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Abstract

We study the solution of linear systems resulting from the discreitization of un-
steady diffusion equations with stochastic coefficients. In particular, we focus
on those linear systems that are obtained using the so-called stochastic Galerkin
finite element method (SGFEM). These linear systems are usually very large
with Kronecker product structure and, thus, solving them can be both time- and
computer memory-consuming. Under certain assumptions, we show that the so-
lution of such linear systems can be approximated with a vector of low tensor
rank. We then solve the linear systems using low rank preconditioned iterative
solvers. Numerical experiments demonstrate that these low rank preconditioned
solvers are effective.
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1 Introduction

Many problems in science and engineering are modelled using partial differential equa-
tions (PDEs). One of such important models is the diffusion equation which arises in,
for instance, fluid flow and transport of chemicals in heterogeneous porous media (see
e.g. [6], [21]), as well as in temperature prediction of biological bodies, [25], etc. More
often than not, the diffusion equation is modelled deterministically. However, in the
transport models for groundwater flows, for example, it is only possible to measure the
hydraulic conductivity at a limited number of spatial locations; this leads to uncer-
tainty in the groundwater flow simulations, [6]. Hence, it is reasonable to model the
hydraulic conductivity as a random field. This, in turn, implies that the solution to
the resulting stochastic model is necessarily also a random field. There is, therefore,
the need to quantify the uncertainty in the solution of the model.

Generally, in order to solve PDEs with stochastic inputs, three competing methods
are standard in the literature: the Monte Carlo method (MCM), the stochastic collo-
cation method (SCM) and the stochastic Galerkin finite element method (SGFEM),
see e.g. [6], [1], [3], [14], [12]. In contrast to MCM and SCM (both of which are
based on stochastic sampling), SGFEM is a non-sampling approach which transforms
a PDE with uncertain inputs into a large system of coupled deterministic PDEs. De-
spite this curse of dimensionality problem associated with the SGFEM, the beauty of
the approach lies, among others, in the ease with which it lends itself to the compu-
tation of such quantities of interest as the moments and the density of the solution.
In this paper, our key objective is to study the solution of systems resulting from the
discretization of unsteady diffusion equations with stochastic coefficients, using the
SGFEM.

In the past two decades, research on the solution of diffusion equations with random
inputs using the SGFEM has been focused mainly on developing solvers for steady-
state problems, see e.g. [1], [9], [23], [11], [21], etc. Time-dependent problems have not
yet received adequate attention. A few attempts in this direction include [25], [20],
[22] and [26]. Unlike the steady-state problem, the time-dependent model problem
presents the additional challenge of solving a large coupled linear system for each time
step. As opposed to the literature above on unsteady diffusion problems, the main
aim of this paper is to tackle this dimensionality problem using low rank iterative
solvers studied in [19] in the framework of parametrized linear systems. The rest of
the paper is organised as follows. In Section 2, we give some basic notions on which we
shall rely in the rest of the paper. Next, we present our model problem and provide
an overview of its discretization in Section 3. Since our approach is based on low
rank approximation, we first show the existence of a low rank approximation of the
solution to the stochastic Galerkin system in Section 4 before proceeding to discuss
our preconditioned low rank iterative solvers in Section 5 and numerical results in
Section 6. Finally, we draw some conclusions in Section 7 based on our findings in the
paper.
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2 Basic notions and definitions

Let the triplet (Ω,F ,P) be a complete probability space, where Ω is a sample space
of events. Here, F denotes a σ-algebra on Ω and is endowed with an appropriate
probability measure P. Moreover, let D ⊂ Rd with d ∈ {1, 2, 3}, be a bounded open
set with Lipschitz boundary ∂D.

Definition. A mapping κ : D×Ω→ R is called a random field if for each fixed x ∈ D,
κ(x, ·) is a random variable with respect to (Ω,F ,P).

We denote the mean of κ at a point x ∈ D by κ̄(x) := 〈κ(x, ·)〉 . The covariance of
κ at x,y ∈ D is given by

Covκ(x,y) := 〈(κ(x, ·)− κ̄(x))(κ(y, ·)− κ̄(y))〉 . (1)

Note that the variance Var(κ) = σ2
κ of κ at x ∈ D is obtained if we set x = y in

(1) and the standard deviation of κ is
√

Var(κ). Let L2(Ω,F ,P) denote the space of
square-integrable random fields defined on (Ω,F ,P).

We shall also need the concepts of Kronecker product and vec(·) operators.

Definition. Let X = [x1, . . . , xm] ∈ Rn×m and Y ∈ Rp×q. Then

X ⊗ Y =

 x11Y . . . x1mY
...

...
x1nY . . . xnmY

 ∈ Rnp×mq, vec(X) =

 x1

...
xnm

 ∈ Rnm×1. (2)

It follows from (2) that the vec(·) operator essentially reshapes a matrix into a
column vector. In MATLAB notation, for example, we have

vec(X)=reshape(X,n*m,1).

More precisely, we consider the vec(·) operator as a vector space isomorphism vec :
Rn×m → Rnm and denote its inverse by vec−1 : Rnm → Rn×m. Kronecker product
and vec(·) operators exhibit the following properties, see e.g. [8].

vec(AXB) = (BT ⊗A)vec(X), (3)

(A⊗B)(C ⊗D) = AC ⊗BD. (4)

Finally, we introduce the tensor rank of a vectorized matrix, see e.g., [16].

Definition. Let X ∈ Rn×n and x = vec(X) ∈ Rn2

. Then, the tensor rank of x is the
smallest k ∈ Z+ such that

x =

k∑
i=1

ui ⊗ vi,

where ui, vi ∈ Rn. In particular, the tensor rank of the vector x coincides with the rank
of the matrix X.
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3 A model problem with stochastic inputs

In this section, we introduce and discretize our model problem. More precisely, we
study the solution of the stochastic initial-boundary value problem of the form

∂u(x, ω, t)

∂t
= ∇ · (κ(x, ω)∇u(x, ω, t)) + f(x), in D × Ω× (0, T ],

u(x, ω, t) = 0, x ∈ ∂D, ω ∈ Ω, t ∈ T,
u(x, ω, 0) = 0, x ∈ D, ω ∈ Ω,

 (5)

where, for ease of exposition, we restrict our discussion to a sufficiently smooth, time-
independent deterministic source term, as well as Dirichlet boundary conditions. How-
ever, our discussion naturally generalizes to other stochastic boundary conditions and
stochastic time-dependent source terms. In the model (5), we note here that κ(x, ω),
and hence the solution u(x, ω, t) are random fields. We assume that the random input
κ is P-almost surely uniformly positive; that is,

∃ α, β such that 0 < α ≤ β < +∞,

with

α ≤ κ(x, ω) ≤ β, a.e. in D × Ω. (6)

The well-posedness of the model (5) then follows from classical the Lax-Milgram
Lemma (see e.g. [21]).

Next, following [22], we review the discretization of (5) using the stochastic Galerkin
finite element method (SGFEM).

3.1 Overview of stochastic Galerkin finite element method

As we noted in Section 1, the discretization of partial differential equations with ran-
dom coefficients using classical SGFEM is standard in the literature. Indeed, one
usually follows a four-step procedure in this method, see e.g., [25], [22], [21]. The
randomness in the model is, first of all, represented with a finite number of random
variables. Then, we use the Karhunen-Lòeve expansion (KLE) to decouple the random
and spatial dependencies in the random field, κ. Next, we approximate the solution as
a finite-term expansion using basis orthogonal polynomials – the so-called generalized
polynomial chaos expansion (PCE). The fourth and final stage entails performing a
Galerkin projection on the set of polynomial basis functions. The above procedure
transforms the stochastic problem (5) to a system of (usually) large coupled system
of deterministic diffusion equations, which can then be solved with the appropriate
methods for deterministic PDEs. In what follows, we briefly review the four steps.
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3.2 Karhunen-Lòeve representation of stochastic inputs

Let κ : D × Ω → R be a random field with continuous covariance function Cκ(x,y).
Then κ admits a proper orthogonal decomposition (or KLE)

κ(x, ω) = κ̄(x) + σκ

∞∑
i=1

√
λiϕi(x)ξi(ω), (7)

where σκ is the standard deviation of κ. The random variables ξ := {ξ1, ξ2, . . .} are
centred, normalized and uncorrelated (but not necessarily independent) with

ξi(ω) =
1

σκ
√
λi

∫
D

(κ(x, ω)− κ̄(x))ϕi(x) dx,

and {λi, ϕi} is the set of eigenvalues and eigenfunctions corresponding to Cκ(x,y). In
other words, the eigenpairs {λi, ϕi} solve the integral equations∫

D
Cκ(x,y)ϕi(y) dy = λiϕi(x).

The eigenfunctions {ϕi} form a complete orthogonal basis in L2(D). The eigenvalues
{λi} form a sequence of non-negative real numbers decreasing to zero. In practice,
the series (7) is truncated after, say, N terms based on the speed of decay of the
eigenvalues since the series converges in L2(D × Ω) due to

∞∑
i=1

λi =

∫
Ω

∫
D

(κ(x, ω)− κ̄(x))2 dxdP(ω).

However, one has to ensure that the truncated random field

κN (x, ω) = κ̄(x) + σκ

N∑
i=1

√
λiϕi(x)ξi(ω), (8)

satisfies the positivity condition (6) so that the model (5) is still well-posed. It should
be noted, though, that the truncated KLE (8) is a finite representation of κ(x, ω) with
the minimal mean-square error over all such finite representations.

For some random inputs, the covariance functions and eigenpairs can be computed
explicitly. If they are not known a priori, then they can be approximated numerically,
see e.g. [12] for details regarding the computation and convergence of KLE.

3.3 Generalized polynomial chaos expansion

Generalized polynomial chaos expansion is a means of representing a random field
u ∈ L2(Ω,F ,P) parametrically through a set of random variables. More precisely, we
have

u(x, ω, t) =

∞∑
j=0

uj(x, t)ψj(ξ(ω)), (9)
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where uj , the deterministic modes of the expansion, are given by

uj(x, t) =
〈u(x, ω, t)ψj(ξ)〉〈

ψ2
j (ξ)

〉 ,

ξ is a finite-dimensional random vector as in (8) and ψj are multivariate orthogonal
polynomials satisfying

〈ψ0(ξ)〉 = 1, 〈ψj(ξ)〉 = 0, j > 0, 〈ψj(ξ)ψk(ξ)〉 = δjk,

with

〈ψj(ξ)ψk(ξ)〉 =

∫
ω∈Ω

ψj(ξ(ω))ψk(ξ(ω)) dP(ω) (10)

=

∫
ξ∈Π

ψj(ξ)ψk(ξ)ρ(ξ) dξ, (11)

where Π and ρ are, respectively, the support and probability density of ξ. The random
variables are chosen such that their probability density coincides with the weight func-
tion of the orthogonal polynomials used in the expansion, e.g., Hermite polynomials
and Gaussian random variables, Legendre polynomials and uniform random variables,
Jacobi polynomials and beta random variables, etc. Note that n-dimensional orthog-
onal polynomials are constructed by taking n products of 1-dimensional orthogonal
polynomials.

By the Cameron-Martin Theorem, the series (9) converges in the Hilbert space
L2(Ω,F ,P), see e.g. [10]. Thus, as in the case of KLE, we truncate (9) after, say, P
terms to obtain

u(x, ω, t) =

P∑
j=0

uj(x, t)ψj(ξ(ω)), (12)

where P is determined by the expression

P =
(N +Q)!

N !Q!
. (13)

In (13) above, Q is the highest degree of the orthogonal polynomial used to represent u.
A detailed discussion on how to choose Q (and hence P ) can be found in, for instance,
[21].

Observe from (7) and (9) that the expansions decouple the random fields into
stochastic and deterministic dependencies. Besides, the KLE in (7) is a special case of
the PCE in (9) with Q = 1.

3.4 Stochastic Galerkin approach

If we substitute the expressions (8) and (12) into the model (5), we get

P∑
i=0

∂ui(x, t)

∂t
ψi =

P∑
i=0

∇ ·

((
κ̄(x) + σκ

N∑
k=1

√
λkϕk(x)ξk

)
∇ui(x, t)ψi

)
+ f(x). (14)
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Next, we project (14) onto the space spanned by the P + 1 polynomial chaos basis
functions to obtain, for j = 0, 1, . . . , P,

〈
ψ2
j

〉 ∂uj(x, t)
∂t

=

P∑
i=0

∇ · (aij(x)∇ui(x, t)) + 〈ψj〉 f(x), (15)

where

aij(x) = κ̄(x) 〈ψiψj〉+ σκ
∑N
k=1

√
λkϕk(x) 〈ξkψiψj〉

= κ̄(x)δij + σκ
∑N
k=1

√
λkϕk(x) 〈ξkψiψj〉 . (16)

It should be noted that the system of P + 1 deterministic diffusion equations in (15)
are coupled. Designing a fast solver for such a large coupled system can be quite a
challenge. This is the main purpose of the remainder of this paper. However, if doubly
orthogonal polynomials (see e.g. [2]) are used, then one obtains a decoupled system
which can be solved relatively easily. We do not consider the latter case in this paper.

In practice, the quantity of interest is not the solution u of the model (5) itself; rather,
one is usually interested in some functional of u. Once the modes ui, i = 0, 1, . . . , P,
have been computed, the intended quantities of interest, such as the moments and
probability density of the solution can easily be deduced. For instance, the mean and
the variance of the solution are, respectively, given explicitly by

〈u(x, ξ, t)〉 = u0(x, t), Var(u(x, ξ, t)) =

P∑
i=1

u2
i (x, t)

〈
ψ2
i (ξ)

〉
.

3.5 Spatial and time discretizations

In the spirit of [21] and [22], we use classical finite elements to discretize the spatial
domain. Furthermore, we assume that each of the deterministic coefficients ui, i =
0, 1, . . . , P, in (15) is discretized on the same mesh and with equal number of elements.
More precisely, with J basis functions sj(x), each mode ui is approximated as a linear
combination of the form

ui(x, t) ≈
J∑
j=1

uij(t)sj(x), i = 0, . . . , P.

After spatial discretization and some algebraic manipulations (see e.g [21]), one gets
the system of ordinary differential equations:

(G0 ⊗M)
du(t)

dt
+

(
N∑
i=0

Gi ⊗Ki

)
u(t) = g0 ⊗ f0, (17)

where

u(t) =

 u0(t)
...
uP (t)

 , with ui(t) ∈ RJ , i = 0, 1, . . . , P. (18)
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The stochastic matrices Gi ∈ R(P+1)×(P+1) are given by

G0(j, k) = 〈ψj(ξ)ψk(ξ)〉 , Gi(j, k) = 〈ξiψj(ξ)ψk(ξ)〉 , i = 1, . . . , N, (19)

and the vectors g0 and f0 are defined via

g0(j) = 〈ψj(ξ)〉 , f0(j) =

∫
D
f(x)sj(x) dx. (20)

The mass matrix M ∈ RJ×J and the stiffness matrices Ki ∈ RJ×J , i = 0, 1, . . . , N,
are given, respectively, by

M(j, k) =

∫
D
sj(x)sk(x) dx, (21)

K0(j, k) =

∫
D
κ̄(x)∇sj(x)∇sk(x) dx, (22)

Ki(j, k) = σκ
√
λi

∫
D
ϕi(x)∇sj(x)∇sk(x) dx. (23)

Observe, in particular, from (22) and (23) that the matrix K0 contains the mean infor-
mation of the random field κ, whereas the matrices Ki, i > 0, capture the fluctuations
therein.

For time discretization, we use implicit Euler to avoid stability issues. To this
end, we set tn = nτ, n = 0, 1, . . . , Tmax, with τ = T/Tmax. Moreover, we define the
computed numerical approximation u(tn) := un, so that (17) yields

G0 ⊗M
(

un − un−1

τ

)
+

(
N∑
i=0

Gi ⊗Ki

)
un = (g0 ⊗ f0)

n
, (24)

or, equivalently,

Aun = bn, (25)

where

bn = (G0 ⊗M) un−1 + τ (g0 ⊗ f0)
n
, (26)

and

A = G0 ⊗M + τ

N∑
i=0

Gi ⊗Ki

= G0 ⊗ (M + τK0) + τ

N∑
i=1

Gi ⊗Ki

= G0 ⊗ K̃0 +

N∑
i=1

Gi ⊗ K̃i, (27)
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with K̃0 := M + τK0, K̃i = τKi, i = 1, . . . , N.
We note that the stochastic Galerkin matrix A as defined in (27) is sparse in the

block sense, symmetric and positive definite. Indeed, in such practical applications as
flow problems, the length N of the random vector ξ is usually large due to the presence
of small correlation length in the covariance function of κ. This, in turn, increases the
value of P in (13) (and hence the dimension of A) quite fast, see e.g., [12]. This
is a major drawback of the SGFEM. To tackle this problem, we consider low rank
approximation to the solution of the linear system (25).

4 Existence of low rank solution of the Galerkin system

In what follows, we focus our attention on the solution of the system (25) using two
iterative solvers. First, however, following [4], we show, under certain conditions, that
the solution of (27) can be approximated with a vector of low Kronecker rank. To this
end, for arbitrary A ∈ Rm×m and b ∈ Rm, consider the following linear system

Ax = b. (28)

Define, for k ∈ N, the following quadrature points and weights

hst = π2/
√
k, (29)

tj = log
(

exp(jhst) +
√

1 + exp(2jhst)
)
, (30)

wj = hst/
√

1 + exp(−2jhst). (31)

Our point of departure is the following lemma from [16].

Lemma 1. Let the matrix A ∈ Rm×m in (28) be symmetric and positive definite.
Suppose that the spectrum of A is contained in the strip Λ := [λmin, λmax] ⊂ R+ and
let Γ be the boundary of [1, 2λmin/λmax + 1]. Let k ∈ N and j = −k, . . . , k. Then the
solution x = A−1b to the system (28) can be approximated by

x̃ := −
k∑

j=−k

2wj
λmin

exp

(
− 2tj
λmin

A
)

b, (32)

with the approximation error

||x− x̃||2 ≤
Cst
πλmin

exp

(
1

π
− π
√
k

)
|Γ|||b||2, (33)

where |Γ| is the length of Γ and the quadrature weights tj , wj are given by (30) and
(31).

A sharper bound can, in fact, be obtained in (33) if A possesses some special Kro-
necker product structure, see e.g. [18]. Next, we recall the so-called the Sherman-
Morrison-Woodbury formula (see e.g. [15]), on which, together with Lemma 1, we
shall rely to prove our main result.
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Lemma 2. Let X ∈ Rn×n be nonsingular and let Y,Z ∈ Rn×m, with m ≤ n. Then
X + Y ZT is invertible if and only if Im + ZTX−1Y is invertible, with

(X + Y ZT )−1 = X−1 −X−1Y (Im + ZTX−1Y )−1ZTX−1. (34)

We can now state our main result, which shows that the solution of the system (25)
can indeed be approximated with a vector of low tensor rank. For this purpose, we
split the matrix (27) as follows:

A = G0 ⊗ K̃0︸ ︷︷ ︸
=L

+

N∑
i=1

Gi ⊗ K̃i. (35)

Observe then from (19), (21), (22) and (27) that L in (35) is symmetric and positive
definite. Furthermore, let the stochastic matrices Gi, i = 1, . . . , N, be decomposed in
low rank format:

Gi := UiV
T
i , Ui, Vi ∈ R(P+1)×ri , i = 1, . . . , N. (36)

Since also the stiffness matrices K̃i, i = 1, . . . , N, are symmetric, then each of them
admits the factorization:

K̃i := LiDiL
T
i = L̃iL

T
i , L̃i, Li ∈ RJ×J , i = 1, . . . , N, (37)

where L̃i := LiDi, i = 1, . . . , N, with Di and Li (and hence L̃i) being, respectively,
diagonal and lower triangular matrices. The following result holds.

Theorem 1. Let A denote a matrix of Kronecker product structure as in (27). Assume
that the spectrum of L in (35) is contained in the strip Λ := [λmin, λmax] ⊂ R+

and let Γ be the boundary of [1, 2λmax/λmin + 1]. Let Gi, i = 1, . . . , N, have the

low rank representation (36) with r =
∑N
j=1 rj , and let K̃i, i = 1, . . . , N, be given

by the decomposition (37). Suppose further that U = [U1 ⊗ L̃1, . . . , UN ⊗ L̃N ] and
V = [V1 ⊗ L1, . . . , VN ⊗ LN ]. For all time steps n ≥ 2, let the tensor rank of bn ≤ `,
where `� J(P + 1). Then, for k ∈ N, the solution un of (25) can be approximated by
a vector ũn of the form

ũn = −
k∑

j=−k

2wj
λmin

(
exp (G0)⊗ exp

(
− 2tj
λmin

K̃0

))
[bn − UY], (38)

where the vector Y ∈ RJ·r is the solution of

(IJ·r + V TL−1U)Y = V TL−1bn, (39)

and tj , wj are the quadrature weights and points as given by (30) and (31). The
corresponding approximation error is given by

||un − ũn||2 ≤ Cst
πλmin

exp

(
1

π
− π
√
k

)
|Γ|||bn − UY||2. (40)

Moreover, the tensor rank of ũn in (38) is at most
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(i) (2k + 1) · (r + 1), if n = 1, and

(ii) (2k + 1) · (r + `), if n ≥ 2.

Proof. Observe first from (4), (36) and (37) that we have the low rank representation

N∑
i=1

Gi ⊗ K̃i =

N∑
i=1

(UiV
T
i )⊗ (L̃iL

T
i ) =

N∑
i=1

(Ui ⊗ L̃i)(V Ti ⊗ LTi ) = UV T . (41)

Hence, from Lemma 2, (35) and (41), we note that

A−1 = (L+ UV T )−1 = L−1 − L−1U(IJ·r + V TL−1U)−1V TL−1,

so that

un = A−1bn ⇔ un = L−1

bn − U (IJ·r + V TL−1U)−1V TL−1bn︸ ︷︷ ︸
=Y

 . (42)

Now, by definition, the matrix L = G0⊗ K̃0 is symmetric and positive definite. Thus,
using the fact that

exp(−βL) = exp(−β(G0 ⊗ K̃0))

= exp(G0 ⊗ (−βK̃0))

= exp(G0)⊗ exp(−βK̃0),

where β := 2tj/λmin, together with (42) and Lemma 1, immediately yields (38) and
(40).

To show (i), it suffices to show that the tensor rank of b1 − UY is at most r + 1.
Now, note that

rank(vec−1(b1 − UY)) ≤ rank(vec−1(b1)) + rank(vec−1(−UY)). (43)

From (26), we see that b1 = τ (g0 ⊗ f0) , since ũ0 = 0 and the source term f is
time-independent. But then, since the orthogonal polynomials {ψj} satisfy

g0(j) = 〈ψj〉 =

{
1, j = 0,

0, otherwise,

it follows from (20) that vec−1(g0 ⊗ f0) ∈ RJ×(P+1) is a matrix of rank 1. Hence,
b1 is a vector of tensor rank 1. Next, following similar arguments as in the proof of
Theorem 1 in [4], we show that the tensor rank of UY is r, which, together with (43),
completes the proof of (i). Now, let Yri denote J · ri elements of Y, and observe from
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(3) that

UY = [U1 ⊗ L̃1, . . . , UN ⊗ L̃N ]Y
= [U1 ⊗ L̃1, . . . , UN ⊗ L̃N ]vec

(
vec−1(Y)

)
=

N∑
i=1

vec
(
L̃ivec−1(Yri)UTi

)
=

N∑
i=1

ri∑
j=1

vec
(
L̃i,jY

T
i,j

)
, (44)

where Y Ti := vec−1(Yri)UTi . Applying (3) again to (44), we obtain

UY =

N∑
i=1

ri∑
j=1

(Yi,j ⊗ L̃i,j)vec(1) =

N∑
i=1

ri∑
j=1

(Yi,j ⊗ L̃i,j). (45)

But then, by assumption the ri sum up to r. Hence, the tensor rank of UY is r.
Finally, to prove the assertion (ii), suppose that, for n ≥ 2, the tensor rank of bn

is at most `� J(P + 1). Since the tensor rank of UY is r, it trivially follows from the
previous argument and the definition of bn in (26) that (ii) holds with ` ≥ 1.

Remark 1. Note that, G0 is just a (P + 1)× (P + 1) identity matrix if we work with
orthonomal basis polynomials {ψi}. Hence, in this special case, (38) reduces to

ũn = −
k∑

j=−k

2wj
λmin

(
I(P+1) ⊗ exp

(
− 2tj
λmin

K̃0

))
[bn − UY].

Remark 2. The assumption in Theorem 1 that, ∀n ≥ 2, the tensor rank of the right
hand side bn is at most `, where 1 ≤ ` � J(P + 1), is justified by the fact that the
tensor rank tends to grow as the time step n increases. In practical computations, the
tensor rank of un−1 is truncated with respect to its singular value decay to ensure that
the tensor rank of bn is kept under control.

Remark 3. We note here that Theorem 1 merely provides a theoretical evidence for
the existence of low rank approximation to the solution of (25) as J, P → ∞. Thus,
we will not rely on these estimates above especially in the iterative solvers that will be
discussed in the rest of this paper.

5 Computing low rank approximations

Although the stochastic Galerkin matrix A in (27) is block sparse, symmetric and
positive definite, it is generally ill-conditioned with respect to stochastic and spa-
tial discretization parameters, e.g. the finite element mesh size, the length N of the
random vector ξ, or the total degree of the multivarite stochastic basis polynomials
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{ψi}, [21]. Hence, a natural iterative solver for the system is a preconditioned Congu-
jate Gradient (CG) method, [23], [21]. Another iterative solver is a preconditioned
Richardson method, [19]. Nevertheless, the choice of an ‘appropriate’ preconditioner
is of utmost concern in this regard. In dealing with steady problems with relatively
small σκ, many authors use the so-called mean-based preconditioner proposed origi-
nally by [13]. Ullmann in [23] points out that the mean-based preconditioner does not
take into account all the information contained in A and thus proposes and analyses
an optimal preconditioner based on an approach discussed in [24]. In what follows, we
call this the Ullmann preconditioner.

The relative efficiency and optimality of the two preconditioners above notwith-
standing, a major issue in solving (25) is evident. More precisely, for each timestep n,
one has to solve an enormous elliptic system. Due to the coupled nature of the systems,
this exercise can be both computer memory- and time-consuming. To mitigate this
problem, we propose to solve (25) with the preconditioners above, together with low
rank CG and Richardson methods proposed in [19] in the framework of parameterized
steady problems. First, however, we introduce the preconditioners.

5.1 Preconditioning

5.1.1 Mean-based preconditioner

The mean-based preconditioner1 is given by

M0 := G0 ⊗ K̃0. (46)

Now, observe that G0 is a diagonal matrix due to the orthogonality of the stochastic
basis functions {ψi}. Hence, M0 is a block diagonal matrix. Moreover, by definition,
K̃0 = M + τK0, so that K̃0 is symmetric and positive definite since M and K0 are
both symmetric and positive definite from (21) and (22). So, M0 is positive definite
and M−1

0 = G−1
0 ⊗ K̃

−1
0 , where G−1

0 (j, j) = 1/G0(j, j) > 0.

5.1.2 Ullmann preconditioner

This preconditioner is of the form

M1 :=
N∑
i=0

trace(K̃T
i K̃0)

trace(K̃T
0 K̃0)

Gi︸ ︷︷ ︸
:=G

⊗K̃0. (47)

The Ullmann preconditioner (47) can be thought of as a ‘perturbed’ version of M0

since

M1 = G0 ⊗ K̃0︸ ︷︷ ︸
:=M0

+

N∑
i=1

trace(K̃T
i K̃0)

trace(K̃T
0 K̃0)

Gi ⊗ K̃0. (48)

1This is just the matrix L in Theorem 1.
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It is inspired by the first part of the following result obtained by Van Loan and Pit-
sianis.

Lemma 3. ([24]) Suppose m = m1m2, n = n1n2, and X ∈ Rm×n. If R ∈ Rm2×n2 is
fixed, then the matrix L ∈ Rm1×n1 defined by

Li,j :=
trace(XT

i,jR)

trace(RTR)
, i = 1, . . . ,m1, j = 1, . . . , n1, (49)

minimizes ||X − L ⊗ R||F where XT
i,j = X((i − 1)m2 + 1 : im2, (j − 1)n2 + 1 : jn2).

Likewise, if L ∈ Rm1×n1 is fixed, then the matrix R ∈ Rm2×n2 defined by

Ri,j :=
trace(X̃T

i,jL)

trace(LTL)
, i = 1, . . . ,m2, j = 1, . . . , n2, (50)

minimizes ||X − L⊗R||F where X̃T
i,j = X(i : m2 : m, j : n2 : n).

Van Loan and Pitsianis further show that the matrices L defined in (49) and R
defined in (50) are symmetric and positive definite provided X and R or L, respectively,
are symmetric and positive definite.

Now if we set X = A and R = K̃0 in (27), it follows from (49) that the matrix G in
(47) minimizes ||A−G⊗ K̃0||F . More interestingly, M1 inherits the sparsity pattern,
symmetry and positive definiteness of the Galerkin matrix A. Besides, unlike M0, it
makes use of all the information in A. Unfortunately, by reason of its construction,
M1 loses the block diagonal structure enjoyed by M0 which makes it more expensive
to invert than the latter.

Next, we consider a similar preconditioner which combines the advantages of both
M0 and M1, and but is less expensive to invert than M1.

5.1.3 A variant of Ullmann preconditioner

Based on (50) in Lemma 3, we set X = A and fix L = G0 in (27). It turns out that
the matrix K̃, defined by

K̃ :=

N∑
i=0

trace(GTi G0)

trace(GT0 G0)
K̃i, (51)

minimizes ||A −G0 ⊗ K̃||F . Hence, we define the next preconditioner M2 by

M2 := G0 ⊗ K̃. (52)
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Now, observe that, just as M1, the new preconditioner M2 is also a perturbation of
M0 since

M2 = G0 ⊗
N∑
i=0

trace(GTi G0)

trace(GT0 G0)
K̃i

= G0 ⊗ K̃0 +G0 ⊗
N∑
i=1

trace(GTi G0)

trace(GT0 G0)
K̃i

= M0 +G0 ⊗
N∑
i=1

trace(GTi G0)

trace(GT0 G0)
K̃i. (53)

Moreover, from (52) and (51) we see that M2 is block diagonal. Since A and G0 are
both symmetric and positive definite, we also know from the work of Van Loan and
Pitsianis above that M2 is symmetric and positive definite. In terms of implementa-
tion, it turns out that M2 is fairly easy to implement because of its block diagonal
structure since

M−1
2 x = (G0 ⊗ K̃)−1x = (G−1

0 ⊗ K̃−1)x,

for any vector x of appropriate dimension. But then, G−1
0 is just a diagonal matrix

from (19), and

trace(GT0 G0) =

P+1∑
j=1

G0(j, j)2,

trace(GTi G0) =

P+1∑
j=1

Gi(j, j)G0(j, j), i = 1, . . . , N,

from (51). So, the major task here is to invert K̃ just as it is to invert K̃0 in M0. We
approximate the inverses K̃−1 and K̃−1

0 using an algebraic multigrid V-cycle solver in
our computations.

Remark 4. As pointed out in [23], if the probability density ρ of the random vector ξ
is even, that is, ρ(ξ) = ρ(−ξ), as in the case of Gaussian and uniform densities, then
the eigenvalues of the stochastic matrices Gi, i = 1, . . . , N, are symmetric about the
origin. Thus, trace(GTi G0) = 0, and M2 reduces to M0.

5.2 Preconditioned iterative solvers

Having presented the preconditioners, we proceed in this section to discuss the low
rank preconditioned Congugate Gradient (LRPCG) method and the low rank pre-
conditioned Richardson (LRPR) method, [19]. The basic idea behind LRPCG and
LRPR is that the iterates in the algorithms are truncated based on the decay of their
singular values. Thus, at each iteration, the iterates are put in low rank format (cf.
(25)). The truncation, no doubt, introduces further error in the solution. However,
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the truncation tolerance can be so tightened that the error becomes negligible. More
importantly, the computer memory required to store the matrices is reduced and the
computational time is thus enhanced.

First, we present LRPCG in Algorithm 1. We point out a few things regarding

Algorithm 1 Low Rank Preconditioned Congugate Gradient Method

Input: Matrix functions A,M : RJ×(P+1) → RJ×(P+1), right hand side Bn ∈
RJ×(P+1) in low rank format. Truncation operator T w.r.t relative accuracy εrel.
Output: Matrix un ∈ RJ×(P+1) fulfulling ||A(un)−Bn||F ≤ tol.
un0 = 0, R0 = Bn, Z0 =M−1(R0), P0 = Z0, Q0 = A(P0),
ϑ0 = 〈P0, Q0〉 , k = 0.

while ||Rk||F > tol do
ωk = 〈Rk, Pk〉 /ϑk
unk+1 = unk + ωkPk, unk+1 ← T (unk+1)
Rk+1 = Bn −A(unk+1), Optionally : Rk+1 ← T (Rk+1)
Zk+1 =M−1(Rk+1)
βk+1 = −〈Zk+1, Qk〉 /ϑk
Pk+1 = Zk+1 + βkPk, Pk+1 ← T (Pk+1)
Qk+1 = A(Pk+1), Optionally : Qk+1 ← T (Qk+1)
ϑk+1 = 〈Pk, Qk〉
k = k + 1

end while
un = unk

the implementation of LRPCG with respect to the solution of (25). Note that, in
Algorithm 1, all vectors in RJ·(P+1) (cf. (18)) are reshaped into RJ×(P+1) matrices by
the vec−1 operator. Now, recall that for each fixed time step n = 1, 2, . . . , Tmax, we
need to solve an elliptic system using the LRPCG algorithm. In particular, for each
solve, we need to evaluate A(X), where X := unk or Pk. For this purpose, we set

Avec(X) =

(
N∑
i=0

Gi ⊗ K̃i

)
vec(X), (54)

where X ∈ RJ×(P+1) is of low rank, say, k :

X = UV T , U ∈ RJ×k, V ∈ R(P+1)×k, k � J, P,

U = [u1, . . . , uk], V ∈ [v1, . . . , vk],
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so that, using (3), one gets

vec(X) = vec

(
k∑
i=1

ujv
T
j

)

=

k∑
j=1

vec(ujv
T
j )

=

k∑
j=1

vj ⊗ uj . (55)

Hence, we have

Avec(X) =

(
N∑
i=0

Gi ⊗ K̃i

)
vec(X)

=

(
N∑
i=0

Gi ⊗ K̃i

) k∑
j=1

vj ⊗ uj


=

N∑
i=0

k∑
j=1

(Givj)⊗ (K̃iuj) ∈ RJ·(P+1)×1, (56)

and we then have to reshape (56) to have

A(X) := vec−1(Avec(X)) ∈ RJ×(P+1). (57)

Moreover, in order to apply any of the three preconditioners to the residual matrices
Rk, that is,M−1(Rk), we have to ensure that Rk are in low rank format as in (55), so
we can obtain similar expressions as in (56) and (57), since M−1 :=M−1

i , i = 0, 1, 2,
have the same size and Kronecker product structure as A. The right hand side of
(25), that is, bn = (G0 ⊗M) un−1 + τ (g0 ⊗ f0) is also reshaped such that Bn :=
vec−1(bn) ∈ RJ×(P+1). Finally, the iterates unk are truncated in every iteration by the
trucation operator T based on the decay of their singular values.

Next, we present the LRPR in Algorithm 2. The implementation issues in Algo-
rithm 2 are handled as discussed above in the case of LRPCG. One point is noteworthy
here, though. Since A andM are symmetric and positive definite, the parameter α is
chosen as

α =
2

λmin(M−1A) + λmax(M−1A)
(58)

to ensure the best convergence rate, see e.g., [17]. For large linear systems, the
eigenvalues in (58) can be quite expensive to compute.

Having discussed the two low rank solvers, we proceed to the next section to inves-
tigate the performance of these solvers in conjuction with the preconditioners.
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Algorithm 2 Low Rank Preconditioned Richardson Method

Input: Matrix functions A,M : RJ×(P+1) → RJ×(P+1), right hand side Bn ∈
RJ×(P+1) in low rank format. Parameter α > 0, truncation operator T w.r.t rela-
tive accuracy εrel.
Output: Matrix un ∈ RL×(P+1) fulfulling ||A(un)−Bn||F ≤ tol.
un0 = 0, R0 = Bn, k = 0.

while ||Rk||F > tol do
unk+1 = unk + αM−1(Rk+1), unk+1 ← T (unk+1)
Rk+1 = Bn −A(unk+1)
k = k + 1

end while
un = unk

6 Numerical experiments

To demonstrate the performance of the approach presented in this paper, we consider
the 1D version of our model problem (5) which was studied in [7]. More precisely, we
choose f = 1 and D = (−a, a), where a = 1. The random input κ is characterized by

κ̄ = 10, Cκ(x, y) = σκ exp

(
−|x− y|

`

)
, ∀x, y ∈ D.

The eigenpairs (λj , ϕj) of the KL expansion of κ are given explicitly in [14]:

ϕ2j(x) =
cos(ω2jx)√
a+

sin(2aω2j)
2ω2j

, ϕ2j−1(x) =
sin(ω2j−1x)√
a+

sin(2aω2j−1)
2ω2j−1

, j ∈ N,

λ2j =
2`

1 + `2ω2
2j

, λ2j−1 =
2`

1 + `2ω2
2j−1

, j ∈ N.

Here, ω2j and ω2j−1, respectively solve

1

`
− ω2j tan(ω2j) = 0, j ∈ N,

ω2j−1 +
1

`
tan(ω2j−1) = 0, j ∈ N.

In the simulations, we set ` = 1 and investigate the behavior of the solvers for
different values of the discretization parameters N,Q, σκ. Moreover, we choose ξ =
{ξ1, . . . , ξN} such that

(i) ξj ∼ U [−1, 1], andN -dimensional Legendre polynomials with support in [−1, 1]N .
Note then that this choice yieldsM2 =M0. Hence, we will compare the iterative
solvers with respect to only the mean-based preconditionerM0 and the Ullmann
preconditioner M1 in this particular example.
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(ii) ξj ∼ Beta(α, β), with 1 < α < β, so that density of ξ is not symmetric but
positively skewed and we can use Jacobi polynomials with support in [−1, 1]N .
In this case, we can conveniently appeal to the three preconditioners M0, M1

and M2 in our comparative analyses.

The numerical experiments were performed on a Linux machine with 80 GB RAM
using MATLAB R© 7.14 together with a MATLAB R© version of the AMG code HSL
MI20, [5]. In both examples (i) and (ii), the resulting linear systems were solved for
time T = 1; the stopping criterion for both CG and Richardson methods was 10−5

and relative tolerance for the truncation operator in both cases was 10−8.

Timesteps=143 LRM0 LRM1 M0 M1

LRPCG(LRPR) LRPCG(LRPR) PCG PCG

Par=(5,3,1)
Total iterations 702 (1110) 695 (1076) 345 572
Total CPU time 207.6 (180.2) 205.7 (181.4) 1155 1904
Par=(5,3,0.1)
Total iterations 553 (709) 559 (708) 286 286
Total CPU time 232.3 (110.9) 237.4 (112.9) 949.7 956.9

Par=(6,4,0.1)
Total iterations 553 (710) 559 (709) 286 429
Total CPU time 1193.9 (674.8) 1222.4 (685.2) 1762.6 2593.9
Par=(6,4,1)
Total iterations 702 (1162) 694 (1110) 349 572
Total CPU time 1612.3 (1131.8) 1553.2 (1052.4) 15043 24208

Table 1: Outputs of simulations showing total CPU times and total iterations from
preconditioned low rank solvers (second and third columns) compared with
those from plain preconditioned CG (last two columns) for selected parameter
values using model (i).

Tables 1 and 2 show the simulation results for examples (i) and (ii) repectively. Here,
the 1D unsteady diffusion equation is solved using low rank preconditioned CG and
Richardson algorithms, as well as using the plain preconditioned CG method. In all
the simulations, the total number of iterations and total CPU times2 as reported in the
table are used as benchmarks to compare the performance of the solution approaches.
We used the tuple of parameters (N,Q, σκ). Thus, in (5, 3, 1) and (5, 3, 0.1) we have
P = 56 (cf. (13)), whereas (6, 4, 0.1) and (6, 4, 1) give P = 210.

In the second and third columns of Table 1 are the outputs from the low rank
approach while the last two are without the low rank truncations (using just the
MATLAB command ‘pcg’). Also in the second and third columns, the outputs in
parentheses are from the Richardson method, whereas adjacent to them are those
from the CG method.

2In our numerical experiments, we noticed that the solvers were rubost with respect to the step size
τ.
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Observe that the low rank approach generally takes less CPU time than the plain
approach, although the plain approach does a little better on average in terms of the
iteration counts. The performance of the low rank approach is particularly pronounced
as P increases to 210 (that is, with (6, 4, 1) ) in which case the CPU time is reduced
by more than 9 times using M0 and 15 times using M1.

Timesteps=143 LRM0 LRM1 LRM2

LRPCG(LRPR) LRPCG(LRPR) LRPCG(LRPR)
Par=(4,3,1)
Total iterations 709 (1006) 704 (977) 705 (963)
Total CPU time 133.1 (77.1) 129.0 (78.6) 134.2 (75.6)
Par=(4,3,0.05)
Total iterations 557 (703) 556 (702) 555 (702)
Total CPU time 105.7 (54.9) 103.5 (55.4) 102.3 (52.7)
Par=(4,3,0.5)
Total iterations 645 (848) 605 (839) 571(832)
Total CPU time 194.4 (93.3) 178.8 (90.7) 176.4 (77.6)

Timesteps=143 M0 M1 M2

PCG PCG PCG
Par=(4,3,1)
Total iterations 321 572 320
Total CPU time 412.0 723 400.7
Par=(4,3,0.05)
Total iterations 286 286 286
Total CPU time 354.2 333.8 366.4
Par=(4,3,0.5)
Total iterations 294 429 294
Total CPU time 315.8 465.4 362.5

Table 2: Outputs of simulations showing total CPU times and total iterations from
preconditioned low rank solvers (first four rows) compared with those from
plain preconditioned CG (last four rows) for selected parameter values using
model (ii).

In Table 2, we include the preconditioner M2 in the comparison. As in Table 1, we
also observe here that the low rank approach is less time-consuming than the plain
approach regardless of the preconditioner used. Particularly noteworthy is that, with
the low-rank solvers, on average, the new preconditioner M2 competes favourably in
terms of CPU time and iterations relative to bothM0 andM1; however, with the plain
preconditioned CG, it performs relatively better than M1 especially when σκ ≥ 0.5.

Finally, in both considered examples, we note that low rank preconditioned Richard-
son outperforms low rank preconditioned CG in terms of CPU time, but takes more
iterations. This is not suprising because the latter does at least two low rank trunca-
tions unlike the former which does only one.
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7 Conclusions and outlook

The use of SGFEM in discretizing linear PDEs with uncertain inputs is standard in the
literature. For it to compete favourably with other approaches like Monte Carlo and
stochastic collocation methods in solving time-dependent problems, efficient solvers
with appropriate preconditioners have to be developed to solve the resulting large
dimensional coupled linear system. In this paper, we have solved the linear systems
(25) using low rank iterative solvers, together with three different preconditioners. In
general, the combination of each of the preconditioners and the iterative solvers seems
quite promising as it reduces the CPU time and computer memory required to solve
the linear system. Although the low rank approach introduces further error in the
simulation due to the low rank truncations, the relative tolerance of the truncation
operator can be so tightened that the error will become negligible while computational
time is greatly reduced. In the future, we plan to apply the low rank approach to
unsteady (Navier)-Stokes problems.
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