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Abstract

Low-rank versions of the alternating direction implicit (ADI) iteration are
popular and well established methods for the numerical solution of large-scale
Sylvester and Lyapunov equations. Probably the largest disadvantage of these
methods is their dependence on a set of shift parameters that are crucial for
a fast convergence. Here we compare existing shifts generation strategies that
compute a number of shifts before the actual iteration. These approaches come
with several disadvantages such as, e.g., expensive numerical computations and
difficult to obtain necessary spectral or setup data. We propose two novel shift
strategies whose motivation is to solve these issues at least partly. They generate
shifts automatically in the course of the ADI iterations. Extensive numerical tests
show that one of these new approaches, based on a Galerkin projection onto the
space spanned by current ADI data, seems to be superior to other approaches in
the majority of cases, both in terms of convergence speed and required execution
time.

1 Introduction

The approximate numerical solution of large-scale algebraic matrix equations has at-
tracted enormous attention in the last decades. In this work we consider large-scale
Lyapunov and Sylvester matrix equations. It can been shown that when the rank of the
right hand side of these equations is much lower than the dimension of the equations,
the solution has a low numerical rank [31, 18]. Hence, it can be very well approximated
by a low-rank factorization. This is the backbone for several numerical algorithms of
different kinds that try to find such low-rank factors, see [30, 13] for recent surveys.
Here we focus on low-rank versions of methods based on the alternating directions
implicit (ADI) iteration [36, 39, 26, 22, 8, 9, 27]. Probably the largest disadvantage
of ADI methods is their dependence on shift parameters which are crucial for a fast
convergence. Optimal or high quality shift are usually difficult to obtain for large-scale
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problems. Either, they rely on spectral data which is hard to get for large problems, or
their generation involves inefficient and expensive computations. Thus, our emphasis
in this work are new and efficient strategies for computing shift parameters that also
lead to fast convergence but without these problems. We especially look for approaches
that are automatic in the sense that they do not require any special a-priori knowledge
or setup data. The remainder of our article is divided into two main parts: at first
Section 2 is devoted to generalized Lyapunov equations. There, after giving a concise
derivation and overview of recent numerical enhancements of low-rank ADI methods
for Lyapunov equations, we discuss some popular existing shift strategies and give
two novel approaches. These new strategies are tested and compared to the existing
ones in several numerical experiments. The second part in Section 3 is concerned with
the low-rank ADI iteration for the more difficult generalized Sylvester equations. As
before we review existing shift strategies and propose new ones which solve some of
the issues of the existing ones. Numerical experiments illustrate their performance.
Finally, we conclude and give possible future research perspectives in Section 4.

We use the following notation in this paper: R and C denote the real and complex
numbers, and R−, C− refer to the set of strictly negative real numbers and the open left
half plane. In the matrix case, Rn×m, Cn×m denote n×m real and complex matrices,
respectively. For any complex quantity X = Re (X)+ Im (X), Re (X), Im (X) are its
real and imaginary parts, and  denotes the imaginary unit. The complex conjugate
of X is denoted by X = Re (X) −  Im (X). The absolute value of ξ ∈ C is denoted
by |ξ| and, if not stated otherwise, ‖ · ‖ is the Euclidean vector- or subordinate matrix
norm (spectral norm). The matrix AT is the transpose of a real n ×m matrix, and

AH = A
T

is the complex conjugate transpose of a complex matrix. The identity
matrix of dimension n is indicated by In. The inverse of a nonsingular matrix A is
denoted by A−1, and A−H = (AH)−1. The vector (1, . . . , 1)T of length m is expressed
by 1m. For symmetric positive (negative) definite matrices (A = AT � 0 (≺ 0)) we
use the abbreviation spd (snd).

2 Lyapunov Equations

In this section we investigate Lyapunov equations

AXET + EXAT = −BBT (1)

with A, E ∈ Rn×n, E nonsingular, and B ∈ Rn×m with m � n. To ensure the
existence of a unique solution we assume that Λ(A,E) ⊂ C−. In the following sub-
section we will give a concise derivation of the low-rank alternating directions implicit
(ADI) methods for computing low-rank solution factors of (1). There we also include
recent developments regarding some efficiency improvements. After that we review
a number of existing strategies for generating shift parameters which are a crucial
factor for the convergence of the ADI iteration. These approaches come with some
issues in a large-scale setting, e.g., they are not numerically feasible, they depend on,
e.g., spectral data of A, E which is hard to get, or they involve certain a-priori setup
parameters for which there is no known rule on how those settings should be chosen
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for optimal results. We then investigate shift strategies which resolve all or at least
some of these issues. This will lead to two new approaches where shifts are generated
automatically during the ADI iteration. The treatment of special cases of (1) is also
briefly discussed. Numerical tests using a range of different examples show the often
superior performance of the new shift strategies compared to the existing ones.

2.1 Low-rank ADI Methods for Lyapunov Equations

The alternating directions implicit (ADI) iteration [36] for (1) is given by

EXjE
T =(A− αjE)(A+ αjE)−1EXj−1E

T (A+ αjE)−H(A− αjE)H

− 2 Re (αk)E(A+ αjE)−1BBT (A+ αjE)−HET
(2)

for j ≥ 1, some shift parameters {α1, α2, . . . , αj} ⊂ C−, and an initial guess X0 =
XT

0 ∈ Rn×n. These shift parameters steer the convergence and are the main focus
of this paper. The above iteration operates on dense n × n matrices and is hence
not feasible for large problems. There are several experimental [26] and theoretical
results [31, 18] showing that when m� n the numerical rank of the solution X of (1)
is small, e.g. in the sense that the singular values of X decay rapidly towards zero.
This motivates to approximate X via X ≈ ZZT , where Z ∈ Rn×t is low-rank solution
factor with rank (Zk) = t � n. Introducing Xj = ZjZ

H
j into (2), setting Z0 = 0,

applying some basic algebraic manipulations, and reordering the shifts leads to the
generalized low-rank ADI iteration (G-LR-ADI) [26, 2, 22, 8]

Z1 = V1 = (A+ α1E)−1B, Zj =

[
Zj−1,

√
−2 Re (αj)Vj

]
,

Vj = Vj−1 − (αj + αj−1)(A+ αjE)−1(EVj−1), j > 1.

(3)

for j > 1. Now, in each iteration step m new columns are added to the previous
low-rank solution factor. The main computational costs result from the solution of the
shifted linear systems with m right hand sides. We assume in the following that we
are able to efficiently solve these linear systems. In [6] it is shown that it holds for the
Lyapunov residual at step j

L(Xj) := Lj = AZjZ
H
j E

T + EZjZ
H
j A

T +BBT = WjW
T
j ,

where

Wj = Wj−1 − 2 Re (αj)EVj , W0 := B (4)

so that ‖Lj‖ = ‖WH
j Wj‖ can be cheaply evaluated in the spectral or Frobenius norm.

Moreover, the iterates can be rewritten to

Vj = (A+ αjE)−1Wj−1 (5)

which gives a reformulated version of G-LR-ADI [7], where the residual factors Wj

are an integral part of the iteration. So far we have used complex low-rank factors
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Algorithm 1: Reformulated Real G-LR-ADI Iteration

Input : Matrices A, E, B defining (1) and shift parameters
{α1, . . . , αjmax} ⊂ C−, tolerance 0 < τ � 1.

Output: Z ∈ Rn×mjmax such that ZZT ≈ X.
W0 = B, Z0 = [ ], j = 1.1

while ‖WT
j−1Wj−1‖ ≥ τ‖BTB‖ do2

Solve (A+ αjE)Vj = Wj−1 for Vj .3

if Im (αj) = 0 then4

Wj = Wj−1 − 2 Re (αj)EVj , Zj = [Zj−1,
√
−2αjVj ].5

else6

γj = 2
√
−Re (αj), δj =

Re (αj)
Im (αj)

.7

Wj+1 = Wj−1 + γ2jE (Re (Vj) + δj Im (Vj)).8

Zj+1 = [Zj−1, γj (Re (Vj) + δj Im (Vj)) , γj
√

(δ2j + 1) · Im (Vj)].9

j = j + 110

j = j + 111

since some of the shift parameters might be complex. To ensure that Xj is real these
complex shifts have to occur in pairs of complex conjugate shifts, i.e. if αj ∈ C−, then
αj+1 = αj . Under this assumption it is possible to proof [6, 5, 7] that the iterates
Vj+1 and Wj+1 associated to αj can be constructed from data available at step j via

Vj+1 = Vj + 2
Re (αj)

Im (αj)
Im (Vj) ∈ Cn×m, (6)

Wj+1 = Wj−1 − 4 Re (αj)E
(

Re (Vj) +
Re (αj)
Im (αj)

Im (Vj)
)
∈ Rn×m. (7)

Hence, only one complex shifted linear system has to be solved for each pair of complex
conjugate shifts. Moreover, Zj+1 is obtained by augmenting Zj−1 by 2m real columns
such that the low-rank factor is a real matrix after termination of G-LR-ADI. In
The complete reformulated G-LR-ADI iteration [7] including this handling of complex
shifts is given in Algorithm 1. This is the algorithm we shall use from now on for
solving Lyapunov equations. Note that it is mathematically equivalent to the original
low-rank iteration (3), although more efficient.

2.2 Existing Strategies for Precomputed Shifts

A well known result, see e.g. [39, 38], is that the optimal shift {α1, . . . , αJ} for J iter-
ation steps of Algorithm 1 are given by the solution of the rational min–max problem

min
α1,...,αJ⊂C−

(
max
1≤`≤n

∣∣∣∣∣
J∏
i=1

αi − λ`
αi + λ`

∣∣∣∣∣
)
, λ` ∈ Λ(A, E). (8)
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One conceptual issue of relating the above optimization problem to ADI shift param-
eters is that the derivation of (8) does not embrace the low-rank structure of the right
hand side BBT of the Lyapunov equation. However, the low rank property of the
right hand side is of tremendous significance for the existence of low-rank solutions.
Apart from that, (8) has lead to a number of different shift strategies which are fre-
quently and often also successfully applied in low-rank ADI methods. In the following
we briefly describe two of those strategies, which we are also going to employ in our
numerical tests.

2.2.1 Wachspress and Approximate Wachspress Shifts

In [39] an analytic solution for (8) is proposed which uses a := min Re (λi), b :=

max Re (λi) and φ := arctan | Im (λi)
Re (λi)

| for λi ∈ Λ(A, E) to estimate the shape of the

spectrum Λ(A, E) via an elliptic functions domain. The computation of optimal
shifts (to achieve that the absolute error of the approximate solution is smaller than
a tolerance ε) is then based on elliptic integrals involving the tolerance ε and the
above spectral data a, b, φ. If the spectrum Λ(A, E) is real or the imaginary parts
of the complex eigenvalues are small compared to the real parts, this approach always
provides real shift parameters. In the case of large imaginary parts there exist a
modification that produces complex shift parameters. We will refer to these shifts
as Wachspress shifts in the following. For large-scale matrices the required spectral
data, especially the angle φ for complex spectra, can be hard to obtain. An easy way
to get approximate Wachspress shifts [10] (also called suboptimal shifts [27, Section
4.3.2.]) is to approximate Λ(A, E) by small numbers of k+ Ritz and k− inverse Ritz
values w.r.t. E−1A and A−1E. These Ritz values can be computed using Arnoldi or
Lanczos processes. One then computes a, b, φ on the basis of this typically small set
of Ritz values and carries out the Wachspress computations as before. This approach
will be referred to as approximate Wachspress shifts for which an implementation can
be found in [27, Algorithm 4.2]. The quality of these shifts depends on the quality
of the approximation of a, b, and φ by the Ritz values. Hence, the prescribed values
k+, k−, but also ε, have a certain influence. Moreover, the Arnoldi methods introduce
additional computations which are dominated by the k+ and k− solves with E and A
for generating the Ritz values. The computability of a, b, φ obtained from the Ritz
values may be increased by using shifted matrices [10].

2.2.2 The Heuristic Penzl Strategy

Another frequently used heuristic approach to obtain ADI shifts was proposed by Penzl
in [26]. There, Λ(A,E) is again replaced by a much smaller set consisting of Ritz values
and reciprocals of Ritz values w.r.t. E−1A and A−1E, respectively, also using k+ and
k− Arnoldi steps. The complete procedure for generation of J shift parameters in given
in [26, Algorithm 5.1]. Although this strategy has been used successfully in numerous
cases, it comes with several drawbacks. As for the approximate Wachspress shifts,
the procedure requires that the values k+, k− and here additionally J are provided
by the user, but there is no known rule how to actually set these values. Numerical
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experiments show that even small changes in at least one of these parameters can
lead to a significantly differing performance of G-LR-ADI in the end. In some cases
the values k+, k− need to be so large, that the cost for the Arnoldi processes is non-
negligible. The Arnoldi process requires a starting vector for which there is also no
known result on how to choose a suitable one. The authors in [5] used B1m in their
numerical experiments but if there are better choices remains unclear. Of course, the
quality of the Ritz values influences the quality of the shifts in the end. If the Arnoldi
convergence is slow and the Ritz values are poor approximations of eigenvalues, the
shifts may be of a poor quality. The computed Ritz values can have positive real parts
if AET + EAT is indefinite. These should be neglected from the set of Ritz values.

2.2.3 IRKA-Shifts

The Iterative Rational Krylov Algorithm (IRKA) [19] is a prominent method for com-
puting reduced order models of large dynamical systems which are locally optimal in
the H2-norm. In [3] it is shown, by drawing connections to a Riemannian optimiza-
tion framework [35], that IRKA can also be used for computing low-rank solutions of
large Lyapunov equations. If A = AT ≺ 0 and E = ET � 0 the obtained approximate
solution satisfies an optimality condition w.r.t. a certain energy norm. For the unsym-
metric case a similar optimality property holds w.r.t. the residual. Let Q, U be rectan-
gular, orthonormal matrices which span J-dimensional rational Krylov subspaces com-
puted by IRKA and the eigenvalues A := {α1, . . . , αj} = Λ(UTAQ,UTEQ). Then the
Lyapunov solution from IRKA and G-LR-ADI with A as shifts are identical [15, 16].
We refer to these shifts as IRKA-shifts which have attracted some attention recently.
The severe drawback of these shifts is that their computation, i.e. running IRKA until
a certain stopping criterion is met, is very expensive. Assume IRKA requires h itera-
tions until convergence. Thus, 2hJ shifted linear systems with A, E have to be solved
which makes these IRKA-shift a rather theoretical tool. Moreover, IRKA requires ini-
tial data (initial interpolation points and tangential direction [19]) for which there is
no known rule on how to choose these appropriately. Also, the number J of computed
shifts is an additional degree of freedom which has to be fixed a-priori. Nevertheless,
we are going to use this shift approach in G-LR-ADI for comparison in some of our
numerical examples.

2.2.4 Other Shift Strategies

There exist a number of other shift parameter approaches. For completeness we men-
tion a few here. For E = In an approach based on Leja points is given in [32] where
the spectra of In⊗AT and AT ⊗ In are embedded in subsets E , F ⊂ C. For arbitrary
values from E , F shift parameters are recursively obtained by maximizing the rational
function in (8). A related potential theory based approach can be found in [28]. In
[34] a shift strategy is presented which uses the eigenvalues of a small sub-block of A
corresponding to the nonzero block of the right hand side BBT which is present in
certain applications. For the case where the considered Lyapunov equation is related
to a linear, time-invariant control system, dominant pole based shifts are investigated
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in [27, Section 4.3.3.]. The investigation shows that these shifts can be beneficial for
a subsequent model order reduction process. A number of related and further shift
approaches can be found in [28].

2.3 Self-Generating Shifts

The previously mentioned shifts are computed before the actual G-LR-ADI iteration.
Here we propose two approaches to compute shift parameters automatically during
the iteration.

2.3.1 Residual Norm-Minimizing Shifts

As shown in Section 2.1 the residual in the spectral or Frobenius norm is, combining
(4) and (5), given by

‖Lj‖ = ‖Wj‖2 with Wj = Wj−1 − 2 Re (αj)E
(
(A+ αjE)−1Wj−1

)
.

Assume that iteration step j − 1 is completed and we look for the next shift αj . Since
apart from that shift every quantity in the above formula is known after iteration j−1,
a intuitive idea is find a shift αj that minimizes ‖Wj‖ because this will also minimize
‖Lj‖. Let αj = νj + µj with νj < 0 and define the bivariate function

fj(ν, µ) := ‖Wj−1 − 2νE
(
(A+ (ν + µ)E)−1Wj−1

)
‖. (9)

Then the real and imaginary parts of αj can be obtained as

[νj , µj ] = argmin
ν∈R−,µ∈R

fj(ν, µ), (10)

i.e. by solving a minimization problem. Complex shifts can also be alternatively
produced by using the relations (6),(7) and minimizing the function

gj(ν, µ) := ‖Wj+1‖ =

∥∥∥∥Wj−1 − 4νE

[
Re (Vj) +

ν

µ
Im (Vj)

]∥∥∥∥ , (11)

where Vj = (A + (ν + µ)E)−1Wj−1. In that case the residual norm is minimized
with respect to two iteration steps associated with a pair of complex conjugate shifts.
Numerical test did not reveal a significant difference between using (9) or (11). The
minimization problems can in any case, e.g., be solved by standard routines from
optimization software packages such as the MATLAB® commands fminsearch,
fminunc, fminbnd, or fmincon. The latter one can incorporate the constraint that
νj = Re (αj) < 0. Such optimization algorithm usually also require initial guesses
which might have a strong influence on their performance. One possibility is to set
these initial guesses to the shift found in the previous iterations. These norm minimiz-
ing shifts are obviously a rather theoretical concept because they are computationally
not feasible. Running the optimization methods for their detection will require solving
several linear systems for (10). Hence, the computation of the shift itself will easily
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become more expensive than carrying out the current iteration of G-LR-ADI. More-
over, fj and gj might have several local minima and it is difficult to ensure that the
global one is found. In the form given above both approaches will most likely produce
a complex shift every time. Real shifts can be obtained, e.g., by neglecting the imag-
inary parts which are too small in magnitude, although it is not clear how to define
’too small’. If it is known that the spectrum of A, E is real the shifts should also be
real and (9) can be simplified by setting µ = 0.

2.3.2 Shifts Obtained from a Galerkin Projection on Spaces Spanned by LR-ADI
Iterates

The heuristic shifts in Section 2.2.2 are essentially Ritz values w.r.t. A, E. Here
we propose a novel generation idea that also uses Ritz values which are generated
from different spaces where the possibly expensive Krylov subspace construction is
not needed. Before G-LR-ADI is started, initial shifts are generated as follows: let
B̂ ∈ Rn×m span an orthonormal basis for span {B}. Then the first shifts are taken as
the eigenvalues of the projected matrices w.r.t. a Galerkin projection of A, E onto

span
{
B̂
}

, i.e. {α1, . . . , αm̂} = Λ(B̂TAB̂, B̂TEB̂) ∩ C−. The intersection with C−
ensures that possible unstable eigenvalues of B̂TAB̂, B̂TEB̂ are neglected such that
m̂ ≤ m. In some cases this is not required, e.g., when E = In and A is dissipative
(i.e., its symmetric part is negative definite). After LR-ADI has processed all of these
initial shifts there are two similar variants to get the next set of shift parameters:

1. Let Vm̂ be the G-LR-ADI iterate associated to the last processed shift parameter.
Compute an orthonormal matrix V̂m̂ whos columns are an orthonormal basis
for span {Vm̂} or span {Re (Vm̂), Im (Vm̂)} if the last shift was real or complex,
respectively. The next set of shifts is

{αm̂+1, . . . , αm̂+card(A)} = A := Λ(V̂ Tm̂AV̂m̂, V̂
T
m̂EV̂m̂) ∩ C−,

where card(A) is at most eitherm or 2m depending on Vm̂ being a real or complex
iterate. In the following we call the shifts obtained in that way V -shifts.

2. Let Wm̂ be the LR-ADI residual factor associated to the last shift parame-
ter. Compute an orthonormal matrix Ŵm̂ that spans an orthonormal basis for
span {Wm̂}. The next set of shifts is

{αm̂+1, . . . , αm̂+card(A)} = A := Λ(ŴT
m̂AŴm̂, Ŵ

T
m̂EŴm̂) ∩ C−.

Note that Wm̂ is, according to Algorithm 1 and (7), always a real n×m matrix.
The so constructed shifts will be referred to as W -shifts in the remainder.

LR-ADI is then continued with these new shifts and the above procedure is repeated
each time the set of shifts has been fully processed. If it happens that all eigenvalues
of the projected matrices are unstable, LR-ADI is continued with the previous set of
shifts. The main computational costs for this shift generation are the orthogonalization
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of a n×m or n× 2m matrix whenever new shifts are required. This is not expensive
since m � n. It can occur that the columns of Vm̂ or Wm̂ have linear dependencies
which should be taken care of by a clever orthogonalization routine. For instance, Ŵm̂

can have less than m columns. The solution of the at most 2m-dimensional eigenvalue
problem introduces only negligible extra costs. The big advantage of both proposed
variants is, compared to the heuristic approach in 2.2.2, no setup parameters such as J ,
k+, k− are required which makes this approach completely automatic and hence user-
friendly. Additionally, for several numerical tests these shifts even seem to outperform
the heuristic shifts. One disadvantage occurs for problems with a rank-one right hand
side, i.e. when m = 1. Then the single shift computed in both variants is actually a
generalized Rayleigh quotient, e.g. the W -shift is given by

α =
ŴH
m̂AWm̂

ŴH
m̂EWm̂

,

and hence, it will always be a real number which can be disadvantageous for problems
with a complex spectrum. Another drawback of the V - and W -shifts is the lack of a
deeper theoretical foundation. There is, however, a connection of the W -shifts with
the norm minimizing shifts in Section 2.3.1. Consider the the function fj(ν, µ) w.r.t.
the norm induced by the positive definite matrix (A+ (ν− µ)E)H(A+ (ν− µ)E). In
that case the modified fj(νi, µi) is equal to zero for all obtained W -shifts αi = νi+µi,
i = 1, . . . ,m. It is also not clear which of the two variants is better, although in most
of our numerical tests the V -shifts seem to be superior.

To complete this section we mention a third approach which uses span {ZJ} as
projection basis. I.e., after J shifts have been processed, Jm Ritz values are computed
w.r.t. the reduced matrix pair generated by an Galerkin projection onto span {Z}.
These may be taken as new shifts or, optionally, h ≤ Jm are selected, e.g., the h Ritz
values largest or smallest in magnitude. Obviously, this third variant is significantly
more expensive that the V -, and W -shifts since computing an orthogonal space for
span {ZJ} requires the orthogonalization of span {Vj} for each j = 1, . . . , J against
the previous Zj−1. Also, the eigenvalue problem is now of dimension Jm and the

costs for its solution might not be negligible anymore. Which h values of Â to select
for optimal results is also not clear. We do not pursue this approach further but note
that in [27, 11] span {ZJ} is used to perform a Galerkin projection on the Lyapunov
equation (1) to gain a convergence boost in G-LR-ADI.

2.4 Special Cases

In this section we discuss the application of the self-generating shift strategies in some
selected structure exploiting variants of G-LR-ADI.
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2.4.1 Second-Order ADI

Lyapunov equations of the form (1) are often related to linear, time-invariant dynam-
ical systems of the form

Eẋ(t) = Ax(t) +Bu(t), A,E ∈ Rn×n, B ∈ Rn×m (12)

with x(t) ∈ Rn and u(t) ∈ Rm. Now consider the second-order, linear, time-invariant
dynamical system

Mq̈(t) +Dq̇(t) +Kq(t) = B1u(t), M,D,K ∈ Rn1×n1 , B ∈ Rn1×m (13)

with q(t) ∈ Rn1 and u(t) ∈ Rm which can equivalently be written as a system of first
differential order (12), e.g. with

E =

[
D M
M 0

]
, A =

[
−K 0

0 M

]
∈ R2n1×2n1 , B =

[
B1

0

]
∈ R2n1×m (14)

with x(t) = [q(t)T , q̇(t)T ]T , see [33]. There exist structure exploiting variants of G-
LR-ADI called second-order LR-ADI (SO-LR-ADI) [27, 6, 25, 12] which do not ex-
plicitly form the augmented matrices E,A,B in (14) and work with the original data
M, D, K, B1 instead. Of course, such a structure exploitation should also be used in
the shift-strategies in the previous sections. That means the Galerkin projections of
Section 2.3.2 are implicitly carried out with the augmented matrices (14).

2.4.2 SLRCF-ADI for Index-1 DAEs

Another class of dynamical systems 12 are differential algebraic equations (DAE) of
index one with

E =

[
E11 0
0 0

]
, A =

[
A11 A12

A21 A22

]
∈ Rn×n, B =

[
B1

B2

]
∈ Rn×m, (15)

where E11 ∈ Rnf×nf , A22Rn−nf×n−nf are nonsingular and all the other blocks are
of appropriate sizes. There, nf denotes the number of finite eigenvalues in Λ(A,E).
Such DAEs can be equivalently rewritten in state space form

E11ẋ1(t) = Ãx1(t) + B̃u(t), Ã ∈ Rnf×nf , B̃ ∈ Rnf×m (16)

with

Ã = A11 −A12A
−1
22 A21, B̃ = B1 −A12A

−1
22 B2.

In [17] a specially tailored G-LR-ADI (SLRCF-ADI) is proposed which solves the
Lyapunov equation ÃXET11 + E11XÃ

T = −B̃B̃T without forming the matrices Ã, B̃
explicitly. The key ingredient is the observation that the solution of the dense linear
system (Ã + αjE11)Vj = Wj−1 of size nf can be equivalently and more efficiently
obtained from the sparse linear system[

A11 + αjE11 A12

A21 A22

] [
Vj
Γ

]
=

[
Wj−1

0

]
, (17)
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of size n where the right hand side in the first iteration is [BT1 , B
T
2 ]T and Γ ∈ Cn−nf×m

is an auxiliary variable. The same trick can be employed within the minimization
algorithms for the residual norm minimizing shifts in Section 2.3.1. It also holds
Wj = Wj−1 − 2 Re (αj)E11Vj . A straightforward application of the projection based
shifts of Section 2.3.2 requires the computation of the matrices

V̂ T ÃV̂ = V̂ TA11V̂ − V̂ TA12

(
A−122

(
A21V̂

))
, V̂ TE11V̂

for the V -shifts and similarly with Ŵ in for the W -shifts. The initial shifts are obtained
using an orthonormal base for B̃. This requires the solution of m linear systems of
size n−nf with A22 each time new shifts are required, possibly leading to a significant
increase in the computational costs.

As a modification of the V -shifts we propose to carry out the Galerkin projec-
tion with the original matrices (15) and the augmented iterates V aug

j := [V Tj ,Γ
T ]T

from (17). Let V̌j be an orthonormal base for V aug
j and choose the shifts from

Λ(V̌ Tj AV̌j , V̌
T
j EV̌j) ∩ C−. Additionally, possible infinite eigenvalues should also be

neglected. We refer to this modification as V aug-shifts. Similarly, we can work with
the augmented residual factors for the W -shifts

W aug
j = W aug

j−1 − 2 Re (αj)EV
aug
j =

[
Wj

Υ

]
, W aug

0 = B

with an auxiliary matrix Υ ∈ Cn−nf×m. A simple calculation using the structure of
E shows that Υ = B2. This yields the W aug-shifts. For both the V aug- and W aug-
shifts the initial shifts can be obtained from using an orthonormal base of B. Note
that there are also LR-ADI approaches for handling DAE systems of higher indices
[24], e.g. the recent work [1] regarding the index-2 case arising in optimal control of
the (Navier)-Stokes equation. The proposed shift approaches can be adapted to these
cases in a straightforward manner.

2.5 Numerical Experiments

We are now going to evaluate and compare the performance of the presented shift
generation strategies. To this end, G-LR-ADI (Algorithm 1) is carried out until
‖L‖/‖B‖2 ≤ εL with 0 < εL � 1 is achieved or a maximum allowed number jmax

of iterations is reached. All experiments have been carried out in MATLAB 7.11.0 on
an Intel®Xeon®W3503 execution with 2.40 GHz and 6 GB RAM. We use a collection
of test examples whose dimension n, m, the required residual tolerance εL, the max-
imum allowed number of G-LR-ADI iterations jmax, as well as selected information
regarding symmetry properties, sources and references of the examples are given in
Table 1. There, OC stands for Oberwolfach Model Reduction Benchmark Collection1

and the ID gives a unique identifier for obtaining the example. IFISS refers to the
MATLAB finite-element package [29]. The examples chain and bips2 belong to the

1Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark.
2Available at http://sites.google.com/site/rommes/software.
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Table 1: Dimensions n and m, desired residual norm εL, maximum allowed ADI it-
erations jmax, structural properties, and sources for the used Lyapunov test
examples. Here, OC and IFISS refer to the Oberwolfach Model Reduction
Benchmark Collection and the IFISS [29] FEM package.

Example n m εL jmax properties source

FDM1 3600 5 10−10 250 E = I, B random [20, B of Example 2]

rail5k 5177 7 10−10 150 A snd, E spd OC, ID=38881

rail79k 79188 7 10−10 100 A snd, E spd OC, ID=38881

ifiss1 16641 4 10−10 150 E spd, B = A · rand(n,m) IFISS [29] T-CD3

chain 9002 5 10−8 400 structure (14), B random [34]

bips 21128 4 10−8 400 structure (15), nf = 3078 [17], bips07 3078

special cases mentioned in Section 2.4 and are handled by SO-LR-ADI and SLRCF-
ADI, respectively. For bips we used the shifted matrix A − 0.05E as in [17, Section
V.A]. The complete identifier for this example is given in the last column.

The results for these examples and different shift strategies are summarized in Table
2. There, the heuristic strategy and its settings is denoted by heur(J, k+, k−). Like-
wise, wachs(ε, k+, k−) stands for approximate Wachspress shifts obtained from k+, k−
Ritz values and a tolerance ε. The number of shifts J is also given. For these two
approaches the initial vector for the Arnoldi processes is B1m. Moreover, IRKA(J)
refers to J shifts obtained after IRKA, initialized with random data, converged using a
tolerance of 10−3 and the stopping criterion in [19]. All of these precomputed shifts are
used in a cyclic manner if it occurs that the required number of G-LR-ADI iterations
is higher than the number of the available shifts. The computation of the orthonormal
bases of B, Vj , or Wj for the V - and W -shifts was carried out using the MATLAB rou-
tine orth. The residual minimizing shifts were obtained using the MATLAB routine
fminsearch since the constrained optimization routine fmincon did not converge for
our examples. The initial guess for fminsearch was always the previously computed
shift. Due to the expensive nature of the IRKA- and residual norm minimizing shifts,
both strategies are only applied to the moderately sized examples FDM1 and rail5k.
Because of the symmetry properties and Λ(A, E) ⊂ R− in rail5k, both approaches
are further simplified such that only real shifts are considered. In addition to the data
collected in Table 2, Figure 2 shows the scaled residual norm against the ADI iteration
number in the top plots and, respectively, against the cumulative execution time, i.e.
the total consumed time so far, in the bottom plots for the examples FDM1 and rail5k.

For the heuristic shifts it is apparent that, compared to the plain ADI computation
time tADI, a signification portion tshift of the total execution time ttotal is spend for
the involved Arnoldi processes. They lead to the desired accuracy although for each
example there was at least one other shift strategy which required less ADI iterations.
The number of used Arnoldi steps k+, k− influences the quality of the heuristic shifts
as it is seen in the bips example where we used two settings: the first one uses exactly
the values J , k+, k− as in the original SLRCF-ADI paper [17, Section V, Table V]
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Table 2: Results for the examples using different shift strategies: tshift and tADI denote
the times spent for computing the shifts and executing G-LR-ADI, respec-
tively, and the total consumed time is ttotal. The smallest value ttotal for each
example is written in bold letters. All timings are given in seconds. The
required iterations jiter and the final obtained residual norm ‖Ljiter‖ are also
given.

Ex. shift strategy tshift tADI ttotal j
iter ‖Ljiter‖

F
D

M
1

heur(10, 20, 20) 0.6573 0.8035 1.4609 25 2.92·10−11

wachs(10−10, 10, 10), J = 11 0.2988 0.9012 1.1999 29 9.24·10−11

IRKA(30) 16.7797 0.8490 17.6287 28 1.47·10−11

res.min 48.9040 1.0376 49.9401 24 5.73·10−11

V -shifts 0.0298 0.9947 1.0230 32 1.22·10−12

W -shifts 0.0290 1.0623 1.0898 31 4.31·10−13

ra
il

5
k

heur(10, 20, 10) 0.5180 4.1042 4.6222 59 3.03·10−11

wachs(10−10, 20, 10), J = 40 0.5438 3.2886 3.8324 40 5.82·10−11

IRKA(60) 22.3496 10.6587 33.0083 122 7.25·10−11

res.min 82.2001 12.3670 94.5672 150 7.01·10−09

V -shifts 0.0608 4.7722 4.8330 64 2.51·10−12

W -shifts 0.1375 14.8334 14.9709 150 6.01·10−02

ra
il

7
9
k

heur(20, 40, 40) 53.2303 90.9504 144.1807 54 7.00·10−11

wachs(10−10, 20, 10), J = 47 14.0496 123.3139 137.3635 47 6.36·10−11

V -shifts 0.8473 154.7007 155.5480 79 8.78·10−11

W -shifts 1.2230 284.7002 285.9232 100 3.19·10−02

ifi
ss

1

heur(20, 30, 20) 7.1925 13.0319 20.2244 49 3.77·10−11

wachs(10−10, 20, 10), J = 33 2.3858 25.5146 27.9004 97 8.76·10−11

V -shifts 0.0835 14.7546 14.8380 58 8.88·10−11

W -shifts 0.2238 41.2333 41.4570 150 2.22·10−10

ch
a
in

heur(40, 50, 50) 7.7628 13.6576 21.4205 352 9.89·10−09

wachs(10−10, 20, 10), J = 130 3.7788 20.8999 24.6787 309 9.69·10−09

V -shifts 0.2909 5.2387 5.5295 147 9.85·10−09

W -shifts 2.5502 33.2516 35.8018 400 3.67

bi
p
s

heur(40, 50, 70) 12.4875 41.0248 53.5124 378 6.55·10−09

heur(60, 80, 80) 13.3576 24.0421 37.3997 226 5.95·10−09

wachs(10−8, 20, 20), J = 35 2.5247 32.2369 34.7616 268 7.56·10−09

V -shifts 1.8068 8.8798 10.6866 83 8.88·10−09

W -shifts 1.8156 11.4652 13.2809 104 8.23·10−09

V aug-shifts 0.2943 8.5814 8.8757 84 4.45·10−09

W aug-shifts 0.8091 48.4832 49.2923 400 2.84·10−08

13



10 20 30
10−12

10−6

100

εL

iteration j

sc
a
le

d
re

si
d

u
al

n
or

m
FDM1

heuristic Wachspress IRKA

V -shifts W -shifts residual min.

50 100 150
iteration j

rail5k

10−1 100 101 102
10−12

10−6

100

εL

cumulative execution time

sc
a
le

d
re

si
d

u
al

n
or

m

10−1 100 101 102

cumulative execution time

Figure 1: Scaled residual norm against iteration index j (top plots) and cumulative
execution time at iteration j (bottom plots) of G-LR-ADI using different
shift strategies for FDM1 (left plots) and rail5k (right plots) example.

while the second one was chosen through extensive trial and error optimization. The
difference in both execution time (53.5 against 37.4 seconds), as well as, ADI iteration
numbers (378 against 226) is distinct. The approximate Wachspress shifts also rely
on Arnoldi processes but there usually smaller numbers k+, k− were sufficient to get
accurate estimates of the required spectral data. Hence, tshift is smaller than for
heuristic shifts. As expected these shifts lead to the best performance both in terms
of execution time and required iterations for the symmetric examples rail5k, rail79k.
Their typical residual curves an be seen in Figure 1 (top right plot). They loose this
superiority for the other examples, since there complex spectra with large imaginary
parts are encountered. Especially for ifiss1 and chain they can not compete with the
heuristic shifts. In additional tests the Wachspress shifts seemed to be less sensitive
w.r.t. the values k+, k− than the heuristic shifts. For the IRKA-shifts the computation
times tshift exceed tADI by far and hence, the total execution time is also very large
(also see the bottom plots of Figure 1). They lead to a fast convergence for FDM1 but
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fail for rail5k. We observed that the settings for J and the initial data for IRKA have
a large influence on its convergence. In other similar tests, different starting data lead
to completely other IRKA shifts and thus to a different ADI convergence. Anyway,
their expensive computation makes this approach impractical as a source for good ADI
shifts.

Now we move on to the novel self-generating shifts proposed in Section 2.3.1-2.3.2.
It is no surprise that the generation time tshift for the residual minimizing shifts is
extremely high, i.e. even higher than those of the IRKA shifts which makes this
approach the most expensive and time consuming one. They lead, however, to the
fastest convergence for FMD1 (24 iterations) which is also nicely monotonic as it can
be seen in the top left plot of Figure 1. For rail5k these shifts do not lead to a
convergence before jmax iterations. There are two possible reasons for this: on the one
hand the computed minimum of (9) was not the global one and on the other hand
the computed shift was an unstable one. Both situations were also observed in other
experiments. The computation of unstable shifts is a more severe problem but could
be prevented if a constrained optimization method was employed. Shifts associated
with non-global minima still lead to a reduction of the residual norm but delayed the
convergence. This can be observed in the top right plot for rail5k in Figure 1. Because
of the large construction time of these shifts this approach is at the current stage only
of theoretical interest. Finding an analytic solution of the minimization problem, or a
cheap approximation thereof, is an interesting future research topic.

The V -, and W - shifts required in all examples a very small construction time tshift
which is in most cases a negligible fraction of ttotal. However, except for FDM1 and
bips, only the V -shift lead to a fast convergence. In all other example the W -shift
did not achieve the required accuracy before jmax ADI iterations (see, e.g., the top
right plot in Figure 1). We plan to investigate why this is the case in the future.
One promising tool for this appear to be the recently established novel relations of
low-rank ADI and rational Krylov subspace methods [3, 41, 40]. The V -shifts lead
to the smallest timings ttotal in all examples with nonsymmetric coefficient matrices.
This can also be observed in the residual norm versus consumed execution time plot in
Figure 1. For rail5k/79k the heuristic and Wachspress shifts are superior. Note that
in the nonsymmetric examples the required ADI iterations jiter for the V -shifts are
not always smaller than those of the heuristic shifts (see, e.g., example ifiss1 ), but due
to the exceptionally cheap generation of the V -shifts their overall execution time ttotal
is nonetheless smaller. They significantly outperform all other shift approaches in the
chain and bips examples where they lead to a drastically reduced number of required
iterations. In fact, we never experienced a faster ADI convergence for the bips system.
There, the V aug-shifts are slightly better than the V -shifts but the difference is negligi-
ble. Note that the W -shifts converged while the W aug-shifts did not. To conclude, the
V -shifts appear to be a very promising approach, especially for Lyapunov equations
with nonsymmetric coefficient matrices where the spectrum contains complex eigen-
values. We plan to investigate their behavior deeper in subsequent work. Another big
advantage of theirs, although not reflected in the timings and iteration counts, is that
they can be applied completely automatic. I.e. they can be implemented without the
user having to take care of selecting ADI shifts at all.
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3 Sylvester Equations

Now we consider generalized Sylvester equations of the form

AXG− EXF = BCT (18)

with A,E ∈ Rn×n, F,G ∈ Rr×r, B ∈ Rn×m, C ∈ Rr×m, and the sought solution
X ∈ Rn×r. We assume that E and G are nonsingular and, in order to allow a unique
solution X to exist that Λ(A, E) ∩ Λ(F, G) = ∅.

3.1 The Factored ADI for Sylvester Equations

The ADI iteration for (18) (see [36] for E = In, G = Ir) is given by

EXjG =(A− αkE)(A− βkE)−1EXj−1G(F − αkG)−1(F − βkG)

+ (βk − αk)E(A− βkE)−1BCT (F − αkG)−1G.
(19)

There, {α1, . . . , αj}, {β1, . . . , βj} are two sets of shift parameters with αj /∈ Λ(F, G),
βj /∈ Λ(A, E) and αj 6= βj , ∀j. Setting X0 = 0 and using similar manipulations as in
the Lyapunov case leads to the low-rank Sylvester ADI (or factored ADI (fADI)) [23,
Algorithm 2.1],[9, Algorithm 1] for computing low-rank solution factors Z ∈ Cn×f , Y ∈
Cr×f , D ∈ Cf×f , f � min(n, r) of (18) such that ZDY H ≈ X. Using generalizations
of the techniques for Lyapunov equations in [6] it can equivalently be rewritten [4,
Algorithm 3] to the form illustrated in Algorithm 2 where, in addition to the iterates
Vj , Sj w.r.t. the matrix pairs (A, E), (F, G), the low-rank residual factors Wj , Tj
are included. This newer formulation in Algorithm 2 allows a cheap computation of
the residual norm

‖S(Xj)‖ := ‖Sj‖ = ‖AZjDjY
H
j G− EZjDjY

H
j F −BCT ‖ = ‖WjT

H
j ‖,

see [4, Theorem 5]. As in Algorithm 1 for Lyapunov equations it is possible to take care
of complex shift parameters by a suitable reformulation of Algorithm 2 [4, Algorithm
4] but for ease of presentation we stick to the given formulation. For applying this real
version of G-fADI both sets of shifts have to be in a certain pairwise order which can
be achieved by a simple permutation.

3.2 Existing Shift Strategies

For normal matrix pairs (i.e. the left and right eigenvectors coincide) (A, E), (F, G)
in (18) it can be shown [37, 28, 23, 9] that optimal shifts for J iterations of Algorithm
2 have to satisfy the optimization problem

min
αj ,βj∈C

(
max
1≤`≤n
1≤k≤r

J∏
j=1

∣∣∣∣ (λ` − αj)(µk − βj)(λ` − βj)(µk − αj)

∣∣∣∣
)
, λ` ∈ Λ(A, E), µk ∈ Λ(F, G). (20)
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Algorithm 2: Generalized factored ADI iteration (G-fADI) [4] for (18)

Input : A, B, E, C, F, G as in (18) and shift parameters {α1, . . . , αjmax
},

{β1, . . . , βjmax}, tolerance 0 < τ � 1.
Output: Zjmax ∈ Cn×rjmax , Yjmax ∈ Cm×rjmax , Djmax ∈ Crjmax×rjmax such that

Zjmax
Djmax

(Yjmax
)H ≈ X.

W0 = B, T0 = C, Z0 = D0 = Y0 = [ ], j = 1.1

while ‖Wj−1T
H
j−1‖ ≥ τ‖BCT ‖ do2

γj = βj − αj .3

Vj = (A− βjE)−1Wj−1, Wj = Wj−1 + γjEVj .4

Sj = (F − αjG)−HTj−1, Tj = Tj−1 − γjGTSj .5

Update the low-rank solution factors6

Zj = [Zj−1, Vj ], Yj = [Yj−1, Sj ], Dj = diag(Dj−1, γjIr).

j = j + 1.7

The above rational optimization problem is also referred to as two-variable ADI pa-
rameter problem [37, 39] and is harder to solve than the optimization problem (8) for
Lyapunov equations. In the following we review generalizations of the Wachspress,
heuristic and IRKA-shifts for the Sylvester ADI. After that we propose two strategies
for self-generating shifts.

3.2.1 Optimal Sylvester ADI Shifts

Analytic solutions for solving (20) are proposed in [37],[39, Chapter 2 & 4] and
are based on spectral alignment and, as in the Lyapunov case, elliptic integrals.
They require knowledge of the smallest and largest real parts a := min Re (λi), b :=

max Re (λi), c := min Re (µi), d := max Re (µi) and the angles φ := arctan | Im (λi)
Re (λi)

|,
ψ := arctan | Im (µi)

Re (µi)
| for λi ∈ Λ(A, E) and µi ∈ Λ(F, G). An implementation of this

shift generation strategy is given in the parsyl3 routine provided in [39]. If the spec-
tra Λ(A, E), Λ(F, G) are contained in real, disjoint intervals [a, b], [c, d]. Another
similar approach for generating an equal number J of α- and β-shifts is given in [28,
Algorithm 2.1].

As in the Lyapunov case, one might use Arnoldi, or Lanczos processes to obtain
approximations to a, b, c, d, φ, ψ in the large-scale case for both approaches. We
propose to approximate Λ(A, E) by a set consisting of kA+ Ritz and kA− inverse Ritz
values w.r.t. E−1A and A−1E. Likewise, Λ(F, G) is approximated by kF+ Ritz and
kF− inverse Ritz values w.r.t. G−1F and F−1G. Approximations to the extremal
eigenvalues and the spectral angles of Λ(A, E) and Λ(F, G) can then be read of
easily. However, as for the approximate Wachspress shifts, the so obtained shifts can

3Available at http://extras.springer.com/2013/978-1-4614-5121-1.
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be sensitive w.r.t. the quality of the approximations of the extremal eigenvalues. This
was numerically investigated in [28, Section 2.2.2] for the optimal real shift parameters.

3.2.2 Heuristic Shifts

In [23, 9] a heuristic approach is proposed which generalizes the Penzl shifts (Section
2.2.2). The spectra Λ(A, E), Λ(F, G) are approximated in the same way as for the
optimal shifts above. With these sets of Ritz values one solves (20) in an approximate
sense to get J ≤ kA+ +kA− α- and L ≤ kF+ +kF− β-shifts. A detailed implementation can
be found in [23, Algorithm 3.1], [9, Algorithm 2]. Note that in [4] just the kA+ +kA− and
kF+ + kF− Ritz values are used as shifts which worked sufficiently well. This heuristic
approach suffers from the same disadvantages as the heuristic approach for Lyapunov
equation in Section 2.2.2: there is no known rule on how to select the predefined
numbers J , L, kA+, kA−, kF+, and kF−, the quality of the Ritz values (and hence of
the shifts) depends on the performance of the Arnoldi processes which also introduce
additional costs due to the required linear solves, and, moreover, there is no known
strategy for choosing their initial vectors suitably.

3.2.3 IRKA-Shifts

For symmetric Sylvester equations with E, −G, −A, −F spd a generalization of IRKA
(symmetric Sylvester IRKA (Sy)2IRKA) is given in [3, Algorithm 3]. The obtained
approximate solutions again satisfy an optimality condition w.r.t. their residual in
a certain norm. The shifts obtained from (Sy)2IRKA can also be used within the
G-fADI leading to equivalent approximate solutions as discussed in [16]. (Sy)2IRKA
can be easily modified to handle general nonsymmetric Sylvester equations. Let Q,
U and H, N be rectangular, orthonormal matrices which span J-dimensional rational
Krylov subspaces computed by a Sylvester IRKA method (SyIRKA) w.r.t. A, E, B
and F , G, C, respectively. For the symmetric Sylvester equation mentioned before
it holds Q = U and H = N . Then the Sylvester IRKA-shifts are given by A :=
{α1, . . . , αJ} = Λ(QHAU,QHEU) and B := {β1, . . . , βJ} = Λ(HHFN,HHGN). This
strategy has the same drawbacks as the similar one in the Lyapunov case, especially the
high computing costs of SyIRKA makes them a less feasible approach. Furthermore,
there is no guidance on how to choose the number J and the initial data for SyIRKA.
We nevertheless indent to use them for comparison with the other approaches.

3.3 Self-Generating shifts

3.3.1 Residual Norm-Minimizing Shifts

Motivated by the Lyapunov residual norm minimizing shifts in Section 2.3.1 one can
derive a similar framework for Sylvester equations. For simplicity we consider here only
the case of real α and β shifts. The (spectral or Frobenius) norm Sylvester residual
Sj can be efficiently computed via

‖Sj‖ = ‖WjT
T
j ‖ =

√
‖TjWT

j WjTTj ‖ = ‖Sj‖ with Sj = WjR
T
j
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and a QR decomposition Tj = T̂jRj , see [4]. According to Algorithm 2, we have

Wj = Wj−1 + (βj − αj)EVj = Wj−1 + (βj − αj)E
(
(A− αjE)−1Wj−1

)
,

Tj = Tj−1 − (βj − αj)GTSj = Tj−1 − (βj − αj)GT
(
(F − βjG)−TTj−1

)
.

Since, Wj−1, Tj−1 are given at the beginning of iteration j, the only unknowns above
are the shifts αj , βj and we may see ‖Sj‖ as bivariate function. The next shifts can
be obtained by solving the optimization problem

[αj , βj ] = argmin
α∈R,β∈R

hj(α, β), hj(α, β) := ‖Sj‖ = ‖Wj(α, β)TTj (α, β)‖. (21)

The incorporation of complex shift is straight forward, although one has to take care
of the case when one computed shift is a complex and the other a real one [4]. Of
course, this approach is again very expensive since each function evaluation in an
optimization routine alone requires to solve two shifted linear systems with multiple
right hand sides. Also, it is difficult to guarantee that a global minimum is found.
Local minima might lead to a slower convergence. Because of these severe drawbacks,
these norm-minimizing shifts are only of theoretical interest.

3.3.2 Shifts Obtained via Projections with ADI Iterates

It is easy to generalize the V -, and W -shifts for Lyapunov equations in Section 2.3.2 to
Sylvester equations. Assume we are at iteration j of Algorithm 2, having the iterates
Vj , Sj and Wj , Tj available. Then the next α and β shifts can be obtained via the
following two approaches:

1. A = Λ(V̂ TAV̂ , V̂ TEV̂ ) and B = Λ(ŜTAŜ, ŜTEŜ), where V̂ , Ŝ span orthonor-
mal bases of Vj , Sj . As in the Lyapunov case one can work with orthonormal
bases of [Re (Vj), Im (Vj)], [Re (Sj), Im (Sj)] when Vj , Sj are complex iterates.
We refer to this strategy as V -S-shifts.

2. A = Λ(ŴTAŴ , ŴTEŴ ) and B = Λ(T̂TAT̂ , T̂TET̂ ), where Ŵ , T̂ span or-
thonormal bases of Wj , Tj . These quantities are always real matrices in the real
formulation [4, Algorithm 4] of Algorithm 2. This strategy is called W -T -shifts
from now on.

For both variants initial α-, and β-shifts can be obtained similarly by using orthonormal
bases of B and C, respectively. Due to the orthogonalization process it can happen
that nearly linearly dependent columns in Vj , Sj or Wj , Tj are discarded and hence
card(A) ≤ m and card(B) ≤ m. Note that one should ensure that the new shifts
satisfy α 6= β. Also note that, because the numbers of initial α and β-shifts does not
have to be equal, new α and β-shifts do not need to be calculated at the same time,
but we restrict to this situation here for simplification.
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Table 3: Dimensions n, f and m, maximum allowed ADI iterations jmax, structural
properties, and sources for the used Sylvester test examples. The desired
tolerance εS for the normalized residual norm is 10−10.

Example n f m jmax properties source

FDM2 6400 3600 5 250 E = In, G = If , B,C random [20, Example 2]

rail5k/1k 5177 1377 7 150 A, F snd, E, G spd OC, ID=38881

ifiss2 16641 4225 4 100 E, −G spd, B,C random IFISS [29] T-CD3

3.4 Other Shifts

An overview over several other approaches for generating shifts for the Sylvester ADI,
for instance, generalizations of the Leja point based shifts, can be found in [28]. For
a generalized version of the iteration (19) specialized shift strategies can be found in
[21]. Shifts for Sylvester equations occurring in image restoration are proposed in [14].

3.5 Related Matrix Equations

Several other linear matrix equations, where the unknown X appears twice, are special
classes of the just discussed generalized Sylvester equation (18). Prominent examples
are cross-Gramian Sylvester equations (G = E, F = −A), discrete-time Sylvester
equations (interchange F and G) and generalized discrete-time Lyapunov equations
(G = AT , F = ET , B = C) which are also known as Stein equations. Of course, the
generalized Lyapunov equations (1) discussed in Section 2 also belong to this class.
Exploiting the structure of these special cases, specially tailored low-rank ADI methods
can be formulated [4, Section 4], and consequently the shift strategies discussed so far
can be adapted accordingly.

3.6 Numerical Examples

In this section we test some of the proposed shifts for the Sylvester ADI with the
same hard- and software setting as for the Lyapunov experiments. The examples
used here are given in Table 3, where we use similar notations and abbreviations as
for the Lyapunov examples (Table 1). In all examples G-fADI was terminated when
‖S‖ < εS‖BCT ‖ with εS = 10−10 (or after jmax iterations).

The results are summarized in Table 4. There, optimal(kA+, kA−, kF+, kF−) and heur(J ,
L, kA+, kA−, kF+, kF−) refers to the optimal and heuristic shift approach as considered in
Section 3.2.1–3.2.2, respectively. For the optimal shifts the obtained number J is also
given. The parsyl routine is used to get optimal shifts for examples FDM2 and ifiss2
where we modified parsyl such that (inverse) Arnoldi processed are used to obtain
the approximate spectral data. This was more efficient than using eigs as it is done in
the original parsyl implementation. For example rail5k/1k the approach given in [28,
Algorithm 2.1] is employed since parsyl did not lead to good shifts for this examples.
SyIRKA(J) and (Sy)2IRKA(J) stands for J shifts generated with the (symmetric)
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Table 4: Results for the Sylvester examples using different shift strategies: tshift and
tADI denote the times spend for computing the shifts and executing G-fADI,
respectively, and the total consumed time is ttotal. All timings are given in
seconds. The smallest values of ttotal are emphasized by bold numbers. The
required iterations jiter and the final obtained residual norm ‖Sjiter‖ are also
given.

Ex. shift strategy tshift tADI ttotal j
iter ‖Sjiter‖

F
D

M
2

heur(20, 10, 10, 20, 10, 10) 1.5148 4.2383 5.7531 34 9.24·10−11

optimal(10, 10, 10, 10), J =10 1.0270 4.1886 5.2156 40 2.47·10−11

SyIRKA(20) 291.7809 4.3742 296.1551 47 8.94·10−11

res.min 382.6184 2.9655 385.5839 26 9.86·10−11

V -S-shifts 0.0261 3.5169 3.5430 29 2.79·10−11

W -T -shifts 0.0223 4.3840 4.4064 33 6.36·10−12

ra
il

5
k/

1
k

heur(40, 40, 20, 20, 20, 20) 2.1631 7.9254 10.0885 78 4.91·10−11

optimal(10, 5, 10, 5), J = 70 0.6411 7.1376 7.7787 66 3.31·10−11

SyIRKA(60) 43.8497 11.9666 55.8163 119 6.33·10−11

res.min 360.8650 17.7726 378.6376 150 1.60·10−09

V -S-shifts 0.1228 4.7643 4.8871 51 3.67·10−11

W -T -shifts 0.1717 17.9904 18.1620 150 5.46·10−02

ifi
ss

2

heur(30, 30, 10, 20, 10, 20) 7.1457 33.4163 40.5620 89 8.57·10−11

optimal(10, 10, 10, 10), J =15 3.5822 37.0679 40.6502 98 7.65·10−11

V -S-shifts 0.2993 37.5629 37.8622 95 9.22·10−11

W -T -shifts 0.1609 34.9670 35.1278 96 2.39·10−11

Sylvester IRKA. These IRKA shifts and the similarly expensive residual minimizing
shifts were only applied for the smaller examples FDM2 and rail5k/1k, where it was in
both examples sufficient to restrict to real norm minimizing shifts. The construction
of the V -S- and W -T -shifts was carried out using the orth command.

Figure 2 shows the curves of residual norm against iteration number (top plots) as
well as consumed iteration time (bottom plots) for these two examples.

To some extent similar observations can be made as in the Lyapunov examples. For
the heuristic shifts the time tshift needed for their generation is a significant portion of
the overall computational time ttotal. They, however, manage to achieve the desired
accuracy within jmax iterations for all examples. Compared to the heuristic shifts, the
optimal shifts required smaller values of kA+, kA−, kF+, kF− to get the necessary spectral
data. The top right plot of Figure 2 corresponding to example rail5k/1k reveals that
they converge similarly to the Wachspress shifts for Lyapunov equations with real
spectra. However, the required setup numbers seemed to be highly influential for their
performance. Different values than the ones used here lead to a clearly different and
often slower convergence, especially for the examples FMD2, ifiss2 which have complex
spectra. In terms of the required iterations jiter the IRKA shifts only work well for
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Figure 2: Scaled residual norm against iteration index j (top plots) and cumulative
execution time at iteration j (bottom plots) of G-fADI using different shift
strategies for FDM2 (left plots) and rail5k/1k (right plots) example.

example FDM2. In example rail5k/1k they lead to a much higher value of jiter as shown
in the top right plot of Figure 2. Since their generation time is much larger than the
actual ADI iteration time tADI they are not a reasonable choice which is also visible
from the bottom plots in Figure 2. Similar to the corresponding Lyapunov examples
we observed in further tests a strong dependence on the initial data for SyIRKA and
(Sy)2IRKA. The residual minimizing shifts require the longest generation time but
lead to the smallest number jiter for FDM2 where they also show a monotonically
decreasing residual norm in Figure 2 (top left plot). For rail5k/1k this is not the case
for similar reasons as in the Lyapunov example rail5k : the computation of minima
of (21) which are no global minima. Improving their computation and ensuring that
global minima are found is current research. As before, the shifts obtained from
projections to spaces spanned by G-fADI iterates or residual factors required only a
very small generation time tshift. However, the W -T -shifts do not achieve convergence
for example rail5k/1k which is somehow similar to the Lyapunov case. The V -S-shifts
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lead to the smallest times ttotal for FMD2, rail5k/1k, see also the bottom plots in
Figure 2. The residual history of both the V -S-, and W -T -shifts, seems to be highly
oscillatory as it is clearly visible in the residual plot for rail5k/1k in Figure 2 (top
right plot). There are very high spikes in ‖Sj‖ which appear to unnecessarily prolong
the iteration. Avoiding these oscillations is currently investigated and might lead to a
further performance improvement. Due to the small execution and generations times,
as well as the advantage that they are computed in an entirely automatic way, the
V -S-shift are nevertheless clearly competitive to the other approaches.

4 Summary

We discussed shift parameter strategies for low-rank ADI methods for solving large-
scale Lyapunov and Sylvester equations. After reviewing some prominent approaches
to compute shifts a-priori, two novel strategies have been proposed which generate
shifts automatically during the ADI iteration without any setup data needed. The
first one is intrinsically designed to compute the new shift such that the residual norm
is minimized at each step, and the second one uses orthonormal spaces spanned by the
current ADI iterates to obtain a small number of Ritz values as next shifts. Especially
the latter one showed impressive numerical results that outperformed the existing shift
strategies w.r.t. the required execution time but in most cases also in terms of the
required ADI iterations. To conclude, the proposed projection based V - and V -S-
shifts are definitely competitive to existing shift parameter approaches, especially for
problems with complex spectra. However, a sound theoretical explanation for their
often outstanding performance is not known, yet. For Sylvester equations the so con-
structed shifts can also lead to a very oscillatory residual behavior which deteriorates
the convergence. The (approximate) optimal shifts appear to be the method of choice
for real spectra. At the current stage, the also newly proposed residual minimizing
shifts are not competitive regarding their computational performance. Currently, we
are investigating efficient ways to solve the occurring optimization problems in an
approximate and efficient way. We also plan to adapt the proposed approaches to
low-rank Newton-ADI methods [8, 10, 11, 13] for solving algebraic Riccati equations.
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