
Max Planck Institute Magdeburg
Preprints

Peter Benner Patrick Kürschner
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Abstract

We consider the problem of determining an optimal semi-active damping of vibrating
systems. For this damping optimization we use a minimization criterion based on the im-
pulse response energy of the system. The optimization approach yields a large number of
Lyapunov equations which have to be solved. In this work we propose an optimization
approach that works with reduced systems which are generated using the parametric dom-
inant pole algorithm. This optimization process is improved with a modal approach while
the initial parameters for the parametric dominant pole algorithm are chosen in advance us-
ing residual bounds. Our approach calculates a satisfactory approximation of the impulse
response energy while providing a significant acceleration of the optimization process.
Numerical results illustrate the effectiveness of the proposed algorithm.

1 Introduction
Consider a vibrational system described by

Mq̈(t) + Cuq̇(t) +Kq(t) = B2u(t) + E2w(t), (1)
y(t) = C2q̇(t), (2)
z(t) = H1q(t), (3)

where the matrices M and K (called mass and stiffness, respectively) are real, symmetric
positive definite matrices of order n. The matrices B2 ∈ Rn×p and C2 ∈ Rp×n are the
control and control velocity matrices, respectively, while E2 ∈ Rn×q represents the primary
excitation matrix. The internal damping Cu is usually taken to be a small multiple of the
critical damping denoted by Ccrit, that is (see, e.g., [6, 7, 24]),

Cu = αcCcrit, where Ccrit = 2M1/2
√
M−1/2KM−1/2M1/2. (4)

The state variables are contained in the coordinate vector q ∈ Rn and z ∈ Rs is the perfor-
mance output which is described by the constant matrix H1 ∈ Rs×n. If one is also interested
in the velocities, the output z can include an additional part which corresponds to the veloci-
ties, but in this paper only the states are of interest. The vectors u ∈ Rp and w ∈ Rq are the
control and primary excitation (i.e. noise) inputs, respectively.

We consider the case of a negative linear feedback corresponding to a linear damper of the
form

u(t) = −Gy(t), (5)

where G ∈ Rp×p is a diagonal matrix G = diag (g1, g2, . . . , gp), called damping matrix. The
non-negative entries gi represent the friction coefficients of the corresponding dampers. These
coefficients are in the following referred to as gain parameters gi for i = 1, . . . , p and can be
constant or variable with time within feasible margins, e.g., gi(t) ∈ [g−i , g

+
i ] for i = 1, . . . , p.

The internal damping given by (4) with αc > 0 stabilizes the system which helps during the
damping optimization.
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By using the control u given in (5) together with C2 = BT2 , we obtain from equations
(1)-(3)

Mg̈(t) + Cq̇(t) +Kq(t) = E2w(t), (6)
z(t) = H1q(t), (7)

where C := Cu+B2GB
T
2 . The usual assumption C2 = BT2 gives a positive definite damping

matrix C such that the system is asymptotically stable. The matrices B2 and G constitute the
semi-active damping part of the above second order system. More details regarding stability
and the given model can be found in [9, 10].

The transfer function matrix of (6) - (7), obtained from the Laplace transform, is given by

F (s) = H1(s2M + sC +K)−1E2, s ∈ C. (8)

With the substitutions x1 = q and x2 = q̇ we obtain a representation of our vibrating system
as the first order differential equation

ẋ(t) = Ax(t) + Ew(t), (9)
z(t) = Hx(t),

where

x =

[
x1
x2

]
, A(G) =

[
0 I

−M−1K −M−1(Cu +B2GB
T
2 )

]
, E =

[
0

M−1E2

]
,

(10)

and H =
[
H1 0

]
. (11)

The main problem is to determine ”the best” damping matrix G which will minimize the
output z under the influence of the input w.

Our aim will be the construction of an efficient algorithm that optimizes the damping matrix
G. Then one can improve performance by a switching strategy which will ensure at least the
same performance. The switching strategy can be in an on-off mode, which arises in problems
of a semi-active damping, see [9, 10] for more details.

In a damping optimization one can consider different criteria (see, e.g., [10]). For our
purposes we will consider the impulse response energy which corresponds to the system’s 2-
norm. In the frequency domain we define a cost function J2 in terms of the transfer function
matrix (8) via

J2 =

∫ +∞

−∞
tr (F (jω)∗F (jω)) dω. (12)

In terms of the impulse as an input, for the single-input single-output case, this criterion can
be written as ∫ +∞

0

‖zD(t)‖22 dt, (13)

where zD is the impulse response of system (9) obtained with w(t) as the Dirac impulse.
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Using the standard theory (see, e.g., [10, 11, 27]), it can be shown that J2 can be expressed
in the form

J2 = tr
(
ETPE

)
, (14)

which is much more convenient for numerical computations. There, P is the solution of the
following Lyapunov equation

ATP + PA = −HTH, (15)

with the matrices A, H given in (10)-(11).
This leads to an optimization problem of determining the optimal matrix G such that

tr
(
ETPE

)
→ min . (16)

Damping optimization using the given criterion requires solving the Lyapunov equation (15)
numerous times, which in general could be inefficient, as well as memory and time consum-
ing. This is even the case when state of the art numerical methods for large-scale Lyapunov
equations (see, e.g., the surveys [5, 23]) are employed. Thus, our aim is to introduce an ap-
proach which calculates approximations of our second-order system such that the optimization
process is significantly accelerated.

There exist a number of different methods for calculating the approximated system. A re-
view of different methods for this dimension reduction can be found in [1, 2, 4]. In [6, 7],
the approximation is based on dimension reduction of second-order systems for optimizing a
passive damping. In this paper we use another strategy based on an interpolatory eigenvalue
based approach from [22] in order to optimize the semi-active damping efficiently. This ap-
proaches uses a small number of selected eigenvalues and -vector corresponding to the second
order system (6)-(7). Since these can be computed efficiently by the dominant pole algorithm
[18, 21], this can be a computational advantage compared to other model reduction techniques
for dynamical systems. Moreover, for parameter dependent systems, it enables to reuse certain
data for different gain parameters.

In the next section, we will at first briefly describe the main ideas of the class of dominant
pole algorithms, including also the parametric dominant pole algorithm which we plan to
use in damping optimization. Afterwards, a strategy for determining good initial parameters
for the parametric dominant pole algorithms, and a complete gain optimization routine using
the proposed reduction techniques is presented. Section 3 illustrates the effectiveness of the
method by virtue of numerical examples and Section 4 concludes.

2 Parametric dominant pole algorithm for damping
optimization

Since our optimization criterion can be written in terms of the transfer function (12), our aim
is to have a good approximation of it. For this purpose we will use an approximation ob-
tained with the dominant pole algorithm. The transfer function can be expressed as a function
of eigenvalues (called poles) of the corresponding quadratic eigenvalue problem. If the al-
gebraic equals the geometric multiplicity for all eigenvalues, the transfer function (8) can be
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represented as

F (s) =

2n∑
i=1

Ri
s− λi

(17)

with the residues
Ri = (H1xi)(y

∗
iE2)λi ∈ Cs×q.

There, λi ∈ C, xi, yi ∈ Cn\{0} are eigenvalues, right and left eigenvectors of the quadratic
eigenvalue problem

(λ2iM + λiC +K)xi = 0, y∗i (λ2iM + λiC +K) = 0, i = 1, . . . , 2n. (18)

For a proper approximation of the transfer function F (s) from (17) we will need the concept
of dominant poles. There are different definitions of dominant poles, and we will use one
which is well suited from our point of view regarding semi-active damping optimization.

Definition 1 (Dominant Poles [15, 16, 18, 21]). For the transfer function F (s) in (17), a pole
λi will be called dominant if

‖Ri‖
Re(λi)

>
‖Rj‖
Re(λj)

∀j 6= i.

Regarding the underlying eigenvalue problem (18), xi, yi are then also referred to as domi-
nant right and left eigenvectors.

First we would like to emphasize that the importance of the input-output behavior is, on
the one hand, included in the residue ‖Ri‖. On the other hand, if some pole is close to the
imaginary axis (real part of a pole is small) it can have a greater influence on the energy, but
if ‖Ri‖ is very small (due to the input and output matrices) this influence might not be that
important which is included in the fraction ‖Ri‖

Re(λi)
. Furthermore, from the Bode magnitude

plot (ω, ‖F (iω)‖) it can be seen that peaks occur at frequencies close to the imaginary parts
of the dominant poles of F (s) [20] which also justifies the importance of the dominant poles.

In order to have a good approximation of the transfer function (8) we will approximate
it by its dominant terms. That is, using the k most dominant poles, the transfer function is
approximated as

F (s) ≈ Fk(s) =

k∑
i=1

Ri
s− λi

. (19)

The approximation Fk(s) is also referred to as transfer function modal equivalent [16, Section
IV] of F (s) corresponding to the k eigentriples (λi, xi, yi). The reduced transfer function
Fk(s) corresponds to the reduced order model

Y ∗MXq̈k(t) + Y ∗CXq̇k(t) + Y ∗KXqk(t) = Y ∗E2w(t), (20)
z(t) = H1Xqk(t), (21)
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where q(t) ≈ Xqk(t) and X, Y ∈ Cn×k span the eigenspaces associated with the k selected
dominant eigenvalues of the quadratic eigenvalue problem. Since we obtain matrices of the
dimension k in the reduced system, we will call the parameter k reduced dimension. Note
that in our setting M , C and K are symmetric positive definite matrices and it holds that if
xi is a right eigenvector for an eigenvalue λi, then yi = xi is a left eigenvector for λi and
vice-versa. Since eigenvalues come in complex conjugate pairs, the space spanned by the
right eigenvectors is equal to the space spanned by the left eigenvectors, thus Y = X can be
chosen. For the reduced system we need therefore only right eigenvectors and the original
system (6)-(7) can be approximated by the following reduced-order model:

X∗MXq̈k(t) +X∗CXq̇k(t) +X∗KXqk(t) = X∗E2w(t),

z(t) = H1Xqk(t).
(22)

The calculation of dominant poles can be performed by using an efficient structure-exploiting,
specially tailored eigenvalue algorithm which will be described in the next subsection.

2.1 Subspace accelerated dominant pole algorithm for second
order systems

In this section we will summarize an algorithm based on approaches from [18, 21] which cal-
culates the dominant poles and the corresponding eigenvectors using the second-order struc-
ture of the multi-input multi-output system. The algorithm we are interested in is the subspace
accelerated quadratic MIMO dominant pole algorithm (SAQMDP) [18, 21] which is a gener-
alization of the MIMO dominant pole algorithm (SAMDP) [15, 16] to second order systems.
The main ingredient in the derivation of dominant pole algorithms is the observation that, for
any transfer function matrix F (s), the function

f(s) := (σmax(F (s)))
−1 → 0 (23)

as s approaches an eigenvalue of the quadratic eigenvalue problem. The basic idea beyond
dominant pole algorithms is then to formally apply a Newton scheme to the above function.
This gives a sequence of approximate eigenvectors that convergence to the right and left eigen-
vectors corresponding to a dominant pole of F (s). Storing these approximate eigenvectors ob-
tained in each iteration in subspaces, i.e., adding the concept of subspace acceleration, gives
the subspace accelerated dominant pole algorithm [20, 19]. The incorporation of the second
order structure leads to SAQMDP [18, 21] which is illustrated in Algorithm 1. In the following
we briefly describe the main steps of Algorithm 1.

Step 2 The Newton process applied to (23) requires the computation of the right and left singu-
lar vectors u, z corresponding to the largest singular value of F (s(1)). See [18, 19] for
detailed calculations. We refer to u, z as direction vectors in the following. This step is
simplified for square transfer functions matrices (number of inputs equals the number
of outputs) [19] and can be neglected for single-input single-output systems [20, 21].

Step 4 The adjoint linear systems of equations are intrinsically also a part of the Newton step.
The results v(j), w(j) are approximate right and left eigenvectors. It is assumed that we
are able to solve these large and sparse linear systems by direct solvers.
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Algorithm 1 SAQMDP

Require: System matrices M,C,K,E2, H1 defining (6),(7), initial value s(1) for frequency,
tolerance 0 < τ � 1, number of wanted poles kwanted.

Ensure: Dominant poles S = diag (λ1, . . . , λk) and corresponding right and left eigenvec-
tors X = [x1, . . . , xk], Y = [y1, . . . , yk].

1: Set V = W = X = Y = [ ], k = 0, j = 1.
2: Compute right and left singular vectors u, z corresponding to σmax(F (s(j))).
3: while k < kwanted do
4: Find v(j), w(j) by solving

(s(j)
2
M + s(j)C +K)v(j) = E2z, (s(j)

2
M + s(j)C +K)∗w(j) = H1u.

5: Orthogonally expand V and W by v(j) and w(j), respectively.
6: Compute most dominant eigentriple (θ(j), x̃(j), ỹ(j)) of the projected system:

W ∗MV, W ∗CV, W ∗KV, W ∗E2, H1V.

7: Compute approximate eigenvectors x(j) = V x̃(j), y(j) = Wỹ(j) and the residuals

r
(j)
R = (θ(j)

2
M + θ(j)C +K)x(j), r

(j)
L = (θ(j)

2
M + θ(j)C +K)Hy(j).

8: if max(‖r(j)R ‖, ‖r
(j)
L ‖) < τ then

9: Set k = k + 1.
10: Augment X = [X,xk := x(j)], Y = [Y, yk := y(j)], S = diag

(
S, λk := θ(j)

)
.

11: Deflate (λk, xk, yk).
12: Compute right and left singular vectors u, z corresponding to σmax(F (θ(j))).
13: end if
14: Perform a restart if necessary.
15: Set s(j+1) = θ(j), j = j + 1.
16: end while

Step 5–7 These steps belong to the subspace acceleration phase. The results v(j), w(j) are used
as orthogonal expansion for the spaces spanned by V and W and a Petrov-Galerkin
projection is performed onto the second order system. The dominant pole θ(j) and
its corresponding eigenvectors x̃(j), ỹ(j) of the resulting small system in Step 6 can
be computed by direct methods for eigenvalue problems. In our implementation, the
quadeig routine [13] worked satisfactory for this task. These small vectors are lifted
up into the n-dimensional space in Step 7 to serve as approximate eigenvectors of the
large-scale problem. The residuals are computed to enable an accuracy assessment of
the current approximate eigentriplet.
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Step 8–12 If the norms of the right and left eigenvalue residuals ‖r(j)R ‖, ‖r
(j)
L ‖ are small enough,

the triple (xk := x(j), yk := y(j), λk := θ(j)) is accepted as approximate dominant
eigentriplet. The eigenvector and eigenvalue matrices X,Y, S are augmented. If the
eigenvalue is complex,X and Y can be augmented by [Rexk, Imxk] and [Reyk, Imyk]
to avoid some of the involved complex arithmetic operations. In order to prevent detect-
ing this found eigentriplet again by the algorithm, it is deflated from the process. There
are various ways for this, e.g. by restricting the input and output matrices E2, H1 and
we point towards the relevant literature [19, 21] for details. After that, new direction
vectors u, z corresponding to F (θ(j)) are computed as in Step 2.

Step 14 As the iteration proceeds, the column dimensions of V and W increase and so does the
numerical effort for the orthogonal expansions and the solution of the small eigenvalue
problem. Hence, V , W should be reduced to a smaller column dimension if they be-
come too large. This is usually referred to as restart. Optionally, new direction vectors
u, z can be computed after the restart has been performed.

Recall from the above discussion that due to the symmetry properties of M,C,K in our ap-
plication for the eigenvectors it holds y = x for a complex eigenvalue λ. However, SAQMDP
cannot be simplified according to this observation in a straightforward way because in general
v(j) 6= w(j) unless E2 = HT

1 . If convergence to an eigenvalue occurs, it holds that v(j) → x
and w(j) → x. Hence, a single matrix X is sufficient to store the found eigenvectors. In order
to get the best result we propose to always select the eigenvector with the smallest residual to
expand X . I.e., if ‖r(j)R ‖ < ‖r

(j)
L ‖ then xk := x(j), yk = x(j), but xk := y(j), yk := y(j)

otherwise.
The given matrices defining (6)–(7) are assumed to be real and it is possible to exploit this

realness also in SAQMDP, e.g., by keeping the spaces V and W in real arithmetic. This
amounts to applying similar algorithmic modifications as proposed in [25] for the general-
ized linear eigenvalue problem. In the remainder, when we mention SAQMDP, we always
imply that both realness and symmetry of the quadratic eigenvalue problems are exploited as
mentioned above.

2.2 Parametric dominant pole algorithm
Our aim is to obtain an accurate reduced system for various gains since we would like to opti-
mize these gains for the corresponding configuration of the system matrices. In the given para-
metric system (6), the matrix C depends on the semi-active damping parameters and, in order
to emphasize this dependence, it is in the following denoted byC(g) with g = (g1, g2, . . . , gp).
The main idea in the parametric dominant pole algorithm is to compute approximations ac-
quired with the dominant pole algorithm for a small number of selected parameters and to
obtain an ‘interpolatory’ reduced model for other values in g.

In [22] it is shown that with such an interpolatory based approach, the original and reduced
model have the same behavior near the dominant poles and the parametric reduced model ob-
tained with this parametric dominant pole algorithm satisfies a Hermite interpolation property.

Proposition 1 ([22, Theorem 2]). Let x ∈ span {X}, y ∈ span {Y } for an eigentriple
(λ, x, y) of (18) for a given g. Moreover, let F (s), F̂ (s) denote the original and reduced
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transfer function matrices of (6)-(7), where F̂ (s) is obtained using (20). Assume that λ is
simple and that y∗x 6= 0, y∗x− |λ|2M−1y∗B2B

T
2 x 6= 0. Then it holds

lim
s→λ
|s− λ|2 ∂F

∂g
= lim
s→λ
|s− λ|2 ∂F̂

∂g
.

Proof. The proof can be carried out exactly as for [22, Theorem 2] by rewriting the second
order system (6)-(7) into a first order system (9) and exploiting the structure of the matrices
A,E,H .

The interpolation property is a desirable and important property for gain optimization since
a reduced model which is a good approximation of the original model for various values of
gains g is required. Hence, using the parametric dominant pole algorithm can be advantageous
over other model reduction approaches that do not have the Hermite interpolation property.

There are different implementations for the interpolatory dominant pole algorithm (for more
details see [22]) and we will summarize an approach based on SAQMDP for the calculation of
the reduced system. An algorithm called continuation SAQMDP is illustrated in Algorithm 2
and computes reduced models that will enable an efficient semi-active damping optimization.

The selected values of parameters for which we will calculate dominant poles will be called
initial parameters and are denoted by g(1), g(2), . . . , g(m). For these values the reduced transfer
function approximates the original transfer function in the sense of (19) and the reduced model
satisfies interpolation properties as shown in [22].

Algorithm 2 continuation SAQMDP

Require: System matrices defining (6),(7), initial value for frequency s(1), initial parameters
g(1), g(2), . . . , g(m), number of wanted poles kwanted for the given setting of parameters.

Ensure: Right eigenvectors X corresponding to found dominant poles.
1: Set X = [ ].
2: for j = 1, . . . ,m do
3: Use SAQMDP for computing k dominant poles and corresponding right eigenvectors

X(j), where the damping part C(g(j)) is determined by the gains g(j).
4: Merge the eigenvectors X(j) to X .
5: end for
6: X = orth(X).

In Step 6 of Algorithm 2 we introduce an additional orthogonalization. There, a clever
orthogonalization routine should be employed to ensure that numerically linearly dependent
columns in X are discarded and the matrix X has full column rank such that reduced system
will have regular coefficient matrices. It is noteworthy that in principle, also several other
model reduction techniques [8] can be used in Step 3 to provide the matrices X(j) for a given
g(j). However, as we are interested in the dominant poles of the systems transfer function,
the application of SAQMDP is chosen here. Note that in order to improve the convergence
to dominant poles in step 3, we can use the most dominant pole from the previous run of
SAQMDP as new initial value for the frequency. Using the obtained eigenvectors collected in
the matrix X from Algorithm 2, the reduced system can be formed as in (22).
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It is important to point out that the mass, damping and stiffness matrices of the reduced
system are again symmetric, positive definite and thus, the reduced system is also stable as is
the original system.

Next, we draw special attention to one particular setting of initial parameters, namely the
case with initial gain g(1) = 0.

2.3 Modal approximation
In the case of a zero gain (g = 0), the system is only damped by the internal damping term.
In order to simplify the analysis of this particular case, we transform the system using the
so-called modal coordinates. For that purpose let Φ denote the nonsingular matrix that simul-
taneously diagonalizes M and K, i.e.,

ΦTKΦ = Ω2 = diag
(
ω2
1 , . . . , ω

2
n

)
and ΦTMΦ = I, (24)

where 0 < ω1 ≤ ω2 ≤ . . . ≤ ωn. The columns of the matrix Φ (usually called modal ma-
trix) are the undamped eigenvectors of the system Mq̈ + Kq = 0 and the positive numbers
ω1, ω2, . . . , ωn are the associated eigenvalues, and thus, they are called undamped eigenfre-
quencies. Furthermore, the matrix Φ also diagonalizes the internal damping as ΦTCuΦ = αΩ
with α = 2αc.

By using (24) and substituting q(t) = Φq̂(t), from the equations (6)-(7) we obtain the
vibrational system:

¨̂q(t) + ΦTB2GB
T
2 Φ˙̂q(t) + Ω2q̂(t) = ΦTE2w(t), (25)

z(t) = H1Φq̂(t). (26)

With x̂1 = Ωq̂ and x̂2 = ˙̂q, similar as in the introduction, we obtain the following first order
system of differential equations:

˙̂x(t) = Âx̂(t) + Êw(t), (27)

z(t) = Ĥx̂(t),

where

x̂ :=

[
x̂1
x̂2

]
, Â :=

[
0 Ω
−Ω −αΩ− ΦTB2GB

T
2 Φ

]
, Ê :=

[
0

ΦTE2

]
,

and Ĥ :=
[
H1ΦΩ−1 0

]
. The minimization criterion (16) leads to the Lyapunov equation

ÂT P̂ + P̂ Â = −ĤT Ĥ. (28)

A Lyapunov equation of similar structure was investigated in the papers [6, 7] where the au-
thors were simplifying the solutions of Lyapunov equations using dimension reduction tech-
niques in order to efficiently calculate its approximation.

For formulating the criterion (16) in terms of the solution of the Lyapunov equation (28), a
direct calculation shows that

P = U∗P̂U, where U =

[
ΦΩ−1 0

0 Φ

]
,
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and the matrices P and P̂ are solutions of the Lyapunov equations (15) and (28), respectively.
Furthermore, if we uniformly partition the matrices P̂ , E as

P̂ =

[
P11 P12

P21 P22

]
, E =

[
0

M−1E2

]
,

the impulse response energy given in (16) is

J2 = tr
(
ETPE

)
= tr

(
ETU∗P̂UE

)
= tr

(
ET2 ΦP22ΦTE2

)
.

Now, we will construct an approximation for the given impulse response energy using
eigenvectors of the undamped system which will correspond to the initial gain equal to zero.
Eigenvectors of the system corresponding to the zero gain are equal to columns of the matrix
Φ, i.e. the matrix X from (22) corresponding to the zero gain contains columns of the matrix
Φ.

Approaches that use undamped eigenvectors for forming the reduced system are usually
called modal approximations [7, 12, 26].

In order to decide which undamped eigenvectors should be chosen, we will compare the
reduced system with the system in modal coordinates determined by equations (25)-(26), es-
pecially for the criterion (16).

Here, the right-hand side of the corresponding Lyapunov equation has a special structure
which has a strong influence on the solution. The main question is: in terms of the criterion
(16), which undamped eigenvectors should be chosen in this particular case?

For the answer we consider the structure of the right-hand side in the Lyapunov equation
(28) which is equal to ĤT Ĥ where Ĥ =

[
H1ΦΩ−1 0

]
. More precisely,

ĤT Ĥ =

[
Ω−1ΦTHT

1 H1ΦΩ−1 0
0 0

]
.

Furthermore, if we denote φi to be the ith column of Φ we obtain

ΦΩ−1 =
[

1
ω1
φ1

1
ω2
φ2 · · · 1

ωn
φn

]
and a direct multiplication reveals that the upper diagonal block has the following elements

(Ω−1ΦTHT
1 H1ΦΩ−1)ij =

1

ωiωj
φTi H

T
1 H1φj .

The obtained elements are quadratic in 1
ωi

and since the ωi are ordered increasingly, for main-

taining the largest elements in the matrix ĤT Ĥ in the case of the zero gain, we take the
eigenvectors (columns of matrix Φ) such that in the right hand side of the Lyapunov equation
the r largest numbers are maintained. Altogether this means that in (22)

X = Φ( : , 1 : r) (29)

is chosen. With this the reduced Lyapunov equation will include the upper diagonal r × r
block of the right hand-side (Ω−1ΦTHT

1 H1ΦΩ−1). Note that truncating with eigenvectors
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that correspond to the smallest undamped eigenvalues gives us the eigenvalues of the system
with zero gain closest to the imaginary axis. This also shows the importance of the poles close
to imaginary axis, especially for the small gains.

In the case where the eigenvectors are equal to the undamped eigenvectors, that is for X =
Φ( : , 1 : r), we obtain from equations (22) the reduced system

q̈r(t) + Φ( : , 1 : r)∗CΦ( : , 1 : r)q̇r(t) + Ωkqr(t) = Φ( : , 1 : r)∗E2w(t),

z(t) = H1Φ( : , 1 : r)qr(t),

where Ωr = diag (ω1, ω2, . . . , ωr). The corresponding Lyapunov equation for the approxi-
mated system is

ÃTQ+QÃ = −H̃T H̃, (30)

where

Ã =

[
0 Ωr
−Ωr −αΩr −XTB2GB

T
2 X

]
, H̃ =

[
H1XΩ−1r 0

]
.

Hence, the impulse response energy J2 can be approximated by

J2 ≈ tr
(
ET2 XQ22X

TE2

)
(31)

with Q22 being the lower diagonal block of the solution Q of the Lyapunov equation (30).
The modal approximation plays an important role in engineering applications. In our case

it allows us to conclude, directly from criterion (16), which eigenvectors are important for a
gain equal to zero.

Furthermore, modal approximation can be easily incorporated into our approach which uses
continuation SAQMDP by taking the initial parameter g(1) equal to zero.

In the optimization procedure this requires insignificant computations since these eigen-
vectors have to be computed only once in the process and this is achieved efficiently using
iterative eigenvalue solvers for generalized eigenvalue problems.

The usage of modal approximations in our approach will be discussed in the next subsection.

2.4 Gain optimization
In the numerical examples we will illustrate that a few different values of parameters g(1), g(2), . . . , g(m)

are often sufficient to obtain satisfactory approximations of the optimal damping. Further-
more, by changing the gains for small or even moderate values, the same eigenvectors can
provide good approximations of the eigenspaces. Thus, the dimension of the reduced system
is usually much smaller than the full dimension. In this section we will show how this can be
determined in advance.

Furthermore, in many applications we observe that, even with eigenvectors that correspond
to the zero initial gain, we can obtain sufficiently accurate approximations of the original
system in the sense of gain optimization. Thus, we include the eigenspace corresponding to
the zero gain in the first approximation.

We would like to efficiently determine initial parameters g(1), g(2), . . . , g(m) and at this
moment it is not clear how one can choose initial gains. Thus, we will derive a corresponding
residual bounds which will provide additional information. In this setting, the main question
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is: if we have computed an (approximate) eigenspace for the gain g(i), what should be the
next gain g(i+1) for which it is required to compute a new eigenspace?

First, recall that the gain g(i) = (g1, g2, . . . , gp) determines the damping part C(g(i)) =
Cu + B2GB

T
2 where G = diag (g1, g2, . . . , gp). Let us assume that for the gain g(i), us-

ing Algorithm 1, we have calculated k dominant right eigenvectors x(1), x(2), . . . , x(k) and
corresponding eigenvalues θ(1), θ(2), . . . , θ(k) for a residual tolerance τ :

‖(θ(j)
2
M + θ(j)(Cu +B2 diag (g1, g2, . . . , gp)B

T
2 ) +K)x(j)‖ < τ, ∀j = 1, . . . , k. (32)

The residual corresponding to these approximate eigenpairs for the system with gain g(i) +
∆g(i) is, using (32),

‖(θ(j)
2
M+θ(j)C(g(i) + ∆g(i)) +K)x(j)‖

=‖(θ(j)
2
M + θ(j)(Cu +B2 diag (g1 + δg1, g2 + δg2, . . . , gp + δgp)B

T
2 ) +K)x(j)‖

<τ + ‖θ(j)B2 diag (δg1, δg2, . . . , δgp)B
T
2 x

(j)‖
≤τ + ‖θ(j)B2‖‖diag (δg1, δg2, . . . , δgp) ‖‖BT2 x(j)‖, ∀j = 1, . . . , k.

Our aim is to determine for which perturbation ∆g(i) = (δg1, δg2, . . . , δgp) the same subspace
will be also good up to fixed new tolerance ν.

In general,

τ � ‖(θ(j)
2
M + θ(j)C(g(i) + ∆g(i)) +K)x(j)‖ ≤ ν, ∀j = 1, . . . , k

because the approximate eigenpairs (θ(j), x(j)) correspond to the system with gain g(i). We
would like to determine ∆g(i) such that the same eigenvectors are also good for g(i) + ∆g(i)

for a prescribed tolerance ν. Since τ � ν we neglect τ in the formula above and we have that

‖(θ(j)
2
M + θ(j)C(g(i) + ∆g(i)) +K)x(j)‖ <τ + ‖θ(j)B2‖‖‖∆g(i)‖‖‖BT2 x(j)‖

/‖θ(j)B2‖‖∆g(i)‖‖BT2 x(j)‖ ≤ ν, ∀j = 1, . . . , k.

Thus, if
‖∆g(i)‖ ≤ ν

‖θ(j)B2‖‖BT2 x(j)‖
, ∀j = 1, . . . , k.

holds, the eigenspace obtained for g(j) will also give proper approximation for g(i) + ∆g(i).
A measure that takes all computed approximate eigenpairs into account can be formulated
by using the mean average over the upper bounds for all eigenpairs. The upper bound for
acceptable change of g(j) associated to all eigenpairs is determined by

rj :=
1

k

k∑
j=1

ν

‖θ(j)B2‖‖BT2 x(j)‖
.

Another possibility would be a criterion which includes the term min
j

ν

‖θ(j)B2‖‖BT2 x(j)‖
. In

practice this might be too pessimistic since we can have very few indexes j where ν
‖θ(j)B2‖‖BT

2 x
(j)‖

is large while in the other cases this is quite small.
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For including the obtained bound in the algorithm for the gain optimization, we introduce

K(g(j), rj) := {g : ‖g − g(j)‖ ≤ rj},

where rj is defined in (33).
Note that, if we assume that all dampers have the same gains (G = gIp), then we can obtain

a sharper bound for ∆g(i) ∈ R as

|∆g(i)| ≤ ν

‖θ(j)B2BT2 x
(j)‖

, ∀j = 1, . . . , k

and use

rj =
1

k

k∑
j=1

ν

‖θ(j)B2BT2 x
(j)‖

(33)

in this case. The efficiency of our gain optimization algorithm can be improved by using the
above bounds. For the given gain g we check if g ∈ K(g(j), rj) for some j. If this is the case,
the same subspace can be used for the approximation of the function J2. If not, this gain is
added to the set of gains and the subspace X is enriched by new eigenvectors. Algorithm 3
illustrates this approach for the gain optimization.

Algorithm 3 Computation of optimal gains

Require: System matrices; initial value for frequency s(1); tolerance ν for determination of
initial parameters; number of wanted poles kwanted for each setting of parameters.

Ensure: Approximate optimal gains.
1: Set j = 1, initial parameter g(1) = 0 and X as in (29) and calculate rj .
2: Find optimal gains by using an appropriate optimization procedure (e.g., the Nelder-Mead

algorithm). Evaluate the function value of J2 at the found g as in steps 3 to 11:
3: if g ∈

⋃j
i=1K(g(j), rj) then

4: Calculate reduced system using current X as in (22).
5: Compute function value at gain g for the reduced system.
6: else
7: Set j = j + 1, g(j) = g.
8: Calculate eigenvectors X(j) for the initial parameter g(j) using SAQMDP (Algorithm

1).
9: Merge the eigenvectors X(j) to X (X = orth(X)) and calculate rj from (33).

10: Calculate reduced system using the augmented X as in (22).
11: Compute function value at gain g for the reduced system .
12: end if

Note that the calculation of the eigenvectors corresponding to the zero initial gain should
be carried out only once for the whole optimization procedure. Furthermore, including the
eigenvectors of the undamped system additionally stabilizes the optimization procedure. In
particular, due to the occasional slow convergence of the SAQMDP for some configurations,
we might end up with a very small reduced dimension which yields a reduced system which
is not accurate enough. With the zero initial gain we, however, always end up with reduced
dimensions that are greater or equal to the number of wanted poles.
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3 Numerical experiments
In this section we illustrate the efficiency of the introduced approximation techniques. For
that purpose we will compare the new approach with the optimization without reduction. In
both approaches the Lyapunov equations are solved by the Hammarling’s algorithm [14] im-
plemented in the MATLAB® function lyapchol based on the SLICOT routines SB03OD
and SG03BD [3].

In these examples, the computations have been carried out on a compute server using 4
Intel Xeon @2.67 GHz CPUs with 8 cores per CPU and 1 TB RAM. Results were calculated
in MATLAB Version 7.11.0.584 (R2010b) 64-bit.

Example 1. We will consider an n-mass oscillator or oscillator ladder which describes the
mechanical system of n masses and n + 1 springs (see e.g. [7]). The mathematical model is
given by (1)-(3), where the mass and stiffness matrices are

M = diag (m1,m2, . . . ,mn) ,

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . . . . . . . .
−kn−1 kn−1 + kn −kn

−kn kn + kn+1

 .

We will consider the following configuration for the mass and stiffness values:

n = 1800; ki = 2, ∀i; mi =

 1500− 2i, i = 1, . . . , 600,
600− i/2, i = 601, . . . , 999,
i− 800, i = 1000, . . . , n.

The internal damping is given by the damping matrix (4) with αc = 0.002. For simplicity G
is a diagonal matrix G = diag (g, g, . . . , g) ∈ Rp×p with p = 6. The control as well as the
control velocity matrix are given by

B2 = [ej ej+1 ej+10 ej+11 ej+20 ej+21] , (34)

where 1 ≤ j + 21 ≤ n and ej is the jth canonical vector. Here, we have introduced an index
j since we will consider different configurations for B2. Furthermore, we are interested in the
states in the first third of n-mass oscillator that correspond to the smallest masses, that is, we
consider 40 states starting with the 580th state:

z(t) = [q580(t) q581(t) . . . q619(t)]
T
.

Hence, H1 ∈ R40×n with
H1(1 : 40, 580 : 619) = I40×40

and all other entries are equal to zero. Since we consider gain optimization for different
primary excitation matrices, we defineE2 ∈ Rn×30 such that the primary excitation is applied
to 30 masses determined by the index k:

(E2)i =

{
1, k ≤ i ≤ k + 29,
0, otherwise, where k + 29 ≤ n. (35)
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We compare the approximation of the impulse response energy J2 for different damper
positions and different primary excitations, i.e., the following configurations of (k, j) are taken
into consideration:

for k = 30 : 200 : 1800, j = 100 : 200 : 1800,

exclude indices, where for (j < 600 & k < 600) | (j > 600 & k > 600)

it holds |j − 500| < |k − 500|,

with k and j determining B2 and E2 as given by (34) and (35), respectively. This yields in
total 60 different starting configurations for the gain optimization.

The following parameters required by Algorithms 1–3 are used:

kwanted = 72, ν = 3 · 10−4, τ = 10−12.

The initial value for the frequency s(1) in SAQMDP is taken as the eigenvalue closest to the
imaginary axis corresponding to the zero initial gain. For this example this is−2.505 ·10−7 +
1.252 · 10−4i.

Since we consider different configurations (we especially change the primarily excitation
input, the control and the control velocity matrix) we need to sort these configurations. In
order to present relative errors more clearly, the different configurations are sorted w.r.t. the
magnitude of the relative error in the optimal gain. Figure 1 presents the relative errors of the
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Figure 1: Relative errors for the gain and the energy J2.

optimal gain calculated with and without dimension reduction by Algorithm 3. The circles
denote the relative error of the optimal gain calculated by |g0 − g|/g, where g and g0 denote
the optimal gain calculated with and without dimension reduction, respectively. Similarly,
triangles denote the relative errors w.r.t. the approximation of the impulse response energy J2,
where in the case without dimension reduction, J2 was calculated at the exact optimal gains.

Recall that all gains are constant and equal, thus we can apply Nelder-Mead’s method (see
e.g. [17]) implemented in the MATLAB function fminsearch. The tolerance for this
optimization was 10−5 and the initial guess was set to 40.

The magnitude of the optimal gains and impulse response energies J2 can be seen in Figure
2. As it can be seen there, the optimal gain varies between 4 and 46.
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Figure 2: Magnitudes of the optimal gains and impulse response energies.
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Figure 3: Time ratio between exact and approximation based approach.

In Figure 3 the speed-up in computational time of the optimization process obtained by the
new approximation technique is illustrated. More precisely, it shows the ratio between the
times required for the gain optimization with and without the novel approximation technique
using dimension reduction. Evidently, the new approach requires from 4 to 107 times less
computation time which leads to a considerably faster gain optimization process.

Note that in Algorithm 3 we calculate eigenvectors which correspond to g = 0 and addi-
tional gains which are determined using the residual bound from Section 2.4. Altogether, in
the optimization procedure based on the residual bound we had to recalculate eigenvectors
for one to four additional gains g and thus the reduced dimension varies between 90 and 216
(the full dimension is 1800). Figure 1 reveals that all relative errors are of order 10−2 or
smaller. For the tolerance ν = 3 · 10−4, the maximal reduced dimension varies between 5%
and 12% of the original dimension. Figure 4 shows the maximal reduced dimensions for the
corresponding configurations.

In the following example we will compare quality of the proposed approach on different
mechanical structure. Apart from the previous example we will consider two different gains
and compare the results when varying geometry of the corresponding control as well as control
velocity matrix.
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Figure 4: Reduced dimension.

Example 2. In this example we will consider a mass oscillator with 2d+ 1 masses and 2d+ 3
springs given in [7, Example 2]. This example has two rows of d masses connected with
springs where the first row of masses has stiffness k1 and the second row has stiffnesses k2.
The first masses on the left edge (m1 and md+1) are connected to a fixed bound while on the
other side of rows the masses (md and m2d) are connected to mass m2d+1 with a stiffness k3
connected to a fixed bound.

The mass matrix is a diagonal matrix as in the previous example and the stiffness matrix is
defined by

K =

K11 −κ1
K22 −κ2

−κT1 −κT2 k1 + k2 + k3

 ,
where

Kii = ki


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 , κi =


0
...
0
ki

 , i = 1, 2.

We will consider the following configuration for the mass and stiffness values:

d = 800, n = 2d+ 1 = 1601; k1 = 3, k2 = 1, k3 = 2;

mi = 3.98 + 0.02 · i for i = 1, . . . , 600;

mi = 34− 0.03 · i for i = 601, . . . , 800;

mi = 23− 0.01 · i for i = 801, . . . , 1600; m2d+1 = 10.

With this configuration, masses on the first row are smaller on the edges, while on the second
row of masses we have masses that decrease in magnitude.

The internal damping is given by the damping matrix (4) with αc = 0.005.
Here, we are interested in 20 states. In particular, 10 masses on the first row of masses

starting from the 301st to 310th mass and on the second row of masses starting from the
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1201st to 1210th mass. Thus, the matrix H1 ∈ R10×n has the following form

H1(1 : 10, 301 : 310) = I10×10,

H1(1 : 10, 1201 : 1210) = I10×10,

and all other entries are equal to zero.
Here, the primary excitation input acts on masses closer to edges of the mechanical structure

and the input is stronger on edges, thus we define E2 ∈ Rn×11 with

E2(1 : 5, 1 : 5) = diag (5, 4, 3, 2, 1) ,

E2(801 : 85, 6 : 10) = diag (5, 4, 3, 2, 1) ,

E2(1601, 11) = 10,

and all other entries are equal to zero.
In this example we have two different gains g1 and g2 determining G which is a diagonal

matrix G = diag (g1, g1, g2, g2) ∈ Rp×p with p = 4. The control as well as the control
velocity matrix B2 ∈ Rn×4 is determined with indices j and k such that

B2 = [(ej − ej+1) (ej+10 − ej+11) (ek − ek+1) (ek+10 − ek+11)] .

Note that by varying indices j and k we change the geometry of control as well as the control
velocity matrix. In particular, we consider the following configuration of indices j and k:

j = 50 : 100 : 800, k = 900 : 200 : 1600

which will give 32 different configurations. This means that the first two columns of B2

determine the control and the control velocity on the first row of masses while the third and
fourth column determine the control and the control velocity part applied to the second row of
masses.

The following parameters required by Algorithms 1–3 are used:

kwanted = 120, ν = 5 · 10−3, τ = 10−12.

The initial value for the frequency s(1) in SAQMDP is taken as the eigenvalue closest to the
imaginary axis corresponding to the zero initial gain.

Here, we consider two different gains and, like in the previous example, we apply Nelder-
Mead’s method, but the tolerance for this optimization was set to 10−4 and the initial guess
was set to [500, 500].

Figure 5 presents the relative errors of the optimal gain calculated with and without di-
mension reduction by Algorithm 3. The circles denote the relative error of the optimal gain
calculated by ‖g0 − g‖/‖g‖, where g and g0 denote the optimal gain calculated with and
without dimension reduction, respectively. We consider different configurations regarding the
control velocity matrix, thus, in Figure 5 different configurations (j, k) are sorted w.r.t. the
magnitude of the relative error in the optimal gain.

Similarly, triangles denote the relative errors w.r.t. the approximation of the impulse re-
sponse energy J2, where in the case without dimension reduction, J2 was calculated at the
exact optimal gains.
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Figure 5: Relative errors for the gain and the energy J2.

Figure 5 reveals that in this example all relative errors are of order or smaller than 10−1.
Moreover, the reduced dimension varies between 152 and 757 (full dimension is 1601) and in
this example we needed more additional gains in the optimization process, compared to the
previous example. This is partially expected since damping optimization with different gains
is more demanding, but in general this also depends on the system configuration.

We would like to note that also in this example at each configuration our approach was
faster. For the considered 32 configurations, the whole optimization process algorithm without
the approximation technique required 509.61 hours, while with the approximation technique
we needed 40.2 hours which lead to a considerably faster gain optimization process.

4 Conclusions
In this paper we have considered optimizing a semi-active damping using a criterion based
on the impulse response energy. This optimization problem is a very demanding due to the
numerous Lyapunov equations which have to be solved. We have presented an approach
which approximates the impulse response energy by efficiently computing approximations of
the transfer function. This is achieved by using the dominant pole algorithm for parametric
systems with the initial parameters chosen using eigenvalue residual bounds. Numerical ex-
periments confirms the efficiency of our approach in the sense that the optimization process is
considerably accelerated and satisfactory approximations of the optimal gain are obtained.
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[24] N. Truhar and K. Veselić, An efficient method for estimating the optimal dampers’
viscosity for linear vibrating systems using Lyapunov equation, SIAM J. Matrix Anal.
Appl. 31(1), 18–39 (2009).

[25] T. van Noorden and J. Rommes, Computing a partial generalized real Schur form using
the Jacobi–Davidson method, Numer. Linear Algebr. 14(3), 197–215 (2007).
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