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Abstract

The Reduced Basis Method (RBM) generates low-order models of
parametrized partial differential equations (PDEs). These allow for the efficient
evaluation of parametrized models in many-query and real-time contexts.

We use the RBM to generate low order models of micro scale semiconduc-
tor devices under variation of frequency, geometry and material parameters. In
particular, we focus on the efficient estimation of the discrete stability constant,
used in the Reduced Basis error estimation, which enables to generate low-order
models with certified accuracy. A good estimation of this discrete stability con-
stant is a challenging problem for Maxwell’s equations. We therefore test and
compare multiple techniques and discuss their properties in this context.
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1 Introduction

The Reduced Basis Method (RBM) generates low order models for the efficient solution
of parametrized partial differential equations (PDEs) in real-time and many-query
scenarios. One of its key features is that the RBM employs rigorous error estimators
to perform the model reduction and to certify the accuracy of the reduced simulation.
In recent years, the RBM has been developed to apply to a wide range of problems,
of which [1] and the references therein, give an overview.

We address the use of the RBM for time-harmonic electromagnetic problems, which
shows exponential convergence speed in the approximation error, see [2]. However, a
computational bottleneck is in the construction of the error bound, namely the signifi-
cant computational time required to estimate the inf-sup stability constant. Therefore,
we replace the rigorous time-consuming successive constraint method by approxima-
tion methods. We give a detailed comparison of methods to estimate the stability
constant to extend on previous work [2] and [3]. In particular, the so-called Min-
Res estimator, introduced in [4] shows superior performance compared to the other
estimators.

Recent work in parametric model order reduction (PMOR) within the electromag-
netic regime uses multipoint expansion techniques [5] and proper orthogonal decom-
position (POD) [6]. Geometric parameter variations are also investigated in [5]. The
RBM can also be extended to time-dependent Maxwell formulations, see [7] as an
example.

Section 2 introduces the computational framework, while section 3 briefly covers the
reduced basis model reduction and section 4 gives details on the error estimation. The
main contribution of the paper is in section 5 and section 6. Section 5 derives different
estimators for the discrete stability constant and in section 6 numerical comparisons are
performed on the example of a coplanar waveguide. Section 7 concludes our findings.

2 Model Problem

We consider the second order time-harmonic formulation of Maxwell’s equations in the
electric field E

∇× µ−1∇× E + jωσE − ω2εE = jωJ in Ω, (1)

subject to essential boundary conditions E × n = 0 on ΓPEC and Neumann boundary
conditions ∇ × E × n = 0 on ΓPMC, where ∂Ω = ΓPEC ∪ ΓPMC. The source current
density is denoted by J , the imaginary number j, the frequency ω and the material
coefficients are the permeability µ, conductivity σ and permittivity ε.

The field solution is sought in the space H(curl) which is the set of functions

H(curl) = {u ∈ (L2(Ω))3|∇ × u ∈ (L2(Ω))3}, (2)

with corresponding norm

‖u‖H(curl) = (‖u‖2(L2(Ω))3 + ‖∇ × u‖2(L2(Ω))3)
1
2 . (3)
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The parameter vector ν is introduced to denote parametric dependence in frequency
ω, geometry (which is varied by varying Ω and or ΓPEC,ΓPMC) or material coefficients
(µ, σ, ε). The parameter dependent weak form with test function w to (1) is established
with sesquilinear form

a(E,w; ν) =
(
µ−1∇× E,∇× w

)
+ jω (σE,w)− ω2 (εE,w) (4)

using the complex L2-inner product (·, ·) over Ω and the linear form

f(w; ν) = jω (J,w) (5)

as
a(E(ν), w; ν) = f(w; ν) ∀w ∈ X , (6)

using the function space

X = {u ∈ H(curl)|u× n = 0 on ΓPEC}. (7)

The Neumann boundary conditions on ΓPMC are natural boundary conditions and are
therefore implicit in the weak formulation of the problem.

After discretization with H(curl)-conforming Nédélec finite elements [8], solving (6)
reduces to solving a sparse linear system

Ax = jωb, (8)

for the state vector x ∈ CN of large dimension N , which represents the electric field
solution E =

∑
xiφi in the discrete space X, which is composed of basis functions

{φj |j = 1, ...,N}, s.t.

X = span{φj |j = 1, ...,N}. (9)

The associated inner product matrix of the discrete function space is denoted M .
It is defined element-wise by

Mij = (φi, φj). (10)

The X-norm of a vector x is thus computed as

‖x‖X =
√
xTMx. (11)

When we are interested in the transfer behavior over a certain frequency range (i.e.
ν = ω), the matrix A is affinely decomposed into parameter-independent matrices as

A = Aµ + jωAσ − ω2Aε, (12)

where the matrices Aµ, Aσ and Aε are discretizations of the respective parts of the
weak form, defined element-wise by

Aµij =
(
µ−1∇× φi,∇× φj

)
, (13)

Aσij = (σφi, φj) = σM, (14)

Aεij = (εφi, φj) = εM, (15)
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and right-hand-side vector b, defined as

bi = (J, φi). (16)

PEC boundary conditions are incorporated by setting the appropriate degrees of
freedom to zero and PMC boundary conditions are treated as natural boundaries.

Splitting the state vector x into real and complex parts x = xreal+jximag and using
(12), the complex linear system can be rewritten as an equivalent system of twice the
dimension over the real numbers

[
Aµ − ω2Aε −ωAσ

−ωAσ −Aµ + ω2Aε

][
xreal

ximag

]
=

[
0

−ωb

]
. (17)

This leads to a real and symmetric system matrix, thus its spectrum is real, which
is advantageous for the computation of eigenvalues required in the error estimation
process.

In the case of multiple parameters a similar affine decomposition can be readily
established, see [1] or [3] for the treatment of geometric parameters:

Aν =

Qa∑
q=1

Θq
a(ν)Aq.

In the following, we will denote by E(ν) either the parameter-dependent 2N -dimensional
solution vector to the real system (17) or the corresponding function in X. In that
context we can rewrite the bilinear form a(·, ·; ν) defined over the H(curl) conforming
finite element space X by the system matrix Aν from (17) as

a(E(ν), w; ν) = E(ν)TAνw

= E(ν)T

[
Aµ − ω2Aε −ωAσ

−ωAσ −Aµ + ω2Aε

]
w. (18)

The vector w also has to be interpreted as an element in R2N or an element of X
depending on the situation.

3 Reduced Basis Method for time-harmonic
EM-problems

The aim of the RBM is to determine a low order space XN ⊂ X of dimension N ,
which approximates the parametric solution manifold Mν = {E(ν) ∈ X|ν ∈ D} well.
Given such a space XN , it is possible to gain accurate approximations EN (ν) ∈ XN

to E(ν) by projecting (6) onto XN , i.e. solve

a(EN (ν), wN ; ν) = f(wN ; ν) ∀wN ∈ XN .
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Due to the affine decomposition (as seen in Section 2 and more detailed in [1, 2, 3])
of the bilinear and linear form, they can be written as

a(E(ν), w; ν) =

Qa∑
q=1

Θq
a(ν)aq(E(ν), w), (19)

f(w; ν) =

Qf∑
q=1

Θq
f (ν)fq(w).

Here Qa and Qf are reasonably small. Using the affine decomposition allows evaluating
the error estimator with an algorithmic complexity that is independent of the full order
discretization size [1].

An integral part in the model reduction are error estimators ∆N (ν), which give
rigorous bounds to the approximation error in the discrete H(curl) norm.

‖E(ν)− EN (ν)‖X ≤ ∆N (ν). (20)

The error estimation is at the heart of this paper and we will concentrate on its
computation.

4 Error Estimation

The error estimation is developed using the dual space X ′ of X. The dual space X ′ is
defined as the space of linear functionals φ : X → R. The dual norm is defined as

‖φ‖X′ = sup
v∈X

|φ(v)|
‖v‖X

. (21)

According to the Riesz representation theorem (as X is a Hilbert space), the spaces
X and X ′ are isometrically isomorph, i.e. for each φ ∈ X ′ there exists a unique v ∈ X
such that φ(·) = (v, ·)X and ‖φ‖X′ = ‖v‖X . In particular, it holds that f(·; ν) ∈ X ′
and a(u, ·; ν) ∈ X ′.

Considering the residual r(w, ν) = a(E(ν)− EN (ν), w, ν) , we see that

‖r(·, ν)‖X′

‖E(ν)− EN (ν)‖X
≥ inf
u∈X

‖a(u, ·, ν)‖X′

‖u‖X
=: β(ν),

with ‖r(·; ν)‖X′ the dual norm of the residual with respect to the full scale discretized
problem. The constant β(ν) is called the discrete inf-sup stability constant, as it can
be written as

β(ν) = inf
w∈X

sup
v∈X

a(w, v; ν)

‖w‖X‖v‖X
(22)

and if a lower bound βLB(ν) is known, we have that the error between FEM and RB
solutions is bounded by the error estimator
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‖E(ν)− EN (ν)‖X ≤ ∆N (ν) =
‖r(·; ν)‖X′

βLB(ν)
.

The computation of a rigorous lower bound to the discrete stability constant βLB(ν)
is the most time-consuming part in rigorous error estimation, especially when applied
to Maxwell’s equations, see [9]. As the computational effort for upper bounds is
much less, we extend our investigations to methods actually computing upper bounds
and compare their performance in approximating the parametrized discrete stability
constant.

5 Discrete Stability Constant

The RBM typically employs a successive constraint method (SCM) to obtain lower
bounds to the discrete stability constant. In particular the application to Maxwell’s
equations shows slow convergence, see [9].

As the computational complexity of the SCM for obtaining rigorous error estima-
tors is often too high in the case of Maxwell’s equations, we consider approximations
βN (ν) ≈ β(ν). In particular, we use the upper bounds derived from [9], and the
MinRes and Galerkin estimators (method 1 and method 3 from [4]) and Kriging inter-
polation [10]. As βN (ν) only approximates the discrete stability constant and is not a
lower bound, these error estimators can be applied as in

∆N (ν) =
‖r(·; ν)‖X′

ρβN (ν)
,

with 0 < ρ < 1. However, numerical results indicate that the upper bounds of the
MinRes estimator are tight and allow for a choice of ρ close to one.

Introducing the Riesz representer, or supremizing operator T ν defined via the rela-
tion (T νw, v)X = a(w, v; ν), ∀v ∈ X, it holds

β(ν) = inf
w∈X

‖T νw‖X
‖w‖X

,

β2(ν) = inf
w∈X

(T νw, T νw)X
(w,w)X

.

The Riesz representer T νw satisfies the relation T νw = arg supw∈X
a(w,·;ν)
‖w‖X and is

computed by solving a linear system with the inner product matrix (MT ν = Aν). One
can compute the discrete stability constant by finding the eigenvector corresponding to
the smallest eigenvalue of the matrix Aν , i.e. solve the generalized eigenvalue problem

Aνx = λminMx (23)

for the eigenvalue λmin of minimum magnitude, which is equivalent to finding the
smallest eigenvalue of T ν .
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This is a large-scale, thus expensive eigenvalue problem, especially if one has to do
it for multiple values of the parameter ν.

While the eigenproblems considered here can be solved in MATLAB R© using the
eigs command, we also tried larger system sizes using the eigensolvers provided in the
SLEPC framework. Here, the Jacobi-Davidson algorithm gave best results in accuracy
and computation time for λmin. However, the total time required for obtaining rigorous
error estimation was still significant even when using SLEPC [11, 12, 13].

5.1 SCM upper bounds

The affine decomposition (19) holds also for the operator T ν , in that T νw =
∑Qa

q=1 Θq
a(ν)T qw,

where the parameter-independent parts are defined via (T qw, v)X = aq(w, v), ∀v ∈
X. This allows to expand the stability constant as

(β(ν))
2

=

min
w∈X

Q∑
q′=1

Q∑
q′′=q′

(2− δq′q′′)Θq′(ν)Θq′′(ν)

(
T q

′
w, T q

′′
w
)
X

‖w‖2X

with δq′q′′ the Kronecker delta.

Using Zq
′′

q′ (ν) = Θq′(ν)Θq′′(ν) and symmetrization using elementary properties of
the inner product (·, ·)X , it follows

(β(ν))
2

=

min
w∈X

Q∑
q=1

Zqq (ν)−
Q∑

q′=1,q′ 6=q

Zq
′

q (ν)

 (T qw, T qw)X
‖w‖2X

+

Q∑
q′=1

Q∑
q′′=q′+1

Zq
′′

q′ (ν)

(
T q

′
w + T q

′′
w, T q

′
w + T q

′′
w
)
X

‖w‖2X
.

Define

yq,q(w) :=
(T qw, T qw)X
‖w‖2X

,

yq′,q′′(w) :=

(
T q

′
w + T q

′′
w, T q

′
w + T q

′′
w
)
X

‖w‖2X
,

and the set Y as

Y = {y = (y1,1, ..., yQ,Q) ∈ R
Q(Q+1)

2 |
∃w ∈ X s.t. yq,q = yq,q(w), yq′,q′′ = yq′,q′′(w)}.
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It thus holds (β(ν))2 = miny∈Y J (ν; y) with the objective function J : D×R
Q(Q+1)

2 →
R

J (ν; y) =

Q∑
q=1

Zqq (ν)−
Q∑

q′=1,q′ 6=q

Zq
′

q (ν)

 yq,q

+

Q∑
q′=1

Q∑
q′′=q′+1

Zq
′′

q′ (ν)yq′,q′′ .

Let CK denote a set of k parameter samples and define

YUB(CK) = {y∗(νk)|y∗(νk) = arg min
y∈Y
J (νk; y), νk ∈ CK},

which is a subset of Y.
Then derive the estimator for the squared stability constant as

(
βSCMN (ν)

)2
:=

miny∈YUB
J (ν, y), which satisfies βSCMN (ν) ≥ β(ν).

The set CK is obtained using typical sampling techniques. Here, we used Latin
hypercubes (see [14]) as sample sets, but numerical examples indicate that a uniform
deterministic sampling of the parameter domain yields about the same approximation
quality as Latin hypercubes.

5.2 MinRes Estimator

An upper bound estimator can be derived by restricting the minimizing space to a
subset XN ⊂ X and define

β(ν) = min
w∈X

‖T νw‖X
‖w‖X

≤ min
w∈XN

‖T νw‖X
‖w‖X

:= βminresN (ν).

Choose Xminres
N = {x(νi)|i = 1 . . . N}∪{E(νi)|i = 1 . . . N} as proposed in [4], where

x(νi) is the eigenvector corresponding to β(νi). Then solve the generalized eigenvalue
problem

XT
N (Aν)TM−1AνXNx = λminX

T
NMXNx, (24)

for the eigenvalue of minimum magnitude. Here, XN is a rectangular matrix of an
orthonormalized basis of the space Xminres

N , i.e. we identify the matrix XN of full
column rank with the linear subspace of X which is spanned by the columns of XN .

Taking the squared stability constant shows
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(
βminresN (ν)

)2
= min
w∈XN

(T νw, T νw)X
(w,w)X

= min
w∈XN

wT (T ν)TMT νw

wTMw

= min
w∈XN

wT (Aν)TM−1Aνw

wTMw
,

using T ν = M−1Aν . The solution of (24) solves the minimization problem.

5.3 Galerkin Estimator

The Galerkin estimator is obtained when restricting the minimizing as well as maxi-
mizing space

βGalerkinN (ν) = min
w∈XN

max
v∈XN

a(w, v; ν)

‖w‖X‖v‖X
,

and is not necessarily an upper bound to the stability constant.
As the trial as well as test space is restricted, the large-scale eigenvalue problem

(23) is projected onto XN , i.e. solve for each parameter

XT
NA

νXNx = λminX
T
NMXNx (25)

for the eigenvalue of minimum magnitude, which then serves as an estimate to the
stability constant.

Alternatively, an estimator can be derived by solving

XT
NM

−1AνXNx = λminx (26)

for the eigenvalue of minimum magnitude. We will briefly discuss using this approxi-
mation in the section on numerical results.

5.4 Kriging Interpolation Method

As a technique for interpolating functions depending on several parameters, Kriging is
often used. It dates back to Krige’s work of the 1950’s. Even though it was originally
used to approximate functions that have a non-deterministic character, it has become
popular in computational science and engineering applications to create meta-models
of black box functions that are expensive to evaluate. It gives in general better results
than polynomial approximation. We will describe the basic idea and refer to [10] for
a more detailed analysis.
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Assume we have given ν1, . . . , νn ∈ R and the observation vectorB = [. . . , β(νi), . . . ]
T .

We are interested in creating an interpolant (meta-model) β̂. In this setup, we assume

that β as well as its estimator β̂ are random fields and that β̂ is a linear combination
of the given observations:

β̂(ν) =

n∑
i=1

λi(ν)β(νi) (27)

such that the variance Var[β̂−β] is minimized under the constraint that the expected

value E[β̂ − β] = 0. We furthermore assume the random variable β has a constant
expected value and that the covariance function for β is known.

E[β(ν)β(µ)] = R(θ, ν, µ).

In our case the covariance function is given by a cubic spline and θ is determined during
the algorithm to best approximate. For this we use the MATLAB R© package DACE
[15]. Another choice is the SUMO toolbox [16], where we would expect comparable
results. Solving the minimization problem

min
λ

Var[β̂ − β] s.t. E[β̂ − β] = 0

under the assumptions discussed leads to the predictor

β̂(ν) =

n∑
i=1

γiR(θ, νi, ν) + δ, (28)

where γ and δ are the solutions to the linear problem:(
R e

eT 0

)(
γ

δ

)
=

(
B

0

)
.

R is a matrix with entries Rij = R(θ, νi, νj) and e is an n-dimensional vectors
with entries of 1 everywhere. The linear system is solved using a direct solver, as the
system is low-dimensional (the number of observations in our case is maximal 120).

The estimator β̂ is a realization to the given observation B.
To understand (28), we compute the Lagrange function:

L(λ, µ) =Var[β̂ − β] + µE[β̂ − β]

=E[(β̂ − β)2] + µE[β̂ − β]

=E[β̂2]− 2E[β̂β] + E[β2] + µE[β̂ − β]

=E[

n∑
i=1

n∑
j=1

λiλjβ(νi)β(νj)]− 2E[

n∑
i=1

λiβ(νi)β]

+ E[β2] + µ(

n∑
i=1

λiE[β(νi)]− E[β(ν)])

= λTRλ− 2rTλ+ E[β2] + µ(λT e− 1)E[β],
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Figure 1: Geometry of coplanar waveguide. The forcing term J is defined over the
discrete port.

with ri(ν) = R(θ, νi, ν). Redefining µ as 1/2µE[β] and minimizing leads to(
R e

eT 0

)(
λ(ν)

µ(ν)

)
−

(
r(ν)

1

)
= 0,

where ri(ν) = R(θ, νi, ν) and to a predictor β̂(ν) = λ(ν)TB according to (27). This
leads to

β̂ =λ(ν)TB =
(
λ(ν)T µ(ν)

)(B
0

)

=
(
λ(ν)T µ(ν)

)(R e

eT 0

)(
γ

δ

)

=
(
rT 1

)(γ
δ

)
= rT γ + δ =

n∑
i=1

γiR(θ, νi, ν) + δ.

This means that our predictor is a radial basis function interpolation with radial basis
function given by R with linear detrending.

6 Numerical Results of Stability Constant Estimation

As an example model, we consider a coplanar waveguide1, shown in Fig. 1. The
model setup is contained in a shielded box Ω with perfect electric conducting (PEC)
boundary on the ground. We consider three perfectly conducting strip lines as shown

1This model can be found in the Model Reduction Wiki, see morwiki.mpi-magdeburg.mpg.de.
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Figure 2: Stability constant plotted over variation of frequency and geometry.

in the geometry. The system is excited at a discrete port and the output is taken at
a discrete port on the opposite end of the middle strip line. These discrete ports are
used to model input and output currents/voltages.

The metal parts, i.e. the ground plate and the boundaries of the three metal sheets
constitute ΓPEC, where perfect electric conductance (PEC) is assumed.

The material coefficients are the permeability µ, the conductivity σ and the permit-
tivity ε. The metallic strip lines are immersed in a substrate of conductivity σ = 0.02
S/m and relative permittivity εr = 4.4, shown colored in yellow in Fig. 1. In the
upper part, the conductivity is σ = 0.01 S/m and relative permittivity εr = 1.07. The
relative permeability is µr = 1 in the entire domain.

As parametric variation we look at the frequency ω ∈ [1.3, 1.6] GHz and the width of
the middle strip line p ∈ [2.0, 14.0] mm. In the three parameter model, we additionally
consider that the conductivity in the lower part varies in [0.005, 0.02] S/m and the
conductivity in the upper part varies in [0.01, 0.04] S/m. This variation is applied as
a single parameter and it does not have a particular application in mind, but is used
formally to investigate the estimators on a three parameter model.

The full simulation has been performed with the finite element package FEniCS. For
our numerical experiments, we used a discretization size of 52′134 degrees of freedom
leading to the linear systems Aνx = bν of the discretization size. What RBM does is
creating a small, still parameter dependent linear system that can be solved very fast.

We investigate the performance of different techniques for obtaining estimators to
the discrete stability constant, such as successive constraint method upper bounds [9],
the MinRes and Galerkin approximations derived in [4] and the Kriging interpolation
method [10]. For the coplanar waveguide example, the discrete stability constant
β(ν) is shown in Fig. 2 under parametric variation of frequency and the width of the
middle strip line. Fig. 3 shows the three parameter example with additional parametric
variation of the conductivity.

The two- and three-dimensional parametric domains are sampled using Latin hy-
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Figure 3: Stability constant plotted over variation of frequency, geometry and
conductivity.

percubes and the eigenproblem corresponding to the computation of β(ν) is solved at
these parameter locations. We plot the number of eigenproblems solved versus the
relative approximation error to compare the approximation quality of the estimators,
which gives a rough estimate of the main computational effort.

The numerical results of the mean error (Fig. 4 and Fig. 6) and the maximum error
(Fig. 5 and Fig. 7) over a fine grid of the parameter domain show a clear indication for
the MinRes estimator. It is the only estimator which resolves the stability constant
with a mean error of less than 1%. The SCM upper bounds and the Kriging method
also show convergence, but at a lower rate than the MinRes approximation, while the
Galerkin estimator does not show convergence and probably requires a significantly
larger train set.

The mean and maximum errors are computed by taking the mean/maximum over

the relative errors erel(ν) = |β(ν)−βN (ν)|
β(ν) of a sampled grid of dimension 30× 35 in the

two parameter scenario and 10 × 10 × 15 in the three parameter case. This grid is
independent from the Latin hypercube samples used in the training process.

Table 1 shows the computation times of the estimators using five precomputed basis
vectors (i.e. function evaluations in case of Kriging). The precomputation of the basis
vectors took 160s, so this requires the largest portion of computational time. Thus,
the computation of the estimators is dominated by evaluating the large-scale discrete
stability constant, which is about 1.5 hours to generate the convergence plots.

Evaluating the Galerkin and Kriging estimators over the sample set has a negligible
computational time. Also the SCM upper bounds (30s) and MinRes (12s) have a
computational time which is much less than the function evaluations. The SCM bounds
take a larger computation time as the evaluation of the objective functional J (ν, y)
for all y ∈ YUB is expensive. Taking into account the time required for function
evaluations however, the computation times of the estimators are comparable for the
model under consideration. In our test case a single function evaluation takes 32s, so
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Figure 4: Convergence of mean error over fine reference sample set in the two parame-
ter example. Plotted is the number of eigenproblems solved versus the mean
relative approximation error.
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Figure 5: Convergence of maximum error over fine reference sample set in the two
parameter example. Plotted is the number of eigenproblems solved versus
the maximum relative approximation error.
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Figure 6: Convergence of mean error over fine reference sample set in the three pa-
rameter example. Plotted is the number of eigenproblems solved versus the
mean relative approximation error.
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Figure 7: Convergence of maximum error over fine reference sample set in the three
parameter example. Plotted is the number of eigenproblems solved versus
the maximum relative approximation error.
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Table 1: Comparison of Timings

Estimator Computation Time

MinRes 12s

Galerkin 0.6s

SCM upper bounds 30s

Kriging 0.6s

Table 2: Improving MinRes

Number of Eigenvectors mean relative error

1 0.1928

3 0.0152

5 0.0100

that adding additional observations in the Kriging for instance does exceed the total
computation times of the other estimators.

In Table 2, the effect of using eigenvectors corresponding to the three and five
smallest eigenvalues is investigated. The aim is to further increase the quality of the
MinRes estimator. It uses 15 sample points in the two parameter example and collects
the eigenvectors in the projection space XN . The rationale behind this investigation is
that the additional eigenvectors might serve as good approximations to the minimizers
at other sample points. The numerical results show a significant improvement of the
approximation quality for small increases in the number of eigenvalues. Also note
that the computational time does not increase significantly by gathering additional
eigenvectors.

The two variants of the Galerkin estimator (25) and (26) are compared in Table 3.
Both tend to underestimate the stability constant, which leads to worse approximations
when increasing the basis size. They are not effective for the model problem under
consideration.

Table 3: Comparison of Galerkin variants

No. of Eigenvectors mean error (25) mean error (26)

120 0.800 0.352

240 0.693 0.440

360 0.812 0.466
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7 Conclusion

The MinRes estimator clearly manages to resolve the stability constant better than all
the other estimators. To use this estimator in a practical setting, a heuristic stopping
criterion can be used, in the sense that if newly computed stability constants are
already well resolved, the algorithm can stop.
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