furthermore show that the problem lies in a class of DAEs that have
Tractability Index 2 or lower, relate the index to the network topology, and give an alter-
native formulation with better tractability, namely an Ordinary Differential Equation. We
discuss the application of Model Order Reduction by Proper Orthogonal Decomposition
to both the original system and the index-reduced ODE.

We also present numerical results for two examples, a smaller index 1 network and a
somewhat larger index 2 network. The small network is tested in two settings. In the
first setting we use few snapshots of a time series with varying supply pressure in order to
construct an order-reduced system by POD and compare the solution of this reduction to
the original system. In a second setting we use all available time steps for the construction
of our POD projection. We then test the reduced system with respect to a slight variation
of the input functions and obtain a reduction error that is acceptable but higher than in the
first setting. The larger network is tested within some basic test case, that shows promising
future applications.

These numerical tests give first evidence that the numerical solution and Model Order
Reduction of the equivalent ODE formulation is more stably achieved yielding more accu-
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rate solutions than that of the original system. Notice that we have splitted MOR into two
independent projections for the ODE which can also explain the better results.

The simplifications we suppose are motivated by industrial practice as well as by certain
specific problems that can arise in scenario analysis (analysis of input or parameter varia-
tions) or in finding a starting solution for a complex network via the solution of simplified
but increasingly more complex sub-problems. Nevertheless, further components ought to
be considered in future research in order to allow for the Model Order Reduction of a larger
class of pipeline networks from the engineering practice. The tractability of MOR systems
of DAEs should perhaps be discussed and investigated more deeply in order to gain a better
understanding of the matter if a system cannot be transformed as straightforwardly into an
ODE as we have seen here. Such a discussion should comprise a more detailed analysis
and numerical examination of our concluding remark in Sect. 5.2. In future work, the topo-
logical meaning of the presented results could be considered. Also, (16) might represent
an ideal starting point to discuss the effects of topology changes on the original system as
well as on MOR approaches.
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Figure 2: Pressure at the supply (given)
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Figure 3: Flux at the supply
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Figure 4: Pressure and flux error at the
supply
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Figure 5: Pressure at node 9
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Figure 6: Flux at node 9
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Figure 7: Pressure and flux error at node 9
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Figure 8: Pressure at the supply
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Figure 9: Flux at the supply
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Figure 10: Pressure and flux error at the
supply
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Figure 11: Pressure at node 9
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Figure 12: Flux at node 9
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Figure 13: Pressure and flux error at node 9
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Figure 14: Gas network graph 2
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