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Abstract

Stabilizing a flow around an unstable equilibrium is a typical problem in flow
control. Model-based designed of modern controllers like LQR/LQG or H∞
compensators is often limited by the large-scale of the discretized flow models.
Therefore, model reduction is usually needed before designing such a controller.
Here we suggest an approach based on applying balanced truncation for unstable
systems to the linearized flow equations usually used for compensator design. For
this purpose, we modify the ADI iteration for Lyapunov equations to deal with
the index-2 structure of the underlying descriptor system efficiently in an implicit
way. The resulting algorithm is tested for model reduction and control design of
a linearized Navier-Stokes system describing von Kármán vortex shedding.
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1 Introduction

Stokes, Navier-Stokes, or Oseen equations play an important role in describing various
problems in fluid dynamics and engineering applications. The spatial discretization of
such equations using finite difference or finite element methods produces large-scale
structured index-2 descriptor systems [21, 4]. In case of controller design, simulation
and design optimization, working with these large-scale systems is often problematic
due to computational complexity and storage requirements. The idea of model order
reduction (MOR) [2, 11, 25] is to approximate a large scale dynamical system by
a substantially lower dimensional system which has nearly the same input-output
behavior. This lower dimensional model then, e.g. serves as the basis for feedback
control design. The system theoretic method balanced truncation (BT) [2, 11] is
a particular technique which preserves important properties of the system (such as
asymptotic stability) and features an a priori bound on the approximation error.

The theory of BT for large-scale asymptotically stable descriptor systems has been
developed first by Stykel in [27, 28]. There the author discusses the general framework
of the BT method for a descriptor system. In principle, the proposed method is based
on splitting the descriptor system into proper and improper subsystems corresponding
to the deflating subspaces of the associated matrix pencil with respect to finite and
infinite eigenvalues, and on then reducing only the order of the proper subsystem. This
approach requires the availability of spectral projectors onto the respective subspaces.
Recently, a method for BT of structured large-scale descriptor systems of index 2
has been developed [19] that avoids the computation of spectral projectors. Instead it
implicitly performs an index reduction by projection to the inherent or hidden manifold
on which the solution evolves.

In this paper, we study the BT based model reduction of an unstable structured
index-2 descriptor system. In principle, one can apply the above BT technique to
this model by stabilizing the system first using a proper stabilizing feedback matrix
(SFM) and then following the approach in [19]. Picking up the ideas in [31] we apply
the truncating transformations computed with respect to the stabilized system to the
original unstable system. To compute the controllability and observability Gramian
factors (which are the main ingredients in determining the balancing transformations),
we need to solve two projected algebraic Lyapunov equations of the stabilized system.
Again following [31] we employ Bernoulli stabilization to derive the SFM. The main
advantage of the Bernoulli stabilization is that it only changes the anti-stable eigen-
values of the system. Thus the required Bernoulli equation can be restricted to these
and is of the same dimension as the corresponding eigenspaces.

The main computational bottleneck in BT methods is the efficient solution of large-
scale Lyapunov equations, where here, the additional difficulty of the involved (im-
plicit) spectral projection has to be treated. Compared to the presentation in [19], this
paper also presents an updated version of the low-rank Cholesky factor-alternating di-
rection implicit (LRCF-ADI) algorithm to solve these projected Lyapunov equations.
Here, we call this approach the generalized sparse (GS-)LRCF-ADI method. In order
to ensure fast convergence of GS-LRCF-ADI, proper selection of the ADI shift param-
eters is crucial. In Section 6.2 we also discuss and resolve the difficulties in computing
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shift parameters for the models of flow control considered here.
Stabilization of the non-stationary incompressible Navier-Stokes equations around a

stationary solution using a Riccati-based feedback has received considerable attention
regarding theory as well as numerical methods during the recent years. In the Riccati-
based boundary feedback stabilization technique [5], the most challenging task is to
solve the corresponding algebraic Riccati equation (ARE) for the high dimensional
model. In this paper we numerically investigate the potential of a feedback control for
the original model computed using a reduced-order model. In direct comparison this
can be computationally much cheaper if the number of Newton steps for solving the
Riccati equation is larger than 2.

The proposed method is applied to data for a spatially FEM semi-discretized lin-
earized Navier-Stokes model. Numerical results are discussed for both the BT model
reduction as well as the reduced-order model based stabilization.

This article is organized as follows. In Section 2, we describe the model which is
considered for our numerical test. The fundamental idea of BT for both stable and un-
stable systems and the LRCF-ADI methods are repeated briefly in Section 3. Section 4
collocates the ideas for converting the index-2 system into an ODE system applying
the projector onto the hidden manifold together with the properties of the projector.
In Section 5 we discuss BT based MOR techniques for structured index-2 unstable
systems. Section 6 consists of the GS-LRCF-ADI algorithm for the implicit solution
of the projected generalized algebraic Lyapunov equations and also the techniques
for selecting ADI shift parameters for models of the given structure. In the subse-
quent section we illustrate numerical results, obtained by applying our approaches to
the model introduced in Section 2 with different spatial resolutions and consequently
different matrix dimensions.

2 Model example

In his seminal book [26] Sontag, among others, presents the linearization principle.
That principle basically states that a general nonlinear model can be stabilized by
a linear quadratic regulator (LQR) for a linearization of itself in the vicinity of the
linearization point. The basic idea is that if the regulator is working properly, the
vicinity where the linearization is a proper approximation of the nonlinear system is
never left. This principle has been exploited by the authors in [5] for a Navier-Stokes
model for the von Kármán vortex street. The linearized Navier-Stokes equations that
arose there and that we consider in this paper are

∂

∂t
~v − 1

Re
∆~v + (~w.∇)~v + (~v.∇)~w +∇p = 0,

∇.~v = 0,
(1)

where ~v, ~w denote velocity vectors, p the pressure and Re is the Reynolds number.
The vector ~w represents the stationary solution of the incompressible nonlinear Navier-
Stokes equations and ~v is the deviation of the original state from the stationary solu-
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Figure 1: Initial discretization of the von Kármán vortex street with coordinates,
boundary parts and observation points (source [5]).

tion. The boundary and initial conditions, as well as the derivation of this model, are
given in [5]. There the authors apply a mixed finite element method based on the well
known Taylor-Hood finite elements [20] to discretize equation (1). The coarsest dis-
cretization of the domain for the von Kármán vortex street example from [5] is shown
in Figure 1. This yields the differential-algebraic equations

E1v̇(t) = A1v(t) +A2p(t) +B1u(t), (2a)

AT2 v(t) = 0, (2b)

where v(t) ∈ Rn1 denotes the nodal vector of discretized velocity deviations, p(t) ∈ Rn2

the discretized pressure, u(t) ∈ Rm are the inputs, and E1, A1 ∈ Rn1×n1 , A2 ∈ Rn1×n2 ,
B1 ∈ Rn1×m are all sparse matrices.

Additionally, the vertical velocities in the observation nodes depicted in Figure 1 in
the domain are modeled by the output equation

y(t) = C1v(t), (3)

with the output y(t) ∈ Rp and the output matrix C1 ∈ Rp×n1 .
The above system remains stable, i.e., the finite spectrum of the matrix pencil

P(λ) = λ

[
E1 0
0 0

]
−
[
A1 A2

AT2 0

]
(4)

is located in the negative half plane C−, as long as the Reynolds number Re is small.
However, already for moderate Reynolds numbers (e.g., in the configuration of Figure 1
Re ≥ 300) a few finite eigenvalues move to the positive half plane, C+ [1]. The key
problem in the LQR approach for the model under investigation is to compute the
boundary feedback stabilization matrix K1 (see e.g., [5]), such that the stabilized
system has the following form:

E1v̇(t) = (A1 −B1K1)v(t) +A2p(t) +B1u(t),

AT2 v(t) = 0.
(5)

The authors in [5] presented an algorithm (see [5, Algorithm 2]) to compute K1 which
is based on the standard linear-quadratic regulator approach [26, 14] for a projected

3



semidiscretized state-space system. The most challenging part in this algorithm is to
solve the usually very large, generalized, projected algebraic Riccati equation (GARE)
based on the full order semidiscretized model.

In this paper our aim is to replace this full order system (2) together with its
associated output equation (3) by a substantially lower dimensional model

Ê ˙̂v(t) = Âv̂(t) + B̂u(t),

ŷ(t) = Ĉv̂(t),
(6)

where the responses (both in frequency and time domain) of the reduced-order model
are good approximations to those of the full model. Note that for balanced truncation,
we can always guarantee that Ê = I, which we thus assume in the following. We
employ the reduced-order model to compute an approximation to the optimal LQR
feedback matrix of the full system. The main advantage of this approach is that we
only need to solve two projected algebraic Lyapunov equations in order to derive the
reduced-order model instead of one Lyapunov equation per Newton step in the solver
for the GARE, which are usually many more [12].

Based on the reduced model (6) the GARE

ÂT X̂ + X̂Â− X̂B̂B̂T X̂ = −ĈT Ĉ (7)

is now much smaller in dimension. It can thus easily be solved for X̂ using classical
solvers as, e.g., the MATLAB care command. The stabilizing feedback matrix for the
reduced model (6) then is

K̂ = B̂T X̂. (8)

The ROM-based approximation to the stabilizing feedback matrix for the full order
model can now be retrieved as

K1 = B̂T X̂TTLE1 = K̂TTLE1

where TL, TR are the balancing transformations (see Section 5) used to compute the
reduced-order model.

3 Background

In this section we briefly review the basic idea of standard balanced truncation for both
stable and unstable systems. We also repeat the basics for the LRCF-ADI method
for computing the required Gramian factors in large scale settings, to put our new
contributions for the index-2 case in Algorithm 2 (see Section 6) into perspective.

3.1 Standard BT and Low-Rank-ADI

Consider a generalized linear time-invariant (LTI) continuous time system

E ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) +Du(t), (9)
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in which E ∈ Rn×n is non-singular, and A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and
D ∈ Rm×p. Assume that the original system is asymptotically stable, i.e., all its eigen-
values lie in C−. Then the controllability Gramian P ∈ Rn×n and the observability
Gramian Q ∈ Rn×n, which are the solutions of the two Lyapunov equations (see, e.g.,
[2])

APET + EPAT = −BBT and ATQE + ETQA = −CTC,

respectively, are symmetric and positive semi-definite, and therefore have symmetric
decompositions

P = RRT and Q = LLT . (10)

The balancing transformation can be formed using the SVD

RTEL = USVT =
[
U1 U2

] [S1
S2

] [
VT1
VT2

]
,

and defining

TL := RU1S
− 1

2
1 , TR := LV1S

− 1
2

1 . (11)

Here, U1 and V1 are composed of the leading k columns of U and V, respectively,
S1 is the first k × k block of the matrix S = diag (σ1, σ2, . . . , σk, . . . σn), where σi,
i = 1, 2, . . . , n are the Hankel singular values of the system (9) [2, 16]. Now the
reduced-order model (ROM) is derived as

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t) +Du(t), (12)

where
Ê = T TL ETR = Ik, Â = T TL ATR, B̂ = T TL B, and Ĉ = CTR. (13)

The ROM obtained in this way satisfies the global error bound [2, 16]

‖G(.)− Ĝ(.)‖H∞ ≤ 2

n∑
i=k+1

σi, (14)

where G(s) := C(sE − A)−1B and Ĝ(s) := Ĉ(sÊ − Â)−1B̂ are called the transfer
functions [2] of the full and reduced model, respectively, and ‖.‖H∞ denotes the H∞-
norm. The relation (14) is indeed an a priori error bound. Hence, one can easily
determine the required dimension of the ROM for a given error tolerance. In [29] this
procedure for the BT method is summarized as the square-root (SR) algorithm.

If the numbers of inputs and outputs are very small compared to the number of
degrees of freedom (DoFs), then usually the Gramians P and Q can be expressed in
low-rank factored form [23, 3, 18], i.e., R and L are thin rectangular matrices. They
can for example, be computed by the LRCF-ADI iteration [23, 22, 10]. Recently, the
formulation of the LRCF-ADI method has been updated in [7], such that real Gramian
factors can be computed by clever handling of complex shift parameters. Moreover
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Algorithm 1 LRCF-ADI to solve FXĚT + ĚXFT = −NNT

Input: Ě, F , N , ADI shift parameters {µ1, µ2, · · · , µJ}.
Output: Z such that X ≈ ZZT
1: Z = []
2: W0 = N
3: i = 1
4: while

(
‖WT

i−1Wi−1‖ > tol or i ≤ imax

)
do

5: Solve (F + µiĚ)Vi = Wi−1 for Vi
6: if Im(µi) = 0 then
7: Z =

[
Z

√
−2 Re (µi)Vi

]
8: Wi = Wi−1 − 2 Re (µi) ĚVi
9: else

10: γ = 2
√
−Re (µi), β = Re (µi)

Im(µi)

11: Update low-rank solution factor
Z =

[
Z γ(Re (Vi) + β Im(Vi)) γ

√
(β2 + 1). Im(Vi)

]
12: Wi = Wi−1 − 4 Re (µi) Ě(Vi + 2β Im(Vi))
13: i = i+ 1
14: end if
15: i = i+ 1
16: end while

the same authors [8] introduced an efficient technique to compute a low-rank factor of
the ADI residual as an integral part of each iteration step and thus cheaply evaluate
stopping criteria for the algorithm.

Combining the ideas from [7] and [8] the LRCF-ADI is summarized in Algorithm 1.
In this Algorithm either (Ě, F,N) = (E ,A,B) is applied to generate Z = R, or
(Ě, F,N) = (ET ,AT , CT ) is used for Z = L. Note that if imax > J , then the shift
parameters are repeated cyclically.

3.2 BT for unstable systems

This section is concerned with BT for unstable systems via Bernoulli stabilization.
Consider the case where the system in (9) is unstable, i.e., some eigenvalues of the
system lie in C+. The helpful feature of our investigated example is that still the
number of anti-stable eigenvalues is very small. This is exactly the property we exploit
for fast computation of the ROMs and ROM based feedback matrices. In the previous
subsection we have recalled classical (Lyapunov based) balancing for stable systems.
The main ingredients there are the two Gramians (e.g.,[2])

P =

∫ ∞
0

eE
−1AtE−1BBTE−T eA

T E−T t dt,

Q =

∫ ∞
0

eE
−TAT tE−TCTCE−1eAE

−1t dt,
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which obviously do not exist if the system’s unstable poles are controllable. This,
however, is exactly the desired case in our motivating example (see Section 2). In [31],
the authors use the frequency domain representations of these integrals

P =
1

2

∫ ∞
−∞

(ıωE − A)−1BBT (ıωET −AT ) dω

Q =
1

2

∫ ∞
−∞

(ıωET −AT )−1CTC(ıωE − A) dω

to extend the definition of the Gramians to systems with no poles on the imaginary
axis.

Following the theory in [31] the generalized controllability and observability Grami-
ans Ps, Qs for such systems can be computed by solving the algebraic Lyapunov
equations

(A− BKc)PsET + EPs(A− BKc)T = −BBT ,
(A−KoC)TQsE + ETQs(A−KoC) = −CTC,

(15)

where Kc = BTXcE and Ko = EXoCT are called Bernoulli stabilizing feedback matrices,
due to the fact that the matrices Xc and Xo are the respective stabilizing solutions of
the generalized algebraic Bernoulli equations

ETXcA+ATXcE = ETXcBBTXcE ,
AXoET + EXoAT = EXoCTCXoET .

(16)

Now, since the Bernoulli stabilization only mirrors the anti-stable eigenvalues across
the imaginary axis [6], it is sufficient to solve these Bernoulli equations only on the
invariant subspaces corresponding to those eigenvalues. That is, for orthogonal matri-
ces V and W spanning the left and right eigenspaces corresponding to the anti-stable
eigenvalues, respectively, we define the Petrov-Galerkin projected system (Ě , Ǎ, B̌, Č)
by

Ě := V TEW, Ǎ := V TAW, B̌ := V TB, Č := CW.
Then we solve

ĚT X̌cǍ+ ǍT X̌cĚ = ĚT X̌cB̌B̌T X̌cĚ ,
ǍX̌oĚT + ĚX̌oǍT = ĚX̌oČT ČX̌oET ,

(17)

and construct Kc = BTV X̌cV TE and Ko = EWT X̌oWCT . The projected Bernoulli
equations in (17) are solved by the Matrix Sign Function method presented in [6].

The low-rank factors of Ps and Qs can also be computed by solving (15) using
Algorithm 1, but avoiding to form the closed loop matrices stays crucial. We discuss
this issue in more detail in Section 6. Then using the projection matrices as in (11)
and applying them to the original unstable system we can compute an unstable ROM
that satisfies the error bound as in (14), but with the H∞-norm replaced by the L∞-
norm. Therefore, this error bound can not be translated to a global time domain error
bound, as in the classic setting, due to the lack of a Parseval-identity-like result. In
fact in the numerical experiments we observed that the error may very well grow over
time.
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4 Reformulation of the structured dynamical systems

The purpose of this section is to convert the index-2 system (2) into an equivalent
ODE system in order to make it fit into the framework for BT based model order
reduction as discussed in the previous section. The idea is exactly the same as in [19,
Section 3]. For convenience we briefly review it here again. Let us consider a projector
of the form

Π = I −A2(AT2 E
−1
1 A2)−1AT2 E

−1
1 . (18)

Clearly one then has

ΠE1 = E1ΠT , (19a)

Null (Π) = Range (A2), and (19b)

Range (Π) = Null (AT2 E
−1
1 ). (19c)

These properties imply

AT2 Y = 0 if and only if ΠTY = Y, (20)

i.e., the image of ΠT is exactly the subspace where the algebraic condition (2b) of the
DAE investigated here is satisfied. Now applying the projector in (2) and the output
equation (3), and thus reformulating the system on this exact subspace, we obtain the
following projected system

ΠE1ΠT v̇(t) = ΠA1ΠT v(t) + ΠB1u(t), (21a)

y(t) = C1ΠT v(t). (21b)

The system dynamics of (21) are projected onto the nm := n1 − n2 dimensional sub-
space Range (ΠT ) [19]. This subspace is, however, still represented in the coordinates
of the n1 dimensional space. The nm dimensional representation can be made explicit
by employing the thin singular value decomposition (SVD)

Π =
[
U1 U2

] [Σ1 0
0 0

] [
V T1
V T2

]
= U1Σ1V

T
1 = ΘlΘ

T
r , (22)

where Θl = U1 and Θr = V1 and in which U1, V1 ∈ Rn1×nm consist of the correspond-
ing leading nm columns of U , V ∈ Rn1×n1 . Moreover, Θl,Θr satisfy

ΘT
l Θr = I. (23)

This representation is always possible since Π is a projector and therefore, Σ1 = Inm

(nm dimensional identity matrix). Inserting the decomposition of Π from (22) into
(21) and considering ṽ = ΘT

l v, we get

ΘT
r E1Θr

˙̃v(t) = ΘT
r A1Θrṽ(t) + ΘT

r B1u(t),

y(t) = C1Θrṽ(t).
(24)
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System (24) practically is system (9) with the redundant equations removed by the Θr

projection. We observe that the dynamical systems (2), (21) and (24) are equivalent
in the sense that their finite spectra are the same [15, Theorem 2.7.3] and the input-
output relations are the same, i.e., they realize the same transfer function.

5 BT for index-2 unstable descriptor systems

In this section we show how to avoid forming (24) explicitly. Suppose that we want
to apply balanced truncation to the system (24). To this end, we need to solve the
Lyapunov equations

ΘT
r AcΘrP̃ΘT

r E
T
1 Θr + ΘT

r E1ΘrP̃ΘT
r A

T
c Θr = −ΘT

r B1B
T
1 Θr,

ΘT
r A

T
o ΘrQ̃ΘT

r E1Θr + ΘT
r E

T
1 ΘrQ̃ΘT

r AoΘr = −ΘT
r C

T
1 C1Θr,

(25)

where Ac = A1 − B1K
1
c , Ao = A1 −K1

oC1 and P̃ ∈ Rnm×nm , Q̃ ∈ Rnm×nm are the
corresponding projected controllability and observability Gramians. Again, K1

c and
K1
o are the Bernoulli stabilizing feedback matrices and can be computed as described in

Section 3.2. The solutions P̃ , Q̃ of (25) are unique since we assured that the respective
dynamical system is asymptotically stable and symmetric positive (semi-)definite since
the right hand side is semi-definite.

Now multiplying (25) by Θl from the left and ΘT
l from the right and exploiting that

Θr = ΠTΘr (e.g., due to (22), (23)) we obtain

ΠAcΠ
TPΠET1 ΠT + ΠE1ΠTPΠATc ΠT = −ΠB1B

T
1 ΠT ,

ΠATo ΠTQΠE1ΠT + ΠET1 ΠTQΠAoΠ
T = −ΠCT1 C1ΠT ,

(26)

where P = ΘrP̃ΘT
r and Q = ΘrQ̃ΘT

r . These are the respective controllability and
observability Lyapunov equations for the realization (21) and the solutions P, Q ∈
Rn1×n1 are the corresponding controllability and observability Gramians. The system
(26) is singular due to the fact that Π is a projection. Uniqueness of solutions is
reestablished by the condition that the solutions satisfy P = ΠTPΠ and Q = ΠTQΠ.

It is also an easy exercise to go back to (25) from (26). Let us consider P ≈ RRT ,
Q ≈ LLT and P̃ ≈ R̃R̃T , Q̃ ≈ L̃L̃T . Then R, L, R̃ and L̃ are called approximate
low-rank Cholesky factors. They fulfill the relation

R = ΘrR̃ and L = ΘrL̃. (27)

For large-scale problems, however, computing Θr is usually impossible due to mem-
ory limitations. Therefore, R and L are computed by solving (26). The balancing
transformations for (24) are

T̃L = R̃UkS
− 1

2

k , T̃R = L̃VkS
− 1

2

k ,

where Uk, Vk,∈ Rnm×k consist of the corresponding leading k columns of U, V ∈
Rnm×nm , and Sk ∈ Rk×k is the upper left k × k block of S in the SVD

R̃TΘT
r E1ΘrL̃ = USV T .
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Observing further that RTΠE1ΠTL = R̃TΘT
r E1ΘrL̃ = USV T , the projection ma-

trices for the system (21) can be formed as

TL = RUkS
− 1

2

k and TR = LVkS
− 1

2

k . (28)

As in [19] we find that

TL = RUkS
− 1

2

k = ΘrR̃UkS
− 1

2

k = ΘrT̃L = ΘrΘ
T
l ΘrT̃L = ΠTTL,

TR = LVkΣ
− 1

2

k = ΘrL̃VkS
− 1

2

k = ΘrT̃R = ΘrΘ
T
l ΘrT̃R = ΠTTR.

(29)

Now we apply the transformations TR and TL in (21) to find the reduced-order model
as in (6) where

Ê = TTL ΠE1ΠTTR, Â = TTL ΠA1ΠTTR, B̂ = TTL ΠB1 and Ĉ = C1ΠTTR. (30)

Due to (29) we can avoid the explicit usage of Π and find

I = Ê = TTLE1TR, Â = TTLA1TR, B̂ = TTLB1 and Ĉ = C1TR. (31)

Eventually, we see that the reduced-order model (6) is obtained without forming the
projected system (21). In the next section we will show how to compute R and L
using a tailored version of the LRCF-ADI iteration without using Π explicitly.

6 Solution of the projected Lyapunov equations

In order to apply the aforementioned balancing based MOR we need to solve the pro-
jected Lyapunov equations (26). We have seen above that the ΠT invariant solution
factors enable us to compute the corresponding truncating transformations. The ap-
proach here is different from the spectral projection based work by Stykel in that we
are applying the E1-orthogonal projection to the hidden manifold, where Stykel uses
the orthogonal projection (in the Euclidean sense) to the eigenspaces corresponding to
the finite poles of the system. In fact both methods project to the same subspace only
considering orthogonality in different inner products. Here we are concerned with two
main issues. First we discuss the reformulation of the basic low-rank ADI Algorithm
for the projected Lyapunov equation that ensures the invariance of the solution factor
and the computation of the correct corresponding residual factors. We are lifting the
ideas of [19] to the reformulation of the LR-ADI iteration in Algorithm 1. For the
spectral projection methods the analogue procedure has been discussed in [12]. In the
second part we address the important issue of ADI shift parameter computation. There
the main issue in the DAE setting is to avoid the subspaces corresponding to infinite
eigenvalues in order to correctly compute the large magnitude Ritz values involved in
many parameter choices. The crucial point in both parts is to provide methods that
use the projection ΠT at most implicitly and never form the projected system (21).
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Algorithm 2 GS-LRCF-ADI

Input: E1, A1, A2, B1, K1 and ADI shift parameters {µ1, µ2, · · · , µimax}
Output: R̃, such that P̃ ≈ R̃R̃T
1: R̃ = [ ]
2: Solve the linear system (39) for Ξ and compute W0 = E1Ξ
3: i = 1
4: while ‖WT

i−1Wi−1‖ > tol do
5: solve the linear system (36) for Vi
6: if Im(µi) = 0 then
7: R̃ =

[
R̃

√
−2 Re (µi)Vi

]
8: Wi = Wi−1 − 2 Re (µi)E11Vi
9: else

10: γ = 2
√
−Re (µi), β = Re (µi)

Im(µi)

11: Update low-rank solution factor
R̃ =

[
R̃ γ(Re (Vi) + β Im(Vi)) γ

√
(β2 + 1). Im(Vi)

]
12: Wi = Wi−1 − 4 Re (µi)E11(Vi + 2β Im(Vi))
13: i = i+ 1
14: end if
15: i = i+ 1
16: end while

6.1 GS-LRCF-ADI for index-2 unstable systems

This section is concerned with the efficient solution of the Lyapunov equations in (26)
to compute the low-rank Gramian factors using LRCF-ADI as discussed in Section 3.
Here, we consider the projected controllability equation elaborately. The observabil-
ity equation can be handled analogously. For convenience we rewrite the Lyapunov
equations (26) as

ÃP̃ ẼT + ẼP̃ ÃT = −B̃B̃T ,
ÃT Q̃Ẽ + ẼT Q̃Ã = −C̃T C̃,

(32)

with Ẽ = ΠE1ΠT , Ã = ΠAcΠ
T , B̃ = ΠB1 and C̃ = C1ΠT .

In the i-th iteration step of the ADI method, the residual of the controllability
Lyapunov equation (32) can be written as

R̃(P̃i) = ÃP̃iẼ
T + ẼP̃iÃ

T + B̃B̃T = W̃iW̃
T
i ,

where

W̃i =

i∏
k=1

(Ã− µiẼ)(Ã+ µiẼ)−1B̃.

To compute the low-rank controllability Gramian factor R̃ we follow Algorithm 1. In
the i-th iteration step, Vi is computed from

(Ã+ µiẼ)Vi = W̃i−1, (33)

11



which enables us to update the residual factor according to

W̃i = (Ã− µ∗Ẽ)Vi = W̃i−1 − 2 Re (µi) ẼVi. (34)

In complete analogy to [19, Lemma 5.2], we observe that instead of solving (33), one
can compute Vi by solving[

Ac + µiE1 A2

AT2 0

] [
Vi
?

]
=

[
W̃i−1

0

]
, (35)

where the special case i = 1, here especially the computation of the initial residual
factor W̃0, is discussed in detail below.

Inserting Ac = A1 −B1K
1
c in (35),[

A1 + µiE1 −B1K
1
c A2

AT2 0

] [
Vi
?

]
=

[
W̃i−1

0

]
,

implies 
[
A1 + µiE1 A2

AT2 0

]
︸ ︷︷ ︸

A

−
[
B1

0

]
︸ ︷︷ ︸
B

[
K1
c 0

]︸ ︷︷ ︸
K


[
Vi
?

]
=

[
W̃i−1

0

]
. (36)

In this equation the inversion of (A−BK) should in practice be computed using the
Sherman-Morrison-Woodbury formula (see, e.g. [17]):

(A−BK)−1 = A−1 +A−1B(I −KA−1B)−1KA−1, (37)

to avoid explicit forming of the (usually dense) matrix A − BK. In accordance with
[19, Lemma 5.2], again the computed Vi in (35) satisfies Vi = ΠTVi. Therefore, the
correct projected residual factor in (34) can be obtained by

W̃i = W̃i−1 − 2 Re (µi)E1Vi, (38)

since we have ΠE1 = E1ΠT .
In order to really compute the correct residual, the initial residual must be computed

as W̃0 = ΠB1 to ensure W̃0 = ΠW̃0. This can be performed cheaply using the following
observation.

Lemma 6.1. The matrix Ξ satisfies Ξ = ΠTΞ and E1Ξ = ΠB1 ⇔[
E1 A2

AT2 0

] [
Ξ
Λ

]
=

[
B1

0

]
. (39)

Proof. If Ξ = ΠTΞ, then E1Ξ = ΠB1 implies Π(E1Ξ − B1) = 0. Since Null (Π) =
Range (A2), there exists Λ such that E1Ξ−B1 = −A2Λ, or E1Ξ + A2Λ = B1. Again

12



applying the properties in (20), we have AT2 Ξ = 0. These two relations give (39).
Conversely, we assume (39) holds. From the first block row of (39) we get

Ξ = E−11 B1 − E−11 A2Λ,

and thus from the second row it follows

0 = AT2 Ξ = AT2 E
−1
1 B1 −AT2 E−11 A2Λ,

such that
Λ = (AT2 E

−1
1 A2)−1AT2 E

−1
1 B1.

Inserting this in the first block row we get as desired

E1Ξ = B1 − (AT2 E
−1
1 A2)−1AT2 E

−1
1 B1 = ΠB1.

This especially ensures Ξ = ΠTΞ, since

E1Ξ = ΠB1 = Π2B1 = ΠE1Ξ = E1ΠTΞ,

and thus using W̃0 = E1Ξ, we get the desired invariance W̃0 = ΠW̃0.
The above findings on the residual factor are summarized in the following lemma.

Lemma 6.2. The residual factor in every step of Algorithm 2 fulfills the relation

W̃i = ΠW̃i.

The whole procedure to compute the low-rank factor of the controllability Gramian
R̃ is summarized in Algorithm 2. Analogous to the derivation in [19], our algorithm
computes the correct solution factor. In contrast to the version presented there, we
guarantee to compute a real solution factor even if the shifts occur in complex con-
jugate pairs and we have the low rank residual factors in hand to evaluate stopping
criteria cheaply. Still one issue remains open that has not been tackled in the original
paper [19]. The shifts that guarantee fast convergence of the algorithm are closely re-
lated to the spectrum of the original pencil. The question how these can be computed
is answered in the next section.

6.2 ADI-parameter selection

The appropriate shift parameter selection is one of the crucial tasks for fast convergence
of the GS-LRCF-ADI iteration. Recently, most of the papers followed the heuristic
procedure introduced by Penzl [23] to compute sub-optimal ADI shift parameters µi,
i = 1, 2, . . . , J , for a large-scale problem. Very recently new shift computation ideas
considering adaptive and automatic computation of shifts during the iteration [9, 30]
have come up. We present the basic ideas to adapt both the classic and the new
methods to our framework in the following two paragraphs.
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Heuristic shift selection. The main ingredient of the heuristic method is the com-
putation of a number of large and small magnitude Ritz values. In the case of DAE
systems the computation of Ritz values of large magnitude is causing difficulties due to
the existence of infinite eigenvalues. We need to make sure that the infinite eigenvalues
are avoided. This can be achieved by the following fact that is a direct consequence of
[13, Theorem 3.1].

Corollary 6.3. The matrix pencil

Pδ(λ) = λ

[
E1 δA2

δAT2 0

]
−
[
A1 A2

AT2 0

]
(40)

transforms all infinite eigenvalues of the pencil P(λ) (see (4)) to 1
δ while at the same

time preserving its finite eigenvalues.

Thus from the pencil Pδ we can compute the desired Ritz values of large magnitude
via an Arnoldi iteration [24]. The parameter δ can easily be determined after the
small Ritz values βi have been computed with respect to the original pencil. In order
to ensure that 1

δ is avoided by the Arnoldi process for the large magnitude Ritz values,
and thus only finite eigenvalues of the original pencil are approximated, one could,
e.g., set δ = 1

min
i

Re (βi)
. For the unstable case the corollary obviously has to be applied

with A1 replaced by Ac.

Adaptive shift selection. A second shift computation strategy we use in the numeri-
cal experiments follows the lines of the adaptive shift strategy proposed in [9]. There,
the shifts are initialized by the eigenvalues of the pencil projected to the span of W0.
Then, whenever all shifts in the current set have been used, the pencil is projected,
e.g., to the span of the current Vi and the eigenvalues are used as the next set of
shifts. Here, we use the same initialization. For the update step, however, we extend
the subspace to all the Vi generated with the current set of shifts and then choose the
next shifts following Penzl’s heuristic with the Ritz values replaced by the projected
eigenvalues computed with respect to this larger subspace. Note that in lack of the
conditions for Bendixon’s theorem, we cannot guarantee that the projected eigenval-
ues will be contained in C−. Should any of them end up in the wrong half-plane, we
neglect them. Should the resulting set of shifts become empty due to this, we reuse
the previous set as in [9]. Note further that the problem with the infinite eigenvalues
does not exist in this case. Since we have ΠTZ = Z, for any orthogonal bases U of a
set of columns of Z, we also have ΠTU = U . As an immediate result of this fact, the
projected pencil (UTA1U − λUTE1U) automatically resides on the hidden manifold
and can thus only have finite eigenvalues.

7 Numerical results

To assess the performance of the techniques, this section discusses some numerical
tests. The method is applied to a set of linearized semi-discretized Navier-Stokes
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model n1 n2
Mod-1 3 142 453
Mod-2 8 268 1 123
Mod-3 19 770 2 615
Mod-4 44 744 5 783
Mod-5 98 054 12 566

Table 1: The number of differential and algebraic variables of different discretization
levels of the model.

model heuristic shift adaptive shift
iteration time (sec) iteration time (sec)

R̃ L̃ R̃+ L̃+ µ R̃ L̃ R̃+ L̃
Mod-1 240 210 67 116 88 25
Mod-2 170 133 165 106 77 87
Mod-3 257 182 625 114 99 305
Mod-4 307 196 1 922 146 111 1 063
Mod-5 368 238 5 839 147 120 2 551

Table 2: The performances of the heuristic and adaptive shifts in the GS-LRCF-ADI
iteration.

equations as described in Section 2. All the computations were carried out using
MATLAB® 7.11.0 (R2010b) on a board with 2 Intel® Xeon® X5650 CPUs with a
2.67-GHz clock speed.

The authors of [5] generate different sized models using Reynolds number Re = 500.
Table 1 shows the different sizes of the model and distinguishes the dimensions n1 of the
velocity vector (differential variable) and n2 of the pressure vector (algebraic variable).

In all the sets B1 ∈ Rn1×2 and C1 ∈ R7×n1 . For Reynolds numbers of 400 and
more the described linearized model is unstable. Thus, especially the Reynolds number
500 case discussed here is unstable. The Bernoulli stabilizing feedback matrices K1

c

and K1
o for all models are computed applying the procedure from [1] and [5, Section

2]. It uses 2 calls of the MATLAB eigs implementation of the Arnoldi method (for
Pδ and PTδ )to compute the rightmost eigenvalues together with their left and right
eigenvectors.

We apply the GS-LRCF-ADI iteration (Algorithm 2) to all aforementioned models to
compute the low-rank factors R̃ and L̃ considering the tolerance 10−6. We investigate
the performances of both the heuristic and adaptive shifts to implement this algorithm.
The results are shown in Table 2. For all models we chose 30 optimal heuristic shifts
out of 10 large and 80 small magnitude Ritz-values. In the case of the adaptive shifts,
in each cycle, 10 proper shift parameters are selected following the procedure discussed
above. For computing the initial shifts, first we project the pencil (A1−λE1), onto the
column space of an n1×100 random matrix. For all the models, looking at the iteration
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model tolerance system dimension
original reduced

Mod-1 3 595 145
Mod-2 9 391 147
Mod-3 10−5 22 385 163
Mod-4 50 527 178
Mod-5 110 620 184

Table 3: Dimensions of original and reduced systems of the differently sized original
models for a fixed balanced truncation tolerance.

model tolerance dimension of ROM
10−4 161
10−3 138

Mod-5 10−2 115
10−1 93

Table 4: Balanced truncation tolerances and dimensions of reduced models.

numbers and and the CPU time computations, the performance of the adaptive shifts
is much better than that of the heuristic shifts. The performances of the heuristic
and adaptive shifts are also depicted in Figure 2 for the largest dimensional system
Mod-5. This figure shows the convergence rate of the low-rank controllability and
observability Gramian factors with respect to iterations (Figures 2a, 2b) and time
(Figures 2c, 2d). In both cases the convergence rate for the adaptive shifts is much
faster than the heuristic shifts. Note that we use the Frobenius norm to compute
the residual norm. We compute the reduced-order models for all the data sets. The
dimensions of the original and reduced models are shown in Table 3. If nothing else
is stated, the truncation tolerance is set to 10−5. The dimension of the ROM can,
however, be decreased by increasing the tolerance if desired or required. This is shown
in Table 4. Since the numerical results are all comparable, we exemplary present only
selected plots (e.g., for the largest model Mod-5).

7.1 Model reduction of the unstable system

This section reviews the numerical experiments for the unstable case. Here we present
both frequency and time domain error analyses. The frequency domain error analysis
is shown in Figure 3. In Figure 3a we see the frequency responses of the full and 184
dimensional reduced-order models for Mod-5 with a nice match in the eyeball norm.
The absolute and relative deviations between full and reduced-order models are shown,
respectively, in Figures 3b and 3c. Here, we can see that the absolute error is bounded
by the prescribed truncation tolerance of 10−5. For higher frequencies the relative error
is slightly increasing since the frequency response is decreasing more rapidly than the

16



0 100 200 300 400
10−7

10−3

101

no. of iterations

n
o
rm

a
li
ze

d
re

si
d
u
a
l

heuristic shifts adaptive shifts

(a) controllability Gramian factor R̃.

0 100 200
10−7

10−4

10−1

no. of iterations

n
o
rm

a
li
ze

d
re

si
d
u
a
l

(b) observability Gramian factor L̃.

0 1,000 2,000 3,000
10−7

10−3

101

time (sec)

n
o
rm

a
li
ze

d
re

si
d
u
a
l

(c) controllability Gramian factor R̃.

0 1,000 2,000 3,000
10−7

10−4

10−1

time (sec)

n
o
rm

a
li
ze

d
re

si
d
u
a
l

(d) observability Gramian factor L̃.

Figure 2: Comparisons of the heuristic and adaptive shifts in computing the low-rank
Gramian factors using the GS-LRCF-ADI iteration.

absolute error can.
Figure 4 depicts time domain simulation of full and reduced-order models for Mod-

5. This figure shows the step responses from Input 1 to Output 1 together with their
absolute deviations. To compute the step response we use an implicit Euler method
with fixed time step size 10−2. Initially, the imposed control is kept inactive, therefore
the responses for both (full and reduced) models are constant within the range 0
to 15s. Switching the control to constant unit actuation on Input 1, the responses
are oscillating with increasing amplitude in the higher time domain caused by the
instability of the model. Here we also see the issue with the balanced truncation
error bound for unstable systems since the absolute error is increasing gradually with
increasing time.

7.2 Numerical Experiments for the stabilized system

In Section 2 we have mentioned that the stabilizing feedback matrix for the full model
can be computed from the reduced-order model. To this end, we solve the correspond-
ing algebraic Riccati equation (7) arising from the linear-quadratic regulator approach
using the MATLAB care command and compute the optimal stabilizing feedback ma-
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Figure 3: Comparison of the full and reduced models in frequency domain.
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Figure 4: Step responses of 1st input to 1st output of full and reduced-order models
and respective absolute deviations.
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Figure 5: Step responses of 1st input to 1st output of stabilized full and reduced-order
models and respective absolute deviations.

trix K̂ (see, e.g., [14, Chap. 10]) for the reduced-order model (6). The ROM based
approximation to the stabilizing feedback matrix for the full order model (5) is then
given by K1 = KrT

T
LE1. Figure 5 shows the step response (from 1st input to 1st

output) of closed loop full and reduced-order models and their absolute error. For
the generation of the step response the same procedure has been followed as for the
unstable case above. Note that for a stabilizing feedback the step response system has
to be viewed as that of an asymptotically stable system with a constant source term.
Thus the output settles at constant non zero values.

8 Conclusions

We have discussed the model reduction problem for unstable descriptor systems arising
form flow control problems. In particular, we have considered linearized Navier-Stokes
equations. Their spatial discretization by finite elements leads to index-2 DAEs. This
causes some technical difficulties for the application of model reduction based on bal-
anced truncation. Following [19], we have treated the problem by using projectors
onto deflating subspaces corresponding to finite eigenvalues of the associated matrix
pencils. The explicit application of the projectors is avoided by a re-formulation of the
ADI method used to compute approximate low-rank factors of the system Gramians
which is the bottleneck in the numerical implementation of the balanced truncation
method. Here we show how this can be done for unstable systems, and we also in-
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corporate a number of recent improvements into the resulting ADI method. As an
illustrative example, we apply our algorithms to the linearization of the von Kármán
vortex shedding at a moderate Reynolds number. It is demonstrated that the resulting
reduced-order model can be used to accurately simulate the unstable linearized model
and to design a stabilizing controller. Future work will include the realization of the
resulting control law for the full nonlinear model.
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