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Abstract

In this work, we show that the reduced basis method accelerates a PDE con-
strained optimization problem, where a nonlinear discretized system with a large
number of degrees of freedom must be repeatedly solved during optimization.
Such an optimization problem arises, for example, from batch chromatography.
Instead of solving the full system of equations, a reduced model with a small
number of equations is derived by the reduced basis method, such that only
the small reduced system is solved at each step of the optimization process. An
adaptive technique for selecting the snapshots is proposed, so that the complexity
and runtime for generating the reduced basis are largely reduced. An output-
oriented error bound is derived in the vector space whereby the construction of
the reduced model is managed automatically. An early-stop criterion is proposed
to circumvent the stagnation of the error and to make the construction of the
reduced model more efficient. Numerical examples show that the adaptive tech-
nique is very efficient in reducing the offline time. The optimization based on the
reduced model is successful in terms of the accuracy and the runtime for getting
the optimal solution.
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1 Introduction

In the last decade, the optimization with constraints given by partial differential equa-
tions (PDE constrained optimization, for short), has emerged as a challenging research
area. It has increasingly arisen in various engineering contexts, such as optimal de-
sign, control and parameter estimation. Over the past years, besides the increasing
progress of the computing hardware, a large number of attempts have been devoted
to the development of efficient algorithms and strategies for solving such optimization
problems, see for example [0, 7, 8, 26] and references therein.

Model order reduction (MOR) is a powerful technique for constructing a low-cost
approximation of large-scale systems resulting from the discretization of PDEs. The
low-cost approximation, often called reduced order model (ROM), on the one hand,
should have the same structure as the original large-scale system, but with a much
smaller number of degrees of freedom (DOFs); on the other hand, it must have accept-
able accuracy for the input-output representation of the original system. Due to the
small size and negligible error, the derived ROM is used as a surrogate model of the
large-scale system in various disciplines, such as optimization and control, fluid dy-
namics, structural dynamics, circuit design, and so on. In particular, for optimization
problems with nonlinear PDE constraints, proper orthogonal decomposition (POD) is
often used to derive a ROM, which has been applied to accelerate optimization prob-
lems [13, 14]. However, a ROM from POD is reliable only in the neighborhood of the
input parameter setting at which the ROM is constructed. There is no guarantee for
the accuracy of the ROM at a different parameter setting. To circumvent the problem,
a trust-region technique was suggested to manage the POD-based ROM in [13]. Here,
the ROM is updated according to the quality of the approximation. However, the
repeated construction of the ROM reduces the significance of the reduction in compu-
tational resources obtained by MOR. In contrast, the technique of parametric model
order reduction (PMOR) enables the generation of a parametric ROM with acceptable
accuracy over the feasible parameter domain, such that a single ROM is sufficient for
the optimization process. Among the various PMOR methods [1, 3, 5, 10, 15, 16],
few of them are applicable for nonlinear problems with parameters. The reduced ba-
sis method (RBM), however, has been developed for nonlinear parametric systems
[2, 11, 18, 34]. Moreover, endowed with a posteriori error estimation, the parametric
ROM can be generated automatically.

The RBM has been proved to be powerful tools for rapid and reliable evaluation of
the parameterized PDEs [2, 11, 18, 34]. The reduced basis (RB), used to construct
the ROM, is computed from snapshots (the solutions of the PDEs at certain selected
samples of the parameters and/or chosen time steps) through a greedy algorithm.
When applied to optimization, the original system resulting from the discretization of
PDEs is first replaced by a ROM generated by the RBM, then the related quantities can
be evaluated rapidly by solving the cheap ROM rather than the original expensive one.
So far, research on the application of RBMs to PDE constrained optimization is very

limited. In [33], the authors mainly focused on RBMs for affinely parameterized linear
problems. Shape optimization employing RBMs for viscous flow in hemodynamics was
addressed in [29], where the empirical interpolation method (EIM) [2] was exploited



to treat the nonaffinity in the linear parameterized system. Applications to multiscale
problems can be found in the recent work [32]. However, all these applications focus
on finite element (FE) based RBMs for linear time-independent PDEs.

In this paper, we consider an optimization problem with PDE constraints, where
the PDEs are nonlinear, time-dependent and have non-affine parameter dependency.
Such problems arise, for example, from batch chromatography in chemical engineering.
To capture the dynamics precisely, a large number of DOFs must be employed, which
results in a large-scale system. Solving such a complex system during optimization is
time-consuming. Constructing a reduced model for a parameterized nonlinear, time-
dependent, nonaffine system poses additional challenges for all kinds of MOR methods,
granting no exemption to RBMs. Furthermore, a careful choice of the discretization
scheme should be taken for nonlinear problems, especially for convection-dominated
problems. The finite volume (FV) discretization is used to construct the full order
model (FOM), by which the conservation property of the system is well preserved.
The FV-based RBM was first introduced for linear evolution equations in [24], and
is extended to nonlinear problems afterwards [11, 25], where the nonlinear operator
resulting from the discretization will be treated with empirical operator interpolation
for an efficient offline-online computation of the ROM.

With no doubt, an efficient, rigorous and sharp a posteriori error estimation is crucial
for RBMs because it enables automatic generation of the RB, and in turn a reliable
ROM with a desired accuracy, with the help of a greedy algorithm. Rapid and reliable
evaluation of the input-output relationships for the associated PDEs is very important
for efficiently solving the optimization problem, where an output response rather than
the field variable (the solution to the PDEs) is of interest. When a ROM is employed
for such an evaluation, the error of the output of interest rather than that of the field
variable, should be estimated and used for the generation of the ROM. We propose to
use the output error for the generation of the RB. There are some results on the output
error bound for FE-based RBMs for elliptic or parabolic problems [35, 36]. However,
there is no study on the output error bound for FV-based RBMs for nonlinear evolution
equations so far. In this work, we present a residual-based error estimation for the
output of the ROM derived by a FV-based RBM to obtain a goal-oriented ROM.

With the help of an error estimate, the construction of the ROM can be managed
automatically. In some cases, however, the error bound may not work as well as one
expects. For example, in the process of the basis being extended, the error bound
decreases slowly or even stagnates after some steps but the true error is very small
already. As a result, the basis extension is not stopped because the error bound does
not go below the prespecified tolerance. This means that the basis will be unnecessarily
extended if there is no reasonable remedy. Certainly, simply using the true error as the
indicator is not a wise choice because it is typically time-consuming to compute the
true error for all sample points in the training set. To make full use of the available
error estimate, we propose an early-stop criterion for the basis extension by checking
the true error at the parameter selected by the greedy algorithm according to the
output error bound. In this way, the basis extension can be stopped in time and the
size of the resulting ROM can be kept reasonably small.

Additionally, the efficiency of the RBM is ensured by the strategy of offline-online



decomposition. During the offline stage, all full-dimension dependent and parameter-
independent terms can be precomputed and a parameterized reduced model is obtained
a priori; during the process of optimization, a reliable output response can be obtained
rapidly by the online simulation based on the ROM at the parameter determined by the
optimization procedure. In this way, the ROM-based optimization can be solved more
efficiently compared to the FOM-based one. Note that the offline time is usually not
taken into consideration, although the offline computation is typically time-consuming,
especially for time-dependent PDEs.

To reduce the cost and complexity of the offline stage, we propose a technique of
adaptive snapshot selection (ASS) for the generation of the RB. For time-dependent
problems, if the dynamics (rather than the solution at the final time) is of interest, the
solution at the time instances in the evolution process should be collected as snapshots.
However, the trajectory for a given parameter might contain a large number of time
steps, e.g. in the simulation of batch chromatography. In such a case, if the solutions
at all time steps are taken as snapshots, the subsequent computation will be very
expensive because the number of snapshots is too large; if one just trivially selects
part of the solutions, i.e., solutions at parts of the time instances (e.g. every two
or several time steps), the final RB approximation might be of low accuracy because
important information may have been lost due to such a naive snapshot selection. We
propose to select the snapshot adaptively according to the variation of the solution in
the evolution process. The idea is to make full use of the behavior of the trajectory
and discard the redundant (linearly dependent) information adaptively. It enables the
generation of the RB with a small number of snapshots but including only “useful”
information. In addition, it is easily combined with other algorithms for the generation
of the RB, e.g. the POD-Greedy algorithm [24].

This paper is organized as follows. We state the underlying PDE-constrained op-
timization problem in detail in Section 2. Reviews of the RBM and EIM are given
in Section 3 and Section 4, respectively. The adaptive technique of snapshot selec-
tion and its implementation are addressed in detail in Section 5. Section 6 shows
the RB scheme for the batch chromatographic model, including the derivation of the
FOM based on the FV discretization, the generation of the ROM, and the strategy
of the offline-online decomposition as well. In Section 7, an output-oriented error
bound is derived in the vector space for evolution equations for the RBM based on
FV-discretization. An early-stop criterion is proposed to make the construction of the
ROM more efficient. Numerical examples including optimization based on the ROM
are carried out in Section 8. Conclusions are drawn in Section 9.

2 Problem statement
In this work, we consider the following PDE constrained optimization problem:
o t . .
ggg{J(U( ST )i )}

sit. U (u(t,z;p);p) <0, (1)
@ (u(t,x;p);p) =0,



where J is the objective function, ¥ defines the inequality constraints. The field
variable u(t,z; p) is the solution to the underlying parametrized partial differential
equations @ (u(t,z;u)) = 0, p € P. Such an optimization problem arises in many
applications, such as aerodynamics, fluid dynamics and chemical process. In practical
computation, the PDEs are usually discretized such that the optimization problem in
(1) is replaced by an optimization problem in finite dimensions:

min {TN (s m}

s.t. U (uN(t, w);p) <0, (2)
@ (uN(t, p); p) = 0,
where vV = wV (t,p) € RV is the solution to the discretized system of equations

P (uN (t, p); u) =0, and J, ¥ and ® are the operators in the finite dimensional vector
space corresponding to J, ¥ and @, respectively. The discretized equations are often
of very large scale and complex. At each iteration of the optimization process, such
a large-scale complex system of equations must be solved at least once. As a result,
the whole optimization process will be time-consuming. To accelerate the underlying
optimization, a surrogate ROM can be employed to replace the original large-scale
discretized system for a rapid evaluation of the vector of unknowns u/V.

To further motivate and illustrate our methods, we consider a particular example:
optimal operation for batch chromatography. Batch chromatography, as a crucial sep-
aration and purification tool, is widely employed in food, fine chemical and pharmaceu-
tical industries. The principle of batch elution chromatography for binary separation
is shown schematically in Figure 1. During the injection period t;,, a mixture consist-
ing of a and b is injected at the inlet of the column packed with a suitable stationary
phase. With the help of the mobile phase, the feed mixture flows through the column.
Since the solutes to be separated exhibit different adsorption affinities to the station-
ary phase, they move at different velocities in the column, and thus separate from
each other when exiting the column. At the column outlet, component a is collected
between cutting points t3 and t4, and component b is collected between t; and ts.
Here the positions of ¢; and t4 are determined by a minimum concentration threshold
that the detector can resolve, and the positions of t5 and t3 are determined by the
purity specifications (Pu, and Puy) imposed on the products. After a cycle period
teye 1= t4 — t1, the injection is repeated.

The dynamic behavior of the chromatographic process is described by an axially
dispersed plug-flow model with limited mass-transfer rate characterized by a linear
driving force approximation. The governing equations in the dimensionless form are
formulated as follows,

dc, 1—¢€0dq, _ Oc, 1 03¢,

=— — 1
o T e ot 9z | Pe a2’ 0<z<l, -
dq. L Eq
ok (P -q.), <z<l,
at  Q/(eA)” (4=~ 22) Osz

where ¢, ¢, are the concentrations of the component z (z = a, b) in the liquid and solid
phase, respectively, @Q the volumetric feed flow-rate, A. the cross-sectional area of the



column with the length L, € the column porosity, k., the mass-transfer coefficient, and
Pe the Péclet number. The adsorption equilibrium ¢4 is described by the isotherm
equations of bi-Langmuir type,

Hzlcz + HZQCZ
1+ Kaicfea + Kpicles 1+ Kiocfea + Kpacley’

QEq = f.(ca,cp) = (4)
where sz is the feed concentration of component z, H,; and K; are the Henry con-
stants and thermodynamic coefficients, respectively. The initial and boundary condi-
tions are given as follows:

c;(0,2) =0, ¢,(0,2)=0, 0<z<1,
de.

Oz lz:O = Pe (CZ(ta 0) - X[O,tin](t)) ) (5)
dc,
%lx:l - 07

where t;, is the injection period, and x|o,,] is the characteristic function,

1, ift € [O,tin];
() =
X[0,t:,] (1) {0, otherwise.

More details about the mathematical modeling for batch chromatography can be found
in [20].

Note that the feed flow rate @ and the injection period ¢;,, are often considered as the
operating variables, denoted as p := (@, tin), which play the role of parameters in the
PDEs (3)—(5). The system of PDEs is nonlinear, time-dependent and has non-affine
parameter dependency. The nonlinearity of the system is reflected by (4). To capture
the system dynamics precisely, a large number of DOFs must be introduced for the
discretization of the PDEs.

The optimal operation of batch chromatography is of practical importance since it
allows to exploit the full economic potential of the process and to reduce the separation
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Figure 1: Sketch of a batch chromatographic process for the separation of a and b.



cost. Many efforts have been made for the optimization of batch chromatography over
the past several decades. An extensive review of the early work can be found in [20]
and references therein. An iterative optimization approach for batch chromatography
was addressed in [17]. A hierarchical approach to optimal control for a hybrid batch
chromatographic process was developed in [19]. Notably, all these studies are based
on the finely discretized FOM. Such a model with a large number of DOFs is able to
capture the dynamics of the process, and the accuracy of the optimal solution obtained
from that can be guaranteed. However, the expensive FOM must be repeatedly solved
in the optimization process, which makes the runtime for obtaining the optimal solution
rather too long.

In this work, the RBM is employed to generate a surrogate ROM of the param-
eterized PDEs. The resulting ROM is used to get a rapid evaluation of the output
response y(uV) for the discretized system ®(u? (¢, 11); ) = 0 in (2) in the optimization
process. In the next section, we review the RBM and highlight some difficulties there.

3 Reduced basis methods

Reduced basis methods, first introduced in the late of 1970s for nonlinear structural
analysis [31], have gained increasing popularity for parameterized PDEs in the last
decade [18, 24, 34]. The basic assumption of RBMs is that the solution to parametrized
PDEs, u(u), depends smoothly on the parameter p in the parameter domain P, such
that for any parameter p € P, the corresponding solution u(u) can be well approxi-
mated by a properly precomputed basis, called reduced basis. In addition, the RBM
is often endowed with a posteriori error estimation, which is used for the qualification
of the resulting ROM.

Consider a parametrized evolution problem defined over the spatial domain Q c R¢
and the parameter domain P C RP,

Ou(t,z;p) + Llu(t,z;p)] =0, t€[0,T], z€Q, peP, (6)

where L[] is a spatial differential operator. Let WV < L?(Q) be an N-dimensional
discrete space in which an approximate numerical solution to equation (6) is sought.
Let 0 =% < t! < ... <t =T be K + 1 time instants in the time interval [0, T].
Given u € P with suitable initial and boundary conditions, the numerical solution at
the time ¢t = ", u™ (), can be obtained by using suitable numerical methods, e.g. the
finite volume method. Assume that u™(u) € W satisfies the following form,

Lyt ()] = Lp(t™) " (w)] + g(u" (1), 1), (7)

where L;(t")[-], Lg(t")[-] are linear implicit and explicit operators respectively, and g(+)
is a nonlinear p-dependent operator. These operators are obtained from the discretiza-
tion of the time derivative and spatial differential operator £. For implicit scheme of
FVMs, L;(t™) can be nonlinear, see e.g. [l1], but we only consider the linear case
in this paper. By convention, " (u) is considered as the “true” solution by assum-
ing that the numerical solution is a faithful approximation of the exact (analytical)
solution u ("™, x; 1) at the time instance ¢™.



The RBM aims to find a suitable low dimensional subspace
WY = span{V3,...,Vy} C wh,

and solve the resulting ROM to get the RB approximation 4™ (u) to the “true” solution
u™(w). In addition or alternatively to the field variable itself, the approximation of
outputs of interest can also be obtained inexpensively by §(u) := y(4(u)). More

precisely, given a matrix V := [V4,..., V], whose columns span the reduced basis, the
Galerkin projection is employed to generate the ROM as follows:
VIL (") [Va™ ()] = VI Lp(t™)[Va" (u)] + Vg (Va" (), (8)

where a™(p) = (a?(,u),...,a}{,(y))T € RY is the vector of the weights in the ap-
proximation 4" (u) := Va™(u) = Zf\il a?()V;, and it is the vector of unknowns in
the ROM. Thanks to the linearity of the operators L; and Lg, the ROM (8) can be
rewritten as

VIL(E")V][a" ()] = VI Lp(")V]a" (W] + Vg (Va" (1) , (9)

where VI L;(t")V and VT Lg(t")V can be precomputed and stored for the construc-
tion of the ROM. However, the computation of the last term of (9), Vg (Va"(p)),
cannot be done analogously because of the nonlinearity of g. This will be tackled by
using a technique of empirical interpolation, to be addressed in the next section.

How to generate the RB V is crucial, and is still an active field of study. A popular
algorithm for the generation of the RB for time-dependent problems is the POD-
Greedy algorithm [24], as is shown in Algorithm 1.

Algorithm 1 RB generation using POD-Greedy
Input:  Pirain, to, tolra(< 1)
Output: RBV = [V4,...,Vy]
1: Initialization: N =0,V =[], 0 ftmax = o, I8 (fmax) = 1
2: while 7y (lmax) > tolgs do
3. Compute the trajectory Smax = {u" (ftmax) 1o
4:  Enrich the RB, e.g. V := [V, V41|, where V41 is the first POD mode of the
matrix U := [@°, ..., 4%] with @ := 4" (jtmax) — Tyyn [" (Umax)], 7 = 0, . .., K.
Iy~ [u] is the projection of u onto the current space W := span{V,...,Vx}.

5: N=N-+1

6: Find pmax := arg max ny(u).
HEPtrain

7: end while

Remark 3.1. In Algorithm 1, the error 1y (tmax) is an indicator for the error of the
ROM. It can be the true error or an error estimation. Since the true error requires
the “true” solution u™(u) by solving the full large system, an error bound is usually
used instead. This is explored in Section 7. The first POD mode refers to the first
left singular vector which corresponds to the largest singular value of the matrix under
consideration.



Remark 3.2. As is mentioned, an error bound is usually used as the indicator in
Algorithm 1 since it is much cheaper to compute in comparison with the true error, but
it may not always work well. For example, in the process of the basis being extended,
the error bound decreases slowly or even stagnates after some steps. To circumvent this
problem, we propose a remedy by checking the true error at the parameter determined
by the greedy algorithm and get an early-stop for the extension of the RB. Details are
given in Algorithm 5 in Section 7.3.

The theoretical analysis about the convergence of the POD-Greedy algorithm is
given in the recent work [21]. However, for some problems, such as batch chromatog-
raphy, the implementation of Step 4 in Algorithm 1 will be time-consuming because
the number of time steps K needs to be very large due to the nature of the problem
(integration until a certain steady state is reached). In this work, we propose to use
an adaptive technique to reduce the cost of Step 4, which is discussed in Section 5.

4 Empirical interpolation

As mentioned above, if there are nonlinear and/or nonaffine operators in the full model,
the computational complexity cannot be reduced by using projection, because the
nonlinear and/or nonaffine part, e.g. V%g(Va™(u)) in (8), requires the computation
in the original full space. In such a case, EIM [2] or empirical operator interpolation [11]
can be exploited to generate an efficient ROM. The empirical operator interpolation
method is an extension of the EIM, and can be used to treat an operator which
depends on the parameter, field variable and spatial variable as well. The idea of EIM,
introduced in [2], is briefly presented as follows.

Given a nonaffine u—dependent function g(z, ) with sufficient regularity, (x, u) €
Q2 x P C R? x RP, the idea of EIM is to approximate g(x,u) by a linear combi-
nation of a precomputed p-independent basis W := [Wy,...,Wy], termed as col-
lateral reduced basis (CRB), with corresponding p-dependent coefficients o(u) :=

[o1(); -y onr ()] ie,

M
gz, p) =D Wila)oi().
=1

Here the coefficients o; are parameter-dependent and determined by solving the linear

system:
M

g(xjau):ZWl(xJ)Ul(M)7 ]:173M7 (10)
i=1
where W;(z;) refers to the j-th entry of the vector W;, and the analogous notation is
also used for &, (z,,) in (11) in Algorithm 2. Note that the approximation §(z, ) inter-
polates the exact value g(x, ) at the EI points Ths := {21,...,2a}. The generation
of the CRB and the EI points is illustrated in Algorithm 2.

Remark 4.1. Algorithm 2 is used for a fast evaluation of a nonaffine function of
the coordinate x and the parameter u by using interpolation. In [11, 25], the idea



Algorithm 2 Generation of CRB and EI points
Input: L2, = {g(z,p) | p € P} tolorn (< 1)

train
Output: CRB W = [Wy,..., Wy and EI points Thy = {z1,...,zm}
1: Initialization: m = 1, W%, =[], ||&] =1

2: while [|&,,—1|| > tolcrp do
3. For each g € L&D | compute the “best” approximation § := Z:’;l o;W; in
the current space W;J”fl := span{Wi, ..., Wy,_1}, where o; can be obtained by
solving the linear system (10).
4:  Define g,, := arg max llg — gll, and the error &, := gm — G-
geLe

train

5. if ||&m|| < tolcrp then
6: Stop and set M = m — 1.
7. else
8: Determine the next EI point and basis:
Ty i= arg sup |&n ()|, Wy, = Em . (11)
z€Q Em(Tm)
9: end if

100 m:=m+1
11: end while

was extended to the more general case of empirical operator interpolation, which
is more applicable for an operator that depends on the field variable u(t, x; u), e.g.
g(u(t, z; 1), z; ). The evaluation of g(x;, 1) in (10) is thus replaced by g(u(t, x;; ), xj; ).
In this paper, we use empirical operator interpolation, where the nonaffine operator
appears as g(u(t,z; u); ). The details are addressed in Section 6.2.

5 Adaptive snapshot selection

In this section, we propose a technique of adaptive snapshot selection we call ASS to
reduce the offline cost. The basic idea of ASS is first presented in the ENUMATH2013
conference, and the following algorithms, e.g., Algorithm 3 and Algorithm 4, can be
also found in [4]. In this paper, we address the ASS technique with more details, and
enhanced numerical results are given in Section 8.

For the generation of the RB or CRB, a training set Pipaim or PER of parameters
must be determined. On the one hand, the size of the training set is desired to be
as large as possible, so that information of the parametric system can be collected as
much as possible. On the other hand, the RB or CRB should be efficiently generated.

To reduce the cost for the generation of the RB, many efforts have been made in
the last decade. These include, for example, the hp certified RB method [12], adaptive
grid partition in parameter space [22, 23], and the greedy-based adaptive sampling
approach for MOR, by using model-constrained optimization [9]. In these papers, the
authors intend to choose the sample points adaptively and get an “optimal” training



set. The “optimal” training set means that the original manifold M := {u(u) | © € P}
can be well represented by the submanifold M := {u(p) | pt € Pirain} induced by the
sample set Pirain With its size as small as possible.

As aforementioned, for time-dependent problems, if the dynamics is of interest, the
solution at the time instances should be collected as snapshots. In such a case, even for
an “optimal” training set, the number of snapshots can be huge if the total number of
time steps for a single parameter is large. Such problems may arise from, e.g. chemical
engineering, fluid dynamics and aerodynamics etc.. A large number of snapshots means
that it is time-consuming to generate the reduced basis because the POD mode in
Step 4 in Algorithm 1 is hard to compute from the singular value decomposition of U,
due to the large size of the matrix U. This is also true for the generation of the CRB
if the operator to be approximated is time-dependent. As a straightforward way to
avoid using the solutions at all the time instances as snapshots, one can simply pick
out the solutions at certain time instances (e.g., every two or several time steps) as
snapshots. However, the results might be of low accuracy, because some important
information may have been lost during such a trivial snapshot selection.

For an “optimal” or a selected training set, we propose to select the snapshots
adaptively according to the variation of the trajectory of the solution, {u™(u)}E_,.
The idea is to discard the redundant (“close to” linearly dependent) information from
the trajectory. In fact, the linear dependency of two non-zero vectors v; and ve can
be reflected by the angle 6 between them. More precisely, they are linearly dependent
if and only if | cos(f)| =1 (8 = 0 or 7). In other words, the value 1 — | cos(8)] is large
if the correlation between the two vectors is weak. This implies that the quantity
1— Kool oo5(9) = {9122) 1y ig 5 000d indicator for the linear dependency of v; and

oa vz IR
V2.
Given a parameter y and the initial vector u®(u), the numerical solution u™ (i) (n =
1,..., K) can be obtained, e.g. by using the evolution scheme (7). Define an indicator

Ind (u™(p),u™(p)) =1 - %, which is used to measure the linear depen-

dency of the two vectors. When Ind (u™(p), ™ (n)) is large, the correlation between
u™(p) and u™ () is weak. Algorithm 3 shows the realization of the ASS, u™(u) is taken
as a new snapshot only when «™(u) and u™ () are “sufficiently” linearly independent,
by checking whether I'nd (u™(p),u" (1)) is large enough or not. Here, u™i (1) is the
last selected snapshot.

Remark 5.1. The inner product (-, -): WN x WN 5 R used above is properly defined
according to the solution space W, and the norm ||-|| is induced by the inner product
correspondingly. Therefore, the ASS technique is applicable to any snapshot based
MOR method for time-dependent problems, and it is independent of the discretization
method.

Remark 5.2. For the linear dependency, it is also possible to check the angle between
the tested vector u™ (1) and the subspace spanned by the selected snapshots S“. More
redundant information can be discarded but at higher cost. However, the data will be
compressed further, e.g. by using the POD-Greedy algorithm, we simply choose the
economical case shown in Algorithm 3. Note that the tolerance tolags is prespecified
and problem-dependent, and the value at O(10~*) gives good results for the numerical

10



Algorithm 3 Adaptive snapshot selection (ASS)

Input: Initial vector u®(u), tolass

Output: Selected snapshot matrix S4 = [u™ (1), u™2(p), . .., u™ (1)]
1: Initialization: j =1, n; =0, S4 = [u"i (1))
2: forn=1,...,K do
3:  Compute the vector u™(u).

4:if Ind (u™(p),u™ (@) > tolags then
5 j=Jj+1

6: n;g=n

7 84 = [SAvunj(,U)]

8  end if

9: end for

examples studied in Section 8 based on our observation.

The ASS technique can be easily combined with the aforementioned algorithms for
the generation of the RB and CRB. For example, Algorithm 4 shows the combination
with the POD-Greedy algorithm (Algorithm 1). There is only one additional step in
comparison with the original Algorithm 1.

Algorithm 4 RB generation using ASS-POD-Greedy
Input:  Pirain, to, tolrs(< 1)
Output: RBV = [V4,...,Vy]
1: Initialization: N =0, V =[], tmax = 0, 7(limax) = 1
2: while nN(Mmax) > tolgg do
3:  Compute the trajectory Spax := {u”(,umax)}ffzo and adaptively select snapshots
using Algorithm 3, and get

Srﬁax = {unl (HMmax)s - - -, u"™ (NmaX)} .

4:  Enrich the RB, e.g. V := [V, Viy41], where V41 is the first POD mode of
the matrix U4 = [a™, ..., @™] with @™ := u™ (Umax) — Dy~ [ (ftmax)]s § =
1,...,4, £ < K. Hyy~[u] is the projection of u onto the current space W :=
span{Vi,...,Vn}.

5: N=N+1

6:  Find pmax := arg max ny(u).
HE Pirain

7: end while

6 RB scheme for batch chromatography

Reduced basis methods are used to perform a rapid solution to the PDEs. The RBM
based on FV-discretization for evolution equations is proposed in [24]. In this section,
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we show the derivation of the FOM based on the FV discretization for the batch
chromatographic model (3)—(5), and the efficient generation of the ROM.

6.1 Full-order model based on FV discretization

As is mentioned in Section 1, we use the FV discretization for the batch chromato-
graphic model (3)—(5). More specifically, we use the Lax-Friedrichs flux [28] for the
convection contribution, central difference approximation for the diffusion terms, and
the Crank-Nicolson scheme for the time discretization. The full discrete FV formula-
tion for the system (3)—(4) can be written as follows

17
At = Ben 4 g — ——©

"t = ¢ + Ath?,

(12)

where ¢ = c?(pu) = (.7, 30T, @0 == ¢ (p) = (.7, ..., :%)T € RV, 2z = a,b,
indicates the solutions of the field variables ¢, and ¢, at time instance t = t" (n =
0,...,K), A and B are tridiagonal constant matrices, d? and h? are parameter- and
time-dependent,

d7 :=dger, hY:=(h1, .., hZX/)T
with dfj := AzPe (% + 1/) X[o, tm]( ) A Am, V= PeAAx2, er :=(1,0,...,007 e RV,
and h.} == hy(ca}, e}, q:7) =

)

o (flcafyen) —azy) 5 =1,..., N.

6.2 Reduced-order model

Let N € N* be the number of the RB vectors for ¢, and ¢., and M € N* be the number
of the CRB vectors for the operators h, and hy,. Here for simplicity of analysis, we use
the same dimension N of the RB for ¢,, ¢y, g5 and gy, but one can certainly take different
dimensions for the RB. This also applies to ha and hp. Assume that W, € RV*M g
the CRB for the nonlinear operator h., and V.. ,V,, € RNV (VIV, =1,VIV, =1)
are the RB for the field variables ¢, and g, respectively, i.e.,

~W.BY, == Ve,ar, q =4 —quaqz n=0,..., K. (13)

Applying Galerkin projection and empirical operator interpolation, we formulate the
ROM for the FOM (12) as follows,

~ 1—¢€ ~
At = B. a? +dyd., — TAtHCZ n 14
altt =al + AtH, B2,
where a7 = a (1) = (ac.7,... ,acz’]i,)T, ay. = ag. (1) (aqz?, .. .,aqz’&)T e RN

are the reduced state vector of the ROM. ACZ = VCfAVCZ , BCZ = VSBVCZ,JCZ = chel,
H,., = vIw., H, = V.IW. are the reduced matrices.
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Note that 7 := 87(u) = (8.7,...,8.%)" € RM are the vectors of coefficients
for the empirical interpolation of the nonlinear operator h7, and are parameter- and
time-dependent. The evaluation of 57 is essentially the same as the computation of
the coeflicients (1) in (10) in Algorithm 2. More specifically, it can be obtained by

solving the following system of equations:

M
ST BIWaa) = b, j=1,..., M.

=1

Here, the evaluation of hZ? only needs the j-th entries (ca?, cpy and qz?) of the solution
vectors (¢, ¢p™ and ¢,"), i.e., hsz = hz(ca}‘,cb;’,ngl). For the general operator
empirical interpolation, the value of the operator at the interpolation point (e.g. ;)
may depend on more entries of the solution vectors (e.g. the j-th entries and their
neighbors). For more details, refer to [11, 25].

6.3 Offline-online decomposition

The efficiency of the RB approximation is ensured by a strategy of suitable offline-
online decomposition which decouples the generation and projection of the RB ap-
proximation. Computation entails a possibly expensive offline phase performed only
once and a cheap online phase for any chosen parameter in the parameter domain.
During the offline stage, the RB, the CRB, reduced matrices and all N-dependent
terms are computed and stored; in the online process, for any given parameter pu, all
parameter-dependent coefficients and the RB approximation are evaluated rapidly.

More precisely, in the offline process, given training sampling sets P& and Pirain
(they can be chosen differently), Algorithm 2 is implemented to generate the CRB
W, for the nonlinear operator h,. Then Algorithm 4 is used to generate the reduced
bases V., and V,,. Consequently, all N-dependent terms are precomputed and as-
sembled to construct the reduced matrices (e.g. ACZ,BCZ,dCZ , ch, and H'qz), and the
N-independent ROM can be formulated as in (14). For a newly given parameter
w € P, the low dimensional model (14) is solved online and the solution to the FOM
(12) can be recovered by (13).

7 Output-oriented error estimation

It is crucial to get a sharp, rigorous and inexpensive posteriori error bound [34], which
enables reliable and low-cost construction of the RB. In the past years, many efforts
have been made for different problems, e.g. [11, 18, 24, 25 35  36]. One common
technique for the derivation of the error estimator is based on the residual. In [11, 25],
the authors provided an error estimation for the field variable in functional space for
evolution equations. Since all the simulations are done in the finite dimensional vector
space in practice, in this work, we derive an error estimation for the field variable
directly in vector space, which is sharper than it is in the operator form. Moreover,
we derive an output-oriented error bound based on the error estimation for the field
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variable. For many applications, the output response y(u?) is of interest. Hence,
during the process of the greedy algorithm, e.g. Algorithm 1 or Algorithm 4, the error
estimation 7 (fmax) should be the error estimation for the output response, which is
expected to be more accurate and reasonable.

In what follows, the inner product is defined as (21, 22) = 2¥2s, Vz1,22 € RV,
The induced norm || - || is the standard 2-norm in the Euclidean space. However, if
the discrete system of equations is obtained by using the finite element method, the
solution to the discrete system is actually the coefficient vector corresponding to the
basis vectors of the solution space. In such a case, the inner product should be defined
properly with the mass matrix of the solution space, and the norm will be the induced
norm correspondingly.

7.1 Output error estimation for the reduced order model

For a parametrized evolution equation (6), we derive an output error bound in the
vector space for the ROM (9). Recall that in Section 3, L;(t") and Lg(t™) are linear,
the evolution scheme (7) can be rewritten as follows in the vector space,

A(n)un+1(’u) _ B(n)u"(u) +g (Un(u)a :U') ) (15)

where A, B ¢ RV*N are constant matrices and g (u" (), 1) € RV corresponds
to the nonlinear term. Note that A and B(™) are nonsingular for a stable scheme in
practice, n =0,..., K — 1.

Given a parameter pu € P, let 4" (p) = Va™(p) be the RB approximation of ™ (1),
and §"(p) = Iyplg(a™(n)] = W™ (i) be the interpolant of the nonlinear term,
where V € RVNXN 1 € RV*M ar6 the precomputed parameter-independent bases,
a"(p) € RN, 87 () € RM are parameter-dependent coefficients. In the following,
for the sake of simplicity, we omit the explicit expression of the dependence on p in
u™(w), 0" (n), a™ () and B™(p), and use u”, 4", a™ and ™ instead. The following a
posteriori error estimation is based on the residual

r" () == BMan + Iy [g(am)) — AMart (16)
With simple computation, we get the norm of the residual:
P )| = (2 ), ()
= (@) V(BT BV + (57 WTW "
+ (@) VTA)T ANV 2 ()T WTBMYen
—2(a") VI (BT AMY et — 2 ()T WA YT

(17)

Proposition 7.1. Assume that the operator g : RN — RN is Lipschitz continuous,

i.e., there exists a positive constant Ly, such that

lg(x) = 9wl < Lgllz =yl 2,y € WY,
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and the interpolation of g is “exact” with a certain dimension of W = [W1q,..., Warim],
i.€.,
MA+M’

Trmr [g(a” Z W - B, = g(@").

Assume again, that for all u € P, the initial projection error is vanishing €®(u) = 0,
then the approximation error €"(u) := u™ — 4" satisfies

n—1 n—1
len ()l < D2 | Jca™) | TT €@ ) (e + [ aml) . as)
k=0 j=k+1
where GU) = ||(A4 1“ (|BY|| + Ly), €%;(p) is the error due to the interpolation. A

sharper error bound can be given as:

n-l (19)

-5 (T ) Qo).

where G¢) = ||(AV)1BU|| + Ly ||(A9) 7|, n=0,..., K — 1.

Proof. By forming the difference of (15) and (16), we have the error equation:

AP () = BOEn () + g(u") — T [g(™)] + 1+ (1)

(20)
= BU"e™ (1) + (9(u") — g(@™)) + (9(a") = Tnlg(@™)]) + "+ (n).
Multiplying by (A™)~! on both sides of (20), we obtain
" () =(A") T B e () 4 (A™) T (g(u™) — g(a™) (21)

+ (A) 7 (g(@") = Tar [9(@™)]) + (A™) 71"+ ().

Applying the Lipschitz condition of g, we have ||g(u") — g(a™)|] < Lg ||€"(1)||. Then
by the triangle inequality and the property of the matrix norm, we have

e+l < [lean 1| (||

+ Ly) e ()l + () + [+ )]) 5 (22)

where €%, (n) = g(a™) — In[g(a™)] = Z%:%;l Wl - |8 Resolving the recursion
(22) with initial error ||e”(u)|| = 0 yields the error bound in (18).

To get the error bound in (19), we re-observe the equation in (21), and see that the
error bound in (22) is unnecessarily enlarged. A sharper bound for ||e"+1|| is of the
following form,

Hen+1(u)H < (H(A(n))—lB(n)

(A7) e )

(23)
() + || (A0~ )

)

sl
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since the following two inequalities are true, i.e., [|[(A™)~1B™|| < [|(A™)~1]| | BM]|
and [[(AM)=1pn | < |[(AM) 7| |||, Resolving the recursion (23) with initial
error Heo (M)H = 0 yields the proposed error bound in (19). O

Remark 7.2. In many cases, the operators L;(t") and Lg(t™) in (7) are independent
of t", so that the coefficient matrices A, B(™ in (15) are constant matrices, see e.g.
n (12). In such a case, the error bound becomes much more simple, see e.g. (31) and
(33) in the next subsection.

Remark 7.3. In [11], the derivation of the error bound is based on the general operator
form in the functional space. The error bound in (18) corresponds to the operator
form (5.5) in [11]. However, the error bound may grow exponentially when GU) =

H(A(j))_lﬂ (HBU)H 4+ Ly) > 1 in (18). In the vector space, this problem can be easily
avoided by using (23) instead of (22) if Ggl) = H(A(”))’lBH + L, H(A(”))’ln <1,
whereby the sharper error bound in (19) is obtained.

Remark 7.4. For the computation of the error bound in (18), we need to compute the
norm of the residual 7"(u) by using (17). Note that all terms underlined in (17) can
be precomputed once V and W are obtained, and they are only computed once for all
parameters in the training set. This is also true for the computation of HA*IT" (u)”
for the error bound in (19). Consequently, the evaluation of the error bound is cheap
due to its independence of A. In addition, as is shown in [11], small M’ gives good
results in practice; we use M’ = 1 in the latter simulations.

Remark 7.5. Since the 2-norm is applied to the above error bound, and the 2-norm of
a matrix H is actually its spectral norm. Therefore,
1

[H7| = omax (H™') = oo ()

As a result, the error bounds above are computable.

In many applications, the quantity of interest is not the field variable itself, but
some outputs. In such cases, it is desired to estimate the output error to construct a
ROM in a goal-oriented fashion. Based on the error estimation for the field variable
above, we have the output error estimate below.

Proposition 7.6. Under the assumptions of Proposition 7.1, assume the output of
interest, y (u™(p)), can be expressed in the following form:

y(u"(p)) = Pu", (24)

where P € RN*N s a constant matriz, then the output error ey (p) == Pu™ — Pa™
satisfies:

le&™ (| < ixtr

_ (25)
= Go(n)nx/,M + "P(A(n)) !

k() + P [[(A) 10+ ()

)

where Go™ = ||[P(AM)=1BM || 4+ Ly [|P(A™) ||, n=0,...,K — 1.
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Proof. Multiplying P from the left on both sides of the error equation (21), we get

P () = P((A™) " BWen () + (A) 7 (g(u") — g (™)
+ (A0 (g(a") — Taglg(am)]) + (A®) "+ (1)),

Applying the Lipschitz condition of g, and using the triangle inequality, as well as the
property of the matrix norm, we have:

le&™ ()l = [P ()

< 6o e ()] + | Pa™)! . @

k() + I1P] || (4~ )|

Replacing ||e™ ()] in (26) with its bound in (19), we get the proposed output error
bound in (25). O

Remark 7.7. Once the error estimation for the field variable is obtained, e.g. (19), a
trivial error bound for the output (24) can be given as:

le™ ()l = || Pe™ (]
< 1P| e o) (27)
< 1Pl (6 lem ()l + (| (A) 7| ey + | a1+ )

The last inequality is true due to the inequality (23). It is obvious that the bound
for ||eg+1(,u)|| in (26) is sharper than that in (27). As a result, the final output error
bound in (25) is sharper than the trivial output error bound derived in (27).

7.2 Output error estimation for the batch chromatographic model

The above error estimates are derived for a scalar evolution equation, a single PDE.
For a system of several PDEs, one can analogously derive an error estimation for
the underlying system by taking all the field variables as one vector. However, the
behavior of the solution to each equation might be quite different, therefore, it is
desired to generate different reduced bases for each field variable, rather than using a
unified basis for all the field variables.

Here, we propose to derive an error estimation for each field variable for the under-
lying system (12) by following the error estimation in Section 7.1. Taking the error
bound for the field variable ¢, as an example, and recalling the detailed simulation for
c. (see (12)),
1—e€

€

At = Bl +d? — Ath?, (28)

the residual caused by the approximate solution €7 in (13) is

1 _
P () == BE™ + d — —— S AtTy[h. (e7)] — AenHL (29)
€

Cz
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Notice that the coefficient matrices A and B are independent of time, i.e., they
are constant matrices. This indicates the following error bounds in (32) and (33) are
relatively simple and cheap to compute.

Observe that (28), (29) correspond to (15) and (16) in the general case. Compared
to the general form (15), the additional term d? in (28) comes from the Neumann
boundary condition, which does not depend on the solution ¢7}. Instead of requiring a
Lipschitz continuity condition for A, as a function of cf, ¢ and ¢, we assume there
exists a positive constant Lj such that,

||hz(cg,cg,qg)—h (Cg’ég’q?)n SLh ||CZ—AZ||» ’I’LZO,...,K. (30)

(1) = 0, we have a similar esti-
(n=1,...,K) as follows,

Assuming the initial projection error is vanishing e

0

Cz

AN

mation for the approximation error ecz (1) :== cy — ¢

lec. Gl < Z: A" e (rey () + [l () (31)

where C = || B|| + 7Ly, 7 = 1= At. More tightly,

n— 32
= 3 G (A ) + A ),

where Gp . = HA_lBH +71Ly HA‘1H.
Analogously, the error bound for the output of interest e ,(u) := Pcl — P¢} can
be obtained based on the error bound of the field variable. Similar to (25), we have

where Go. = ||[PAT'B|| + 7Ly, ||[PA7Y||. Note that P = (0,...,0,1) € RV in this

model, which means the norm of the output e:}j(l) (1) is the absolute value of the last

e ()

Remark 7.8. The error estimate for ¢, and g, in (12) can also be obtained similarly
by following the derivation in Section 7.1. As the output of interest for the system in
(12) only depends on ¢, and ¢, the error estimates for g, and ¢, are not needed for
the output error bound, and therefore will not be presented here.

e (]| < e ()

= Go.clIN wre. (1) + 7 [|PATH | €y () + | P || A™ 2 ()

(33)

)

entry of the error vector e

Remark 7.9. As is mentioned above, it is possible to derive an error estimation for
the field variables U = (ca, ¢p, ¢a, @b)” by considering h. (ca, cb, ¢-) as a function of the
vector U. However, for the output error bound in (33), the error bound 1y s .. (¢) for
the field variable c; is involved, so is the desired error bound (denoted as 7}y 5, (1))
for the vector U, if the output error estimation is derived by considering all the field
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variables together. Obviously, the error bound 7} 5 (1) is much rougher than the
bound 7 . (1.

The assumption (30) is easily fulfilled in practice. In fact, the constant L, can be
conservatively chosen large, and the weight 7Ly, is still small because the time step At
is typically very small.

7.3 An early-stop criterion for the Greedy algorithm

From the expression of the error estimator above, it is seen that the error bound for
the field variables (n}y 5, (1) or 5. (1) ) is accumulated with time. Since ny /(1)
(or My are. (1), respectively) is involved in the output error bound in (25) (or (33),
respectively), the output error bound is also accumulated with time. As a result,
the output error bound at the final time steps may not reflect the true error after
a long evolution process. Figure 2 in Section 8.2 illustrates this behavior. In fact,
similar phenomena are reported in the literature, e.g. [30], where it is pointed out
that the error estimate, e.g. in (18), may loose sharpness when many time instances
t".n = 0,1,...,K, are needed for a given time interval [0, 7], which is typical for
convection-diffusion equations with small diffusion terms. However, the output error
bound is cheap to compute, and it may still provide a guidance for the parameter
selection in the greedy algorithm.

To circumvent the problem above, we add a validation step to get an early-stop of
the extension process, as is shown in Algorithm 5. More precisely, after Step 6 in
Algorithm 4, we compute the decay rate dn of the error bound. If dn is smaller than a
predefined tolerance, indicating the error bound stagnates, then we further check the
true output error at the parameter pmax determined by the greedy algorithm. When
the true output error at pmax is smaller than tolgp, we assume that there is no need
to include a new basis vector, and the RB extension can be stopped; otherwise, the
process should continue.

Algorithm 5 RB generation using ASS-POD-Greedy with early-stop
Input:  Pirain, o, tolre(< 1), toldecay
Output: RBV = [V4,...,Vy]
: Implement Step 1 in Algorithm 4.
while the error ny (fmax) > tolgp do
Implement Steps 3—6 in Algorithm 4.

1d
NN-1 (M:;\ax ) —7NN (Mmax)

Compute the decay rate of the error bound dn = ol

if dn < tolgecay then
Compute the true output error at the selected parameter fimax, €n (Lmax)-
if en(tmax) < tolrp then
Stop
end if
end if
: end while

— =
= o
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Remark 7.10. It can happen that the error bound stagnates for a while, but then again
decays. In order to monitor such a case, the tolerance tolgecay should be set to a very
small value, which allows some steps of stagnation. If after some steps of stagnation,
the error bound still does not decay, then Step 5 in Algorithm 5 will be implemented.

8 Numerical experiments

In this work, the RB methodology is employed to accelerate the optimization with
nonlinear PDE constraints. As a case study, we investigate the optimal operation
of batch chromatography. More specifically, the operating variable u = (Q,t,) is
optimally chosen in a reasonable parameter domain to maximize the production rate
Pr(p) =: %, while respecting the requirement of the recovery yield Rec(u) :=

t t .
%' Here7 S(N) = ft: Ca,O(t; M)dt+ft12 Cb,O(t; [L)dt, Cz,O(t§ :u) = Cz(ta 1, u)v is the
concentration of component z (z = a, b) at the outlet of the column. We consider the

optimization problem of batch chromatography as follows,

gleig{*PT(u)}v

s.t. Recpin — Rec(p) <0, peP (34)
c. (1), gz (1) are the solutions to the system (3) — (5),z = a, b.

Notice that when solving the system (3)—(5), the time step size has to be taken
relatively small so that the cutting points ¢; can be determined properly, i = 1,...,4,
and the the integral in s(u) can be evaluated accurately. The small step size results
in a very large number (up to O(10%)) of total time steps for every parameter y € P,
which causes a lot of difficulties in the error estimation and the generation of the
reduced basis.

The model parameters and operating conditions are presented in Table 1. The Henry
constants and thermodynamic coeflicients in the isotherm equation (4) are given in
Table 2. The parameter domain for the operating variable p is P = [0.0667, 0.1667] x
[0.5, 2.0]. The minimum recovery yield Recy, is taken as 80.0%, and the purity
requirements are specified as Pu, = 95.0%, Pup = 95.0%, which determine the cutting
points to and ¢3 in s(u). To capture the dynamics precisely, the dimension of spatial
discretization A in the FOM (12) is taken as 1500.

Table 1: Model parameters and operating conditions for the chromatographic model.

Column dimensions [cm] 2.6 x 10.5
Column porosity € [-] 0.4

Péclet number Pe [-] 2000
Mass-transfer coefficients ., z = a,b [1/s] | 0.1

Feed concentrations ct, z = a, b [g/]] 2.9
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Table 2: Coefficients of the adsorption isotherm equation.

Ho [ 1269 [Hn[] [373
o[ (01 | Hw[ |03
Ko [1/g] | 0.0336 | Ko: [I/g] | 0.0446
Kag [l/g] | 1.0 Ky [1/g] | 3.0

In this section, we first illustrate the performance of the adaptive snapshot selection
for the generation of the RB and CRB, and then show the output error estimation for
the generation of the RB. Finally we present the results for the ROM-based optimiza-
tion of batch chromatography. All the computations were done on a PC with Intel(R)
Core(TM)2 Quad CPU Q9550 2.83GHz RAM 4.00GB unless stated otherwise.

8.1 Performance of the adaptive snapshot selection

To investigate the performance of the technique of adaptive snapshot selection, we
compare the runtime for the generation of the RB and CRB with different threshold
values tolags. As is shown in Algorithm 4 in Section 5, the ASS can be combined with
the POD-Greedy algorithm and used for the generation of the RB. For the computation
of the error indicator N (fmax) in Algorithm 4, EI is involved for an efficient offline-
online decomposition. To efficiently generate a CRB, the ASS is also employed. The
training set for the generation of the CRB is a sample set with 25 sample points of
= (Q, tin), uniformly distributed in the parameter domain. For each sample point,
Algorithm 3 is used to adaptively choose the snapshots for the generation of the CRB.
The runtimes for the CRB generation with different choices of tolags are shown in
Table 3. It is seen that, the larger threshold is used, the more runtime is saved. This
means that a lot of redundant information is discarded due to the adaptive selection
process. Particularly, with the tolerance tolasg = 1.0 x 10™4, the computational time
is reduced by 90.3% compared to that of the original algorithm without ASS. However,
how to choose an optimal threshold is empirical and problem-dependent.

Table 3: Illustration of the generation of CRBs (W,, W) at the same error tolerance
(tolcrp = 1.0 x 10~7) with different thresholds. M’ = 1, is the number of
the basis for error estimation.

tolass Res. ([1€3, a1 1€Rs 4 arr ) M (Wa Wy)  Runtime [h]
no ASS - 92x 1078 85x107° 146 152 62.5 (-)
ASS 1.0x107% 96 x107% 81x107% 147 152 6.05 (—90.3%)
ASS 1.0x 1073 87x107% 9.9x107% 147 152  3.62(—94.2%)
ASS 1.0x 1072 94x107% 6.2x107% 144 150 2.70 (—95.7%)

Table 4 shows the comparison of the runtime for the generation of the RB by using
the POD-Greedy algorithm with and without ASS. Note that the CRB is precomputed
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with tolasg = 1.0 x 10™% for the ASS, and the corresponding runtime is not included
here. The training set is a sample set with 60 points uniformly distributed in the
parameter domain. Here and in the following, the tolerances are chosen as tolcrg =
1.0 x 1077, tolgg = 1.0 x 1076, tolags = 1.0 x 10~%. It is seen that the runtime for
generating the ROM with the ASS is reduced by 51.2% compared to that without ASS
at the same tolerance tolgg. Moreover, the accuracy of the resulting reduced model
with ASS is almost the same as that without ASS, as is shown in Table 5.

Table 4: Comparison of the runtime for the RB generation using the POD-Greedy
algorithm with early-stop (Algorithm 5) with and without ASS.

Algorithms Runtime [h]
POD-Greedy 16.22 1
ASS-POD-Greedy 7.92 (—51.2%)

! Due to the memory limitation of the PC, the computation was done
on a Workstation with 4 Intel Xeon E7-8837 CPUs (8 cores per CPU)
2.67 GHz RAM 1TB.

8.2 Performance of the output error bound

As aforementioned, it is wise to use an efficient error estimation for the output for
the generation of the RB. In the chromatographic model, given a parameter u, the
values of Pr(u) and Rec(u) in (34) are determined by the concentrations at the outlet
of the column ¢ 5(n) = Pcl(p),n = 0,..., K, z = a,b, which constitute the output
of the FOM in (12). Consequently, the output error bound will be taken as the error
indicator ny (1) in the greedy algorithm (e.g. Algorithm 4, 5) for the generation of the
RB, which yields a goal-oriented ROM.

Note that the error bound ﬁ?V+A1/[cz (1) in (33) is the bound for the output error of
the component c, at the time instance t"*! for a given parameter 1 € P. We use the

following error bound in Algorithm 4, Ny (tmax) = max max 7y . (i), where
1EPtrain z€{a,b}
N e (B) == & Zle TN oz, (1) is the average of the error bound for the output
of ¢, in the whole evolution process. In accordance, we define the reference true
output error as e := max eén(u), where én(p) := max €. (i), enc. (1) ==
HEPtrain z€{a,b}

+ fo:l e o (1) —=¢Z o ()], and €7 5 (12) is the approximate output response computed
from the ROM in (14).

Figure 2 shows the error decay and the true error as the RB is extended by using
Algorithm 4. It can be seen that the output error bound stagnates after certain steps,
although the true error is very small already. To circumvent the problem, Algorithm 5
is implemented to get an early-stop.

Figure 3 shows the results for Algorithm 5, where tolass = 0.03. Using the early-
stop, the greedy algorithm can be terminated in time and the dimension of the RB can
be kept small without loosing accuracy. It can be seen that 47 RB vectors already make
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the true output error very small, and the output error bound begins to stagnate, so that
the early-stop gives a reasonable stopping criterion. Figure 4 shows the parameters
selected in the RB extension with the greedy algorithm. The size of the circle shows
how frequently the same parameter is selected for the RB extension.

Here, we want to point out that the difference between the error bound for the field
variable and the output error bound is not so big. This is not surprising, because the
derivation of the error bound for the output is based on that of the field variable. The
technique of using the dual system could be employed to improve the error estimates,
which will be investigated in the future.

Finally, to further assess the reliability and efficiency of the ROM, we performed the
detailed and reduced simulation using a validation set P, with 600 random sample
points in the parameter domain. Table 5 shows the average runtime over the validation

set, and the maximal error defined as Max.error = max en(w). It is seen that the
HEPyal
average runtime for a detailed simulation is sped up by a factor of 53, and the maximal

true error is below the prespecified tolerance tolgg. In addition, the concentrations
at the outlet of the column computed by using the FOM and the ROM at a given
parameter p = (Q,tin) = (0.1018,1.3487) are plotted in Figure 5, which shows that
the ROM (14) reproduced the dynamics of the original FOM (12).
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Figure 2: Illustration of the error bound decay during the RB extension using Algo-
rithm 4, and the corresponding true output error. The output error bound
max

NN (fmax) and the maximal true output error eN®* are defined in Section 8.2,

the field variable error bound is defined as ny := max max {fn arc. (1)},
1EPtrain z€{a,b}

_ K
where 7y w1, (1) = 7 31 MW ar.c. (-
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Figure 3: Error bound decay during the RB extension using the early-stop technique,
Algorithm 5 and the corresponding maximal true output error.
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Figure 4: Parameter selection in the generation of the RB. The size of a circle indicates
how frequently the parameter is selected during the process. The bigger the
circle, the more often the parameter is selected.
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Table 5: Runtime comparison of the detailed and reduced simulations over a validation
set P,q; with 600 random sample points. Tolerances for the generation of the
ROM: tolcrg = 1.0 X 1077,tOZASS =1.0 x 1074,tOlRB =1.0x 1076.

Simulations Max. error Average runtime [s]/SpF
FOM (N = 1500) = 312.13(-)
ROM, POD-Greedy 3.79 x 107 6.3 / 50
ROM, ASS-POD-Creedy 4.58 x 1077 6.3 / 50

0.9

0.61

o
[
T

Dimensionless Concentration

c,-FOM
cb—FOM
ca—ROM

I cb—ROM

5
Dimensionless Time

Figure 5: Concentrations at the outlet of the column using the FOM (N = 1500) and
the ROM (N = 47) at the parameter u = (Q, ti,) = (0.1018,1.3487).
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8.3 ROM-based Optimization

Once the ROM (14) is obtained, the original FOM-based optimization problem (34)
can be approximated by the following ROM-based optimization problem:

gg{—ﬁr(u)},

s.t. Recmin — Rec(u) <0,
¢y (1), 7 () are the RB approximations from the ROM (14), z = a, b.

Here Pr(u) and Rec(p) are the approximated production and recovery yield, respec-
tively. More specifically, at each iteration of the optimization process, for a selected
parameter u, the production and recovery yield are evaluated by solving the ROM
(14) rather than the original FOM (12).

In this work, we use the global optimizer NLOPT_GN_DIRECT_L, an efficient

gradient—ree algorithm in the open library NLopt [27], to solve the optimization prob-
lems. Let p* be the vector of parameters determined by the optimization procedure
at the kth iteration, ¥ = 1,2,.... When |pfT! — u¥|| < tolypt, the optimization

process is stopped and the optimal solution is obtained. The tolerance is specified
as tolgpy = 1.0 X 10~*. The optimization results are shown in Table 8.3. The op-
timal solution to the ROM-based optimization converges to that of the FOM-based
one. Furthermore, the runtime for solving the FOM-based optimization is significantly
reduced. The speed-up factor (SpF) is 54.

Note that if the offline cost, i.e., the runtime for constructing the ROM, is taken into
account, the total cost of solving the ROM-based optimization is 79.35 hours if there
is no ASS for the generation of the CRB and RB. It is even longer than the runtime for
directly solving the FOM-based optimization. The latter is just 33.88 hours. However,
when the technique of ASS was implemented for the construction of the ROM, the
total cost of solving the ROM-based optimization is only 14.6 hours, which is less than
half of the runtime for solving the FOM-based one. Needless to say, the gain is much
more when the ROM is repeatedly used for multi-query context.

In fact, although the offline cost is usually not considered in the RB community,
the total cost is an issue for many applications, e.g. the ROM-based optimization in
this paper. For many simulations with varying parameters, the following two runtimes
should be well balanced: one is constructing and using a surrogate ROM; the other is
directly using the original FOM.

Table 6: Comparison of the optimization based on the ROM and FOM.

Simulations Objective (Pr)  Opt. solution () N_it I Runtime [h]/SpF
FOM-based Opt. 0.020264 (0.07964, 1.05445) 202 33.88 / -
ROM-based Opt. 0.020266 (0.07964,1.05445) 202 0.63 / 54

1 N_it denotes the number of iterations required to converge.

26



9 Conclusions

We have discussed how to use a surrogate ROM to solve an optimization problem
constrained by parameterized PDEs with nonlinearity, and applied it to batch chro-
matography.

As a robust PMOR method, the RBM serves to generate the ROM. The empirical
operator interpolation has been employed for an efficient offline-online decomposition.
The ASS technique is proposed for an efficient generation of the RB and/or CRB,
by which the offline time was significantly reduced with negligible loss of accuracy.
An output-oriented error estimation is derived based on the residual in the vector
space. However, the output error bound is conservative due to the error accumulation
with time evolution. To circumvent the stagnation of the error bound, an early-stop
criterion was proposed to make the RB extension stop in time with a desired accuracy.
The resulting goal-oriented ROM is reliable and efficient over the whole parameter
domain, and is qualified for optimization. To avoid the error accumulation in the error
bound, output error estimation using the dual system should be a good candidate, and
is under current investigation.
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