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Abstract

Krylov subspace recycling is a process for accelerating the convergence of se-
quences of linear systems. Based on this technique we have recently developed
the recycling BiCG algorithm. We now generalize and extend this recycling the-
ory to BiCGSTAB. Recycling BiCG focuses on efficiently solving sequences of
dual linear systems, while the focus here is on efficiently solving sequences of
single linear systems (assuming non-symmetric matrices for both recycling BiCG
and recycling BiCGSTAB).

As compared to other methods for solving sequences of single linear systems
with non-symmetric matrices (e.g., recycling variants of GMRES), BiCG based
recycling algorithms, like recycling BiCGSTAB, have the advantage that they
involve a short-term recurrence, and hence, do not suffer from storage issues and
are also cheaper with respect to the orthogonalizations.

We modify the BiCGSTAB algorithm to use a recycle space, which is built
from left and right approximate eigenvectors. Using our algorithm for paramet-
ric model order reduction examples gives good results. We show about 40%
reduction in iteration count when using recycling BiCGSTAB as compared to
the one without recycling.
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1 Introduction

Numerical simulation is an essential tool for solving science and engineering problems.
However, simulating large-scale models leads to overwhelming demands on computa-
tional resources. This is the main motivation for model reduction. The goal is to
produce a surrogate model of much smaller dimension that provides a high-fidelity
approximation of the input-output behavior of the original model. Often the models
have design parameters associated with them, e.g., boundary conditions, geometry,
material properties etc. Changes in these design parameters require generation of new
reduced models, which makes the model reduction process very cumbersome. One
practical application where such a challenge arises is micro-electro-mechanical systems
(MEMS) design [10]. The goal of PMOR [5, 9] is to generate a reduced model such
that parametric dependence, as in the original model, is preserved (or retained).
There are various ways of performing PMOR [7, 5, 18]. This includes moment

matching, H2-optimality, and reduced basis approaches. For this work, we focus on
moment matching based PMOR because of its flexibility (little limit on the systems
properties) and low computational cost in many industrial applications.
Often moment matching based PMOR algorithms require efficient solution of se-

quences of linear systems of the following type:

A(ι) x(ι,κ) = b(ι,κ), (1)

where A(ι) ∈ Rn×n varies with ι; b(ι,κ) ∈ Rn varies with both ι and κ; the matrices
A(ι) are large, sparse, and non-symmetric; and the change from one system to the next
is small.
Krylov subspace methods are usually used for solving such large and sparse linear

systems. For linear systems with non-symmetric matrices, GMRES [20] is one of the
first choices, but it is generally not optimal with respect to the runtime. BiCGSTA-
B [22] is competitive with GMRES, and in many cases performs better than GMRES.
Also, it does not suffer from storage issues, which is a problem in GMRES.
Krylov subspaces recycling is a technique for efficient solution of sequences of linear

systems. Here, while solving one system in the sequence, approximate invariant sub-
spaces of the matrix are selected and used to accelerate the convergence of the next
system in the sequence. Since the matrices in the sequence do not change much, this
provides substantial reduction in both iteration and time. See [17] and [4] for more
about Krylov subspace recycling.
Here, we have a sequence of linear systems with non-symmetric matrices, and hence,

the GCRO-DR [17] algorithm, which is a recycling variant of GMRES, is more suited.
However, since there is no optimal method (again, with respect to runtime) for solving
linear systems with non-symmetric matrices, there is no optimal method for solving
sequences of such linear systems. Like GMRES, GCRO-DR also suffers from storage
issues. Hence, we develop a recycling variant of BiCGSTAB. We explore the usage
of recycling BiCGSTAB for a PMOR example, and show about 40% reduction in
iteration count when using recycling as compared to not using recycling.
To simplify notation, we drop the superscripts ι and κ in (1). Throughout the paper,
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|| · || refers to the two-norm, (·, ·) refers to the inner product, ∗ indicates the conjugate
transpose operation, and ·̄ indicates complex conjugation.
The rest of the paper is divided into six more sections. The bi-Lanczos algorithm [15]

and recycling BiCG [4] form the basis of our recycling BiCGSTAB. Hence, we revisit
these in Sections 2 and 3, respectively. In Section 3, we also give a new result related
to recycling BiCG. Next, we derive recycling BiCGSTAB in Section 4. In Section 5, we
analyze the subspaces that can be used in recycling BiCGSTAB. Finally, we perform
numerical experiments in Section 6, and give concluding remarks in Section 7.

2 The Bi-Lanczos Algorithm

Consider a primary system Ax = b, with x0 the initial guess and r0 = b − Ax0 the
residual. Also, consider an auxiliary dual system1 A∗x̃ = b̃, with b̃ a random vector,
x̃0 the initial guess, and r̃0 = b̃−A∗x̃0 the residual.
Let the columns of Vi = [v1 v2 . . . vi] define the basis of the primary system

Krylov space Ki(A, r0) ≡ span{r0, Ar0, A2r0, · · · , Ai−1r0}. Also, let the columns
of Ṽi = [ṽ1 ṽ2 . . . ṽi] define the basis of the dual system Krylov space K̃i(A∗, r̃0) ≡
span{r̃0, A∗r̃0, A2∗r̃0, · · · , A(i−1)∗r̃0}.
The bi-Lanczos algorithm computes columns of Vi and Ṽi such that, in exact arith-

metic, Vi ⊥b Ṽi, where ⊥b is referred to as bi-orthogonality. The columns of Vi and Ṽi

are called Lanczos vectors. There is a degree of freedom in choosing the scaling of the
Lanczos vectors [11, 12, 19]. Using the scaling

||vi|| = 1, (vi, ṽi) = 1, (2)

we initialize the Lanczos vectors as follows:

v1 = r0
||r0||

, ṽ1 = r̃0
(v1,r̃0)

.

The (i+ 1)-th Lanczos vectors are given by

γvi+1 = Avi − Viτ ⊥ Ṽi,

γ̃ṽi+1 = A∗ṽi − Ṽi τ̃ ⊥ Vi,
(3)

where γ and γ̃ are unknown scalars, and τ and τ̃ are unknown vectors. The computa-
tion of the (i+ 1)-st Lanczos vectors requires only the i-th and the (i− 1)-st Lanczos
vectors (see [19]). These 3-term recurrences are called the bi-Lanczos relations, and
are defined as follows:

AVi = Vi+1T i = ViTi + ti+1,ivi+1e
T
i ,

A∗Ṽi = Ṽi+1T̃ i = ṼiT̃i + t̃i+1,iṽi+1e
T
i ,

(4)

where Ti, T̃i are i× i tridiagonal matrices, ti+1,i is the last element of the last row of

T i ∈ C(i+1)×i, and t̃i+1,i is the last element of the last row of T̃ i ∈ C(i+1)×i.

1The system is real, but we are not interested in its solution.
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3 Recycling BiCG Revisited

We first introduce a generalization of the bi-Lanczos algorithm [3]. We show that
even for a pair of matrices that are not conjugate transpose of each other, one can
build bi-orthogonal bases (for the associated two Krylov subspaces) using a short-term
recurrence.
Expanding the search space to include a recycle space leads to an augmented bi-

orthogonality condition. The augmented bi-Lanczos algorithm, as derived for recycling
BiCG [4], computes bi-orthogonal bases for the two Krylov subspaces such that this
augmented bi-orthogonality condition is satisfied. Next, we revisit augmented bi-
Lanczos [2] and show that it is a special case of generalized bi-Lanczos. Finally, we
list the recycling BiCG algorithm from [4].
There are numerous of ways of computing good bases for Krylov subspacesKm(B, v1)

and Km(B̃, ṽ1), where B and B̃ are n×n general matrices, and v1 and ṽ1 are any two n
dimensional vectors. Let the columns of Vm = [v1 v2 . . . vm] and Ṽm = [ṽ1 ṽ2 . . . ṽm]
define one such pair of good bases for Km(B, v1) and Km(B̃, ṽ1), respectively. We
compute these bases using the following, in principle, full recurrences:

βi+1,ivi+1 = Bvi − βiivi − βi−1,ivi−1 − . . .− β1iv1, (5)

β̃i+1,iṽi+1 = B̃ṽi − β̃iiṽi − β̃i−1,iṽi−1 − . . .− β̃1iṽ1, (6)

where i ∈ {1, 2, 3, . . . ,m−1} and {βij}, {β̃ij} are scalars to be determined. We assume

that for i < m, Ki(B, v1) is not an invariant subspace of B (similarly, Ki(B̃, ṽ1) is not
an invariant subspace of B̃ for i < m). We can rewrite (5) as follows:

Bvi = β1iv1 + β2iv2 + . . .+ βi−1,ivi−1 + βiivi + βi+1,ivi+1.

Combining these equations, for i ∈ {1, 2, 3, . . . ,m− 1}, into matrix form we get

B[v1 v2 . . . vm−1] = [v1 v2 . . . vm−2 vm−1 vm]























β11 β12 . . . β1,m−1

β21 β22 . . . β2,m−1

0 β32 . . . β3,m−1

0 0 . . . β4,m−1

...
. . .

. . .
...

0 0 . . . βm−1,m−1

0 0 . . . βm,m−1























,

or
BVm−1 = VmHm−1,

where Hm−1 is an m × (m − 1) upper Hessenberg matrix. This result also holds for
each i ∈ {1, 2, 3, . . . ,m− 1}, i.e.,

BVi = Vi+1Hi. (7)
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Similarly, using (6) and following the steps above, we get the following relation for the
dual system:

B̃Ṽi = Ṽi+1H̃i. (8)

The scalars {βij} and {β̃ij} are determined by a choice of constraints. One option is

to enforce that the columns of Vi (and Ṽi) are orthonormal vectors (as in the Arnoldi
algorithm). Another option, as in the bi-Lanczos algorithm, is to enforce2

Vi ⊥b Ṽi, ||vi|| = 1, and (vi, ṽi) = 1,

or
Ṽ ∗
i Vi = I and ||vi|| = 1. (9)

If B̃ = B∗, then (7), (8), and (9) lead to the bi-Lanczos relations (4), which consist
of three-term recurrences. Our goal here is to relax the condition B̃ = B∗ and still
obtain short-term recurrences.

Theorem 1. Let B, B̃ ∈ Cn×n, and let the following conditions hold:

(a) B − B̃∗ = F̃kC̃
∗
k − CkF

∗
k , where Ck, C̃k, Fk, F̃k ∈ Cn×k,

(b) ∀x : Bx ⊥ C̃k, ∀x̃ : B̃x̃ ⊥ Ck,

(c) v1 ⊥ C̃k, and ṽ1 ⊥ Ck.

Also, let (9) be used as the set of constraints for (7) and (8). Then, βij = 0 and

β̃ij = 0 for j > i+ 1, which leads to the following three-term recurrences:

βi+1,ivi+1 = Bvi − βiivi − βi−1,ivi−1,

β̃i+1,iṽi+1 = B̃ṽi − β̃iiṽi − β̃i−1,iṽi−1,

for i ∈ {1, 2, 3, . . . ,m− 1}.

Proof. Using (b) and (c) we can show that

C∗
k Ṽi = 0 and C̃∗

kVi = 0. (10)

We show C∗
k Ṽi = 0 by induction. One can similarly show that C̃∗

kVi = 0. C∗
k ṽ1 = 0 by

(c). Let C∗
k ṽl = 0 for l = {1, 2, . . . , i}, and consider the case l = i + 1. From (6) we

know that
β̃i+1,iṽi+1 = B̃ṽi − β̃iiṽi − β̃i−1,iṽi−1 − . . .− β̃1iṽ1.

Then, C∗
k ṽi+1 = 0 since C∗

kB̃ṽi = 0 using (b) and β̃liC
∗
k ṽl = 0 for l ∈ {1, 2, . . . , i} by

the induction hypothesis3. This proves (10). Multiplying both sides in (7) by Ṽ ∗
i and

using (9) we get
Ṽ ∗
i BVi = Hi.

2In this paper, for ease of exposition, we assume breakdowns do not happen. Hence, (ṽi, vi) 6= 0.
3Note that our earlier assumption, Ki(B̃, ṽ1) is not an invariant subspace of B̃ for i < m, shows that

β̃i+1,i 6= 0.
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Substituting (a) in the above equation leads to

Ṽ ∗
i

(

B̃∗ + F̃kC̃
∗
k − CkF

∗
k

)

Vi = Hi ⇐⇒

Ṽ ∗
i B̃

∗Vi + Ṽ ∗
i F̃kC̃

∗
kVi − Ṽ ∗

i CkF
∗
k Vi = Hi.

Using (10) we get

Ṽ ∗
i B̃

∗Vi = Hi ⇐⇒

(B̃Ṽi)
∗Vi = Hi.

Finally, using (8) and (9) in the above equation gives

H̃∗
i = Hi.

This implies both Hi and H̃i are tridiagonal matrices, and hence βij = 0 and β̃ij = 0
for j > i+ 1.

We now revisit augmented bi-Lanczos [2] and show that it is a special case of gener-
alized bi-Lanczos. The BiCG algorithm is primarily used where the dual system is not
auxiliary. That is, one needs to solve both a primary system and a dual system. The
RBiCG algorithm was developed to accelerate the convergence of sequences of such
systems.
In RBiCG, we use the matrix U to define the primary system recycle space, and

compute C = A(ι+1)U , where U is derived from an approximate right invariant sub-
space of A(ι) and ι denotes the index of the linear system in the sequence of linear
systems; see (1). Similarly, we use the matrix Ũ to define the dual system recycle
space, and compute C̃ = A(ι+1)∗Ũ , where Ũ is derived from an approximate left in-
variant subspace of A(ι). U and Ũ are computed such that C and C̃ are bi-orthogonal
(see page 35 of [3]). The number of vectors selected for recycling is denoted by k, and
hence, U , Ũ , C, and C̃ ∈ Cn×k.
The bi-Lanczos algorithm was modified to compute the columns of Vi and Ṽi such

that
[C Vi] ⊥b

[

C̃ Ṽi

]

.

Using the scaling (2), we initialize the Lanczos vectors as

v1 =

(

I − CD−1
c C̃∗

)

r0
∣

∣

∣

∣

∣

∣

(

I − CD−1
c C̃∗

)

r0

∣

∣

∣

∣

∣

∣

, ṽ1 =

(

I − C̃D−1
c C∗

)

r̃0
(

v1,
(

I − C̃D−1
c C∗

)

r̃0

) .

Here Dc = C̃∗C is a diagonal matrix (implied by C ⊥b C̃; we also enforce Dc to have
positive, real coefficients). As for the biLanczos algorithm in (3), the (i+1)-st Lanczos
vectors here are given by

γvi+1 = Avi − Viτ − Cρ ⊥
[

C̃ Ṽi

]

,

γ̃ṽi+1 = A∗ṽi − Ṽiτ̃ − C̃ρ̃ ⊥ [C Vi] ,
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where γ, γ̃, τ , τ̃ , ρ, and ρ̃ are to be determined. The computation of the (i + 1)-st
Lanczos vector for the primary system now requires the i-th and (i − 1)-st Lanczos
vectors and C (see [2]). This gives a (3+k)-term recurrence, where k is the number of
columns of C. Similarly, we get a (3 + k)-term recurrence for computing the Lanczos
vectors for the dual system. We refer to this pair of (3 + k)-term recurrences as the
augmented bi-Lanczos relations, and they are given by

(I − CĈ∗)AVi = Vi+1T i,

(I − C̃Č∗)A∗Ṽi = Ṽi+1T̃ i,

where

Ĉ =
[

1
c∗
1
c̃1
c̃1

1
c∗
2
c̃2
c̃2 · · · 1

c∗
k
c̃k
c̃k

]

= C̃D−1
c ,

Č =
[

1
c̃∗
1
c1
c1

1
c̃∗
2
c2
c2 · · · 1

c̃∗
k
ck
ck

]

= CD−1
c .

(11)

Theorem 2. Let v1 = η(I − CD−1
c C̃∗)r0, ṽ1 = η̃(I − C̃D−1

c C∗)r̃0, B = (I −
CD−1

c C̃∗)A, and B̃ = (I − C̃D−1
c C∗)A∗, where η, η̃ are scalars and C, C̃ ∈ Cn×k

s.t. Dc = C̃∗C is a diagonal matrix with positive, real coefficients. Also, let (9) be
used as the set of constraints for (7) and (8). Then, βij = 0 and β̃ij = 0 for j > i + 1,
which leads to the following short-term recurrences:

βi+1,ivi+1 = Bvi − βiivi − βi−1,ivi−1,

β̃i+1,iṽi+1 = B̃ṽi − β̃iiṽi − β̃i−1,iṽi−1,

for i ∈ {1, 2, 3, . . . ,m− 1}.

Proof. We show that conditions (a) – (c) of Theorem 1 are satisfied. This demonstrates
that augmented bi-Lanczos is a special case of generalized bi-Lanczos. We have B, B̃ ∈
Cn×n such that

B − B̃∗ = A− CD−1
c C̃∗A−A+ACD−1

c C̃∗

=
(

ACD−1
c

)

C̃∗ − C
(

A∗C̃D−1
c

)∗

.

Defining F = A∗C̃D−1
c and F̃ = ACD−1

c we get

B − B̃∗ = F̃ C̃∗ − CF ∗ where C, C̃, F, F̃ ∈ C
n×k.

Hence (a) is satisfied. For any x̃ consider the following:

C∗B̃x̃ = C∗(I − C̃D−1
c C∗)A∗x̃

= (C∗ −DcD
−1
c C∗)A∗x̃ = 0.

Similarly, for any x consider the following:

C̃∗Bx = C̃∗(I − CD−1
c C̃∗)Ax

= (C̃∗ −DcD
−1
c C̃∗)Ax = 0.

Hence (b) is satisfied. Similarly, for v1 and ṽ1 chosen in the theorem, C̃∗v1 = 0 and
C∗ṽ1 = 0. Hence, (c) is satisfied.
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Algorithm 1. RBiCG [4]
1. Given U (also C = AU) and Ũ (also C̃ = A∗Ũ) s.t. C ⊥b C̃, compute Č and Ĉ
using (11). If U and Ũ are not available, then initialize U , Ũ , Č, and Ĉ to empty
matrices.
2. Choose x−1, x̃−1 and compute x0, x̃0, r0, and r̃0 using (12).
3. if (r0, r̃0) = 0 then initialize x̃−1 to a random vector.
4. Set p0 = 0, p̃0 = 0, and β0 = 0. Choose tol and max itn.
5. for i = 1 . . . max itn do
⋄ pi = ri−1 + βi−1pi−1; p̃i = r̃i−1 + β̄i−1p̃i−1

⋄ zi = Api; z̃i = A∗p̃i
⋄ ζi = Ĉ∗zi; ζ̃i = Č∗z̃i;

⋄ qi = zi − Cζi; q̃i = z̃i − C̃ζ̃i
⋄ αi = (r̃i−1, ri−1)/(p̃i, qi); α̃i = ᾱi

⋄ ζc = ζc + αiζi; ζ̃c = ζ̃c + α̃iζ̃i
⋄ xi = xi−1 + αipi x̃i = x̃i−1 + α̃ip̃i
⋄ ri = ri−1 − αiqi r̃i = r̃i−1 − α̃iq̃i
⋄ if ||ri|| ≤ tol and ||r̃i|| ≤ tol then break

⋄ βi = (r̃i, ri)/(r̃i−1, ri−1)
6. end for

7. xi = xi − Uζc; x̃i = x̃i − Ũ ζ̃c

For ease of future derivations, we introduce a slight change of notation. Let x−1 and
x̃−1 be the initial guesses and r−1 = b−Ax−1 and r̃−1 = b̃−A∗x̃−1 the corresponding
initial residuals. We define

x0 = x−1 + UĈ∗r−1, r0 = (I − CĈ∗)r−1,

x̃0 = x̃−1 + Ũ Č∗r̃−1, r̃0 = (I − C̃Č∗)r̃−1,
(12)

and follow this convention for x0, x̃0, r0, and r̃0 for the rest of the paper. Algorithm
1 gives recycling BiCG (also termed as RBiCG) algorithm from [4].

4 Recycling BiCGSTAB

In RBiCG [3, 4], the iteration vectors p, p̃, r, and r̃ are updated using the following
recurrences:

pi = ri−1 + βi−1pi−1, p̃i = r̃i−1 + β̃i−1p̃i−1,

ri = ri−1 − αiBpi, r̃i = r̃i−1 − α̃iB̃p̃i,

where B = (I − CĈ∗)A and B̃ = (I − C̃Č∗)A∗. We first give the polynomial repre-
sentations of these iteration vectors.

Theorem 3. For the primary system

ri = Θi(B)r0, pi = Πi−1(B)r0,

7



where Θi(K) and Πi−1(K) are i-th and (i − 1)-st degree polynomials in K with the
following polynomial recurrences:

Θi(K) = Θi−1(K)− αiKΠi−1(K),

Πi−1(K) = Θi−1(K) + βi−1Πi−2(K).

Similarly, for the dual system

r̃i = Θ̄i(B̃)r̃0, p̃i = Π̄i−1(B̃)r̃0,

where Θ̄i(K) and Π̄i(K) satisfy the following polynomial recurrences:

Θ̄i(K) = Θ̄i−1(K)− ᾱiKΠ̄i−1(K),

Π̄i−1(K) = Θ̄i−1(K) + β̄i−1Π̄i−2(K).

Proof. This can be proved by induction. Follow the steps as done in [21] (Section 2;
pages 37–40), but use B instead of A and B̃ instead of A∗.

From RBiCG we know ri ⊥ r̃j for j < i. Using Theorem 3 we get that

(Θ̄j(B̃)r̃0,Θi(B)r0) = 0 for j < i.

This implies Θi(B)r0 ⊥ Ki(B̃, r̃0), where r̃0, B̃r̃0, · · · , B̃i−1r̃0 span the subspace
Ki(B̃, r̃0). As observed in [22], the above orthogonality conditions must be satisfied
by other bases of Ki(B̃, r̃0), too. So, other polynomials can be used as well [23]. That
is,

(Ω̄j(B̃)r̃0,Θi(B)r0) = 0 for j < i. (13)

Similar to what is done in [22], we define

Ω̄i(B̃) = (I − ω̄1B̃)(I − ω̄2B̃) . . . (I − ω̄iB̃),

where ωi is selected to minimize the residual ri w.r.t. ωi. Then, as first proposed
in [21], instead of (13) we use the following form of inner product:

(r̃0,Ωj(B)Θi(B)r0) = 0 for j < i,

with

Ωi(B) = (I − ω1B)(I − ω2B) . . . (I − ωiB).

This inner product does not require the transpose of B, and hence, is appropriate when
there is no dual system to solve. Computing the inner product in this fashion, we obtain
the recycling BiCGSTAB algorithm (similar to the way BiCGSTAB is obtained from
BiCG in [22]). We term our recycling BiCGSTAB as RBiCGSTAB. The algorithm is
given in Algorithm 2.
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Algorithm 2. RBiCGSTAB
1. Given U (also C = AU) and Ũ (also C̃ = A∗Ũ) s.t. C ⊥b C̃, compute Dc = CC̃∗,
Z = (I − UD−1

c C̃∗A), and B = (I − CD−1
c C̃∗)A.

2. Choose b̃, x−1, and x̃−1, and compute x0, x̃0, r0, and r̃0 using (12).
3. if (r0, r̃0) = 0 then initialize either b̃ or x−1 or x̃−1 to a random vector.
4. Set p0 = 0 and β0 = 0. Choose tol and max itn.
5. for i = 1 . . . max itn do

⋄ pi = ri−1 + βi−1pi−1 − βi−1ωi−1Bpi−1

⋄ αi =
(r̃0, ri−1)
(r̃0, Bpi)

⋄ si = ri−1 − αiBpi

⋄ ti = Bsi

⋄ ωi =
(si,ti)
(ti,ti)

⋄ xi = xi−1 + αiZpi + ωiZsi

⋄ ri = ri−1 − αiBpi − ωiBsi

⋄ if ||ri|| ≤ tol then break

⋄ βi =
(r̃0, ri)

(r̃0, ri−1)
· αi

ωi

6. end for

5 Analysis

For BiCG, it has been shown that including a left eigenvector into the search space
leads to the removal of the corresponding right eigenvector from the right residual (and
vice versa) [8]. In our experiments we demonstrate that recycling left eigenvectors
may improve the convergence rate in the RBiCGSTAB algorithm. We consider two
examples. The first example is a 1600×1600 linear system that we obtain from vertex
centered finite volume discretization of the PDE

−(pux)x − (quy)y + rux + suy + tu = f,

on the unit square with p = 1, q = 1, r = 10, s = −10, t = 0, and f = 0. We use the
following boundary conditions: usouth = 1, uwest = 1, unorth = 0, ueast = 0. We do not
use a preconditioner in this example, the initial guess is a vector of all ones, and the
relative convergence tolerance is 10−10.
For the second example, the linear system is obtained by finite difference discretiza-

tion of the partial differential equation [22]

−(Avx)x − (Avy)y + B(x, y)vx = F,

with A as shown in Figure 1, B(x, y) = 2e2(x
2+y2), and F = 0 everywhere except in a

small square in the center where F = 100 (see Figure 1). The domain is (0, 1)× (0, 1)
with Dirichlet boundary conditions

v(0, y) = v(1, y) = v(x, 0) = 1,
v(x, 1) = 0.

9



Figure 1: Coefficients for the PDE.

The discretization leads to a linear system with 16129 unknowns. We use an ILUTP [19]
preconditioner with a drop tolerance of 0.2 (split-preconditioned). The initial guess is
0.5 times a vector of all ones, and the relative convergence tolerance is 10−8.
For each example we do three experiments. First, we solve the system without recy-

cling. Second, we use the right eigenvectors (corresponding to the largest magnitude
eigenvalues) to span the recycle space. This is implemented by setting Ũ = U . Finally,
we use both left and right eigenvectors (again, corresponding to the largest magnitude
eigenvalues) to span the recycle space.
For the first example’s second set of experiments, we use five exact right eigenvectors

computed using the MATLAB function eigs. For the first example’s third set of
experiments, we use five exact left eigenvectors and five exact right eigenvectors (for
a total of ten), again computed using the MATLAB function eigs.
For the second example’s second set of experiments, we use twenty approximate

right eigenvectors obtained by solving the problem once with RBiCG. For the second
example’s third set of experiments, we use twenty approximate left eigenvectors and
twenty approximate right eigenvectors (for a total of forty), again obtained by solving
the problem once with RBiCG.
The results are shown in Figures 2 (a) and (b). For the first example, using right

eigenvectors or using both left and right eigenvectors works equally well. However,
for the second example, we see that using only right eigenvectors leads to convergence
that is worse than BiCGSTAB without recycling, and much worse than RBiCGSTAB
using both left and right eigenvectors.

6 Application to PMOR

Our test dynamical system comes from a silicone nitride membrane model [6]. Such a
membrane can be part of many devices, for e.g., a gas sensor chip, a microthruster, an
optimical filter etc. We use the moment matching based PMOR algorithm, described

10
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(a) Example 1: Left eigenvectors not needed, but recycling effective.
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(b) Example 2: Left eigenvectors needed for recycling to be effective.

Figure 2: Convergence curves for two examples using RBiCGSTAB. The 2nd example
demonstrates that recycling left eigenvectors may improve the convergence
rate in the RBiCGSTAB algorithm.
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in [10], to compute a reduced model. This leads to a sequence of linear systems of
the form (1) and size 60020. Whenever the matrix changes in the sequence, we call
RBiCG to perform the linear solve. This helps to approximate both the left and right
eigenvectors, which are not easily available from the RBiCGSTAB iterations4. The
primary system right-hand side comes from the PDE. We take a vector of all ones as
the dual system right-hand side. We call RBiCGSTAB for all remaining systems with
the same matrix. This corresponds to linear systems where only the right-hand sides
change. This is an effective strategy because it has been shown that the recycle space
can be useful for multiple consecutive systems [17, 14, 16]. For this experiment, we
take s, which is the parameter used in RBiCG5, as 25 and k = 20. These are chosen
based on experience with other recycling algorithms [17].
The number of iterations required to solve systems 1 through 63 are given in Figure

3. The peaks in the recycling BiCGSTAB plot correspond to when the matrix changes
and RBiCG is called (three times). For all other steps, when only the right-hand
side changes, RBiCGSTAB is called. We compare our results with BiCGSTAB. The
RBiCG and RBiCGSTAB combination requires about 40% fewer total iterations. This
demonstrates the effectiveness of recycling Krylov subspaces for PMOR.

7 Conclusion

For solving linear systems with non-symmetric matrices, BiCGSTAB is one of the best
available algorithms. As compared with GMRES, which is the most commonly used
algorithm for such linear systems, it has the advantage of having to work with a short
term recurrence, and hence, does not suffer from storage issues.
For solving sequences of linear systems with non-symmetric matrices, it is advan-

tageous to use Krylov subspace recycling for the BiCGSTAB algorithm, and hence
we propose the RBiCGSTAB algorithm. We have demonstrated the usefulness of
RBiCGSTAB for a parametric model order reduction example.
In the future, we plan to do timing experiments for the current example. We also

plan to test RBiCGSTAB for other application areas (e.g., acoustics problems).
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