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Abstract
In this survey, we provide an overview of model order reduction (MOR) methods applied to coupled systems.

The coupling can be linear or nonlinear, weak or strong. Physically, the coupling may come from structure-
structure coupling, fluid-structure or fluid-fluid interaction, electro-thermal coupling, electro- or thermal-mechanical
coupling, or circuit-device coupling. Different MOR methods for coupled systems are reviewed, and numerous
examples of coupled systems from the open literature are used for illustration.

Keywords: model order reduction, coupled problems, multi-physics, numerical methods.

AMS Subject Classification: 34K17, 74F05, 74F10, 93A15, 93B40.

1 Introduction
Coupled systems exist in many engineering applications, in particular in multi-physics problems. The coupling is
caused by interaction between different subsystems, describing different physical quantities, such as temperature,
structural mechanical displacements, electro-magnetic fields, and so forth. The interaction usually takes place
inside a domain of interest or through the boundary of the domain of interest. After numerical discretization of the
mathematical models of the coupled systems, the discretized systems are usually complex and of very large scale.
This has motivated the application of model order reduction techniques, intending to reduce the number of degrees
of freedom, enable practical computation, and furthermore, significantly reduce the computational time.

Model order reduction for coupled systems has been studied in structural dynamics since the 1960s [14], where
a component mode synthesis (CMS) method was proposed. An overview of CMS methods can be found in [8].
In [23], the problem how to choose the important modes of the subsystems within CMS methods is addressed, and
a moment-matching approach for choosing important modes is proposed. The CMS method builds upon the modal
truncation method [9] known in control and mechanical engineering, and in this sense, CMS belongs to modal
truncation methods [16].

Besides the CMS method widely used in structural dynamics [8, 30], MOR methods based on systems and
control theory like balanced truncation [32, 6, 28, 29, 19], and MOR methods based on approximation theory like
moment-matching [33, 15, 24, 34, 19, 5], as well as the MOR methods popular in mechanical engineering and
fluid dynamics like the reduced basis method [25, 27], proper orthogonal decomposition (POD) [20, 13], have
been subsequently applied to coupled systems, and have achieved significant efficiency for various multi-physics
problems. In the following sections, we review all the above MOR methods according to the coupled systems
considered. We go through linear and nonlinear coupled systems. In each class, systems consisting of different
physical couplings are addressed.

2 Coupled systems: a general description
The linear coupled systems considered in this report are either in the first-order form E11 . . . E1k
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or in the second-order form M11 . . . M1k
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Figure 1: Classical MOR: block structure is lost.

Here Eij , Aij ,Mij ∈ Rni×nj , Bi ∈ Rni×pi , Ci ∈ Rni×mi . Each of the state vectors xi ∈ Rni , i, j = 1, . . . , k, is
the state vector of the ith subsystem. For the state matrices of the fully coupled system, we haveM, E ,A ∈ Rn×n
with n = n1 + . . .+ nk.

Usually there are some zero-blocks in the matricesM, E and A, i.e. Eij = 0, Aij = 0, orMij = 0 for certain
i, j. This is due to the fact that two of the subsystems are not coupled or the coupling holds only in one direction
(one way coupling) [24]. For nonlinear coupled systems, nonlinear functions of the state vectors xi will appear in
the system, see e.g., the examples in Section 5.

It is always desired, either from a numerical point of view, or from a physical point of view, that the block
structure of the coupled system should be preserved in the reduced-order model. Hence, MOR for coupled systems
usually follows this basic principle. In the sequel, we first introduce the general idea of structure preserving MOR,
then we present typical examples of the coupled systems, and introduce MOR methods that are tailored for each
case.

3 Block structure preserving MOR for coupled systems

3.1 Standard BSP MOR methods.
Block structure preserving (BSP) MOR for linear coupled systems, in the above general form (1), is discussed
in [34, 24], where the block structures of the coupled systems are preserved. More specifically, the zero-block
matrices in the coupled system remain zero-blocks after MOR. For classical MOR methods, the resulting system
matrices in the reduced-order model are usually dense, as is shown in Figure 1. However, if using block structure
preserving MOR, the resulting system matrices, e.g., Â in the reduced-order model, preserve the block structure
of the original matrix A, as can be seen from Figure 2. There we can see that at least the zero-blocks in A are
preserved as zero-blocks in Â. In both figures, the empty off-diagonal blocks in A and Â represent the zero-block
matrices.

The basic idea of standard BSP MOR is that instead of using the projection matricesW , V (e.g., computed from
the classical balanced truncation method [1], moment-matching [12, 11], or any other projection method) directly,
W , V are divided into k blocks (note that there are k subsystems),

W =

 W1

...
Wk

 , V =

 V1

...
Vk

 .
Next, the blocks Wi, Vi are used to construct the structure preserving projection matrices

W̃ =

 W1

. . .
Wk

 , Ṽ =

 V1

. . .
Vk

 , (3)

The reduced-order model obtained by using W̃ and Ṽ instead of W and V preserves the block structure of the
original coupled system. It should be pointed out that the above standard BSP MOR method does not represent all
the BSP MOR methods to be introduced in the following sections. Many BSP MOR methods can directly compute
Wi and Vi, instead of getting them from W,V computed by classical MOR methods. Here, we first introduce a
“separate bases reduction” method from [24], which directly computes Wi and Vi for MOR of the system in the
general form in (1).
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Figure 2: BSP MOR: block structure is preserved.

3.2 Separate bases reduction (SBR) method
The linear coupled system in (1) is considered in [24] for MOR. The method is slightly different from the above
introduced standard BSP method. The main difference is that the process of constructing the block matrices Vi and
Wi in (3) is reordered. In the standard BSP method, the projection matrices W,V are firstly computed using, e.g.,
the classical moment-matching method, and then divided into blocks Wi and Vi. In the SBR method, each matrix
pair Wi and Vi is first computed for each subsystem, using the moment-matching method [12]. Then they are put
together to constitute the block-wise projection matrices W̃ , Ṽ in (3). When using the moment-matching method,
the coupling blocks in each subsystem are considered as inputs for the current subsystem. That is, for the current
jth subsystem, the matrix R in the Krylov subspace Kr(A,R) includes both the input matrix Bj and the coupling
matrix Aji, e.g., R = [Bj , Aji], where Aji 6= 0, for i 6= j, is the coupling between the current subsystem (jth
subsystem) and the ith subsystem (see Chapter 5 and Chapter 8 in [24]). The advantage of the SBR method over
the standard BSP method for MOR of coupled systems is that its computational cost and storage requirements are
much lower.

For different application backgrounds, the coupling of the systems is different. In most cases, the number of
subsystems is small. Usually, there are 2 to 3 subsystems in a coupled system, i.e. k = 2, 3 in (1) or (2). In the
following we classify them according to the linearity of the coupling. Several examples of coupled systems are
presented and the proper MOR methods for each kind of coupled systems are introduced. If feasible, the partial
differential equations of the mathematical models are also provided.

4 MOR for linear coupled systems

4.1 Coupling through internal states
In most coupled systems, the coupling is through the state variables of the system. In this subsection, we introduce
MOR for linear coupled systems that are coupled through the state variables. We study typical cases with electro-
mechanical coupling, thermal-elastic coupling, and flow coupling through an interface.

4.1.1 A model of an adaptive spindle support

The piezo-mechanical model shown in Figure 3 and Figure 4, is a complex system, where a piezo-actuator based
adaptive spindle support (ASS) is mounted on a parallel kinematic test machine [26]. Based on the engineering
design with a differential setup of the piezo stack actuators, the suitability for a special application is mainly
defined by the applied control concept. Before being implemented in the real machine, system simulation is
needed to design and test the control concept.

Applying the finite element method (FEM) to the ASS shown in Figure 5 leads to a mathematical model of the
following form:

Mẍ(t) + Eẋ(t) +Kx(t) = Bu(t),
y(t) = C1ẋ(t) + C2x(t) +Du(t),

(4)

where M , E and K ∈ Rn×n are the sparse FEM-matrices resulting from the modeling, B ∈ Rn×p is the input
matrix describing the external access to the system, andC1, C2 ∈ Rm×n represent the measurements. Accordingly,
u(t) ∈ Rp and y(t) ∈ Rm are the control inputs to the system and the measured outputs, respectively, D ∈ Rm×p
represents the direct feed through from input to the output.
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In the special case of the piezo mechanical system, x = (vT ,ΦT )T , where v represents the mechanical dis-
placements and Φ the electrical potentials at the piezo actuators. Therefore the system matrices take the special
form [17]

M =

[
Mvv 0

0 0

]
, E =

[
Evv 0

0 0

]
, K =

[
Kvv KvΦ

KT
vΦ KΦΦ

]
, (5)

where the mass matrix M has rank deficiency. The matrix KvΦ describes the coupling between v and Φ. Simula-
tion with the finite element model is not feasible due to the large number of degrees of freedom.

MOR for the spindle support model

In [32], the authors obtained a first-order reduced state space model in order to facilitate fast simulation using
MATLAB R© Simulink. The basic steps are firstly transforming the second order system into a first order system,
then using the balanced truncation method to get a first order reduced-order model. The reduced-order model can
be used in MATLAB Simulink. If otherwise, one wants to obtain a reduced second order model that preserves
the structure of the original model to perform the simulation work using special software (if it is necessary), it is
also not difficult to get a reduced-order model in the second order form, see [6]. In [6], the balanced truncation
method [1] is applied to get the reduced-order model. To preserve the structure of the original system, the full
Gramians are replaced by the corresponding combination of position and velocity Gramians during the model
order reduction procedure.

4.1.2 A thermo-elastic model

In many machine production applications one has to deal with thermally driven deformations of the machine tools
and the workpieces to be processed. In order to compensate, e.g., production inaccuracies, one needs to forecast
the thermo-elastic behavior of the procedure. Since the time scale of the elastic behavior is much smaller than
that of the heat model, it is sufficient to assume that the temperature field is not affected by the deformations.
Therefore, in the following we consider a one-way coupling of the resulting thermo-elastic system. Furthermore,
the treatment of a stationary linear elasticity model leads to satisfactory results as long as the deformations are
mainly caused by thermal influences. The temperature evolution is modeled by the partial differential equation
(PDE)

cpρṪ = div(λ∇T ), on Ω, (6a)

λ
∂

∂n
T = zth, on Γ ⊂ ∂Ω, (6b)

T (t0) = T0, (6c)

with T defining the temperature field, zth describing external temperature inputs of the system and cp, ρ, λ are
the material parameters, namely the specific heat capacity, density and heat conductivity, respectively. Note that
there is no explicit influence of the associated displacement field. Moreover, as mentioned above, the deformation
u acts much faster than the underlying temperature field. Hence it is sufficient to model the elastic behavior by a

Figure 3: Piezo-actuator based mechanical system. (Courtesy of Fraunhofer IWU, Dresden.)
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Figure 4: The adaptive spindle support: CAD-model (left) and real component mounted on the test bench (right).
(Courtesy of Fraunhofer IWU, Dresden.)

Figure 5: Details of the finite element mesh of the adaptive spindle support. (Courtesy of Fraunhofer IWU,
Dresden.)

stationary linear PDE of the form

−div(σ(u)) = f, on Ω, (7a)

ε(u) = C−1 : σ(u) + β(T − Tref )Id, on Ω, (7b)

C−1σ(u) =
1 + ν

Eu
σ(u)− ν

Eu
tr(σ(u))Id, on Ω, (7c)

ε(u) =
1

2
(∇u+∇uT ), on Ω, (7d)

where σ denotes the mechanical stress and ε is the strain of the domain Ω. The coefficients Eu, ν, β describe
Young’s modulus, Poisson’s ratio and the thermal expansion coefficient, respectively. Further elastic deformations
induced by external body forces are incorporated by the elasticity inputs zel. In order to allow us to use the
linear stationary elasticity equations, the elasticity inputs are assumed to be small and changes of these inputs are
slow. The expression C denotes the stiffness tensor, which is a fourth order tensor and Id is the identity of size d
which is the spatial dimension of Ω. For further details on the continuum mechanics based modeling of elasticity
phenomena, we refer to [10]. The above mentioned coupling of the thermal and elastic model is given by the
thermally induced strain

β(T − Tref )Id,

stated in equation (7b). This indicates that the resulting displacement is induced by the change of temperature T
with respect to a given reference temperature Tref of Ω at time t0.
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Discretizing equations (6) and (7) by e.g., the finite element method (FEM), we obtain

EthṪ (t) = Ath(t)T (t) +Bth(t)zth(t),

0 = AthelT (t)−Aelu(t) +Belzel(t),

T (t0) = T0, u(t0) = 0,

(8)

where Eth, Ath ∈ Rñ×ñ, Bth ∈ Rñ×pth , Athel ∈ R3ñ×ñ, Ael ∈ R3ñ×3ñ and Bel ∈ R3ñ×pel , ñ denotes
the number of nodes of the underlying FE grid, and pth, pel are the numbers of thermal and elasticity inputs,
respectively. That is, we consider ñ temperature degrees of freedom (DOFs) and additionally 3ñ elasticity DOFs
corresponding to the deformations in the three spatial dimensions. The system (8) can be re-written into the
coupled thermo-elastic system[

Eth 0
0 0

] [
Ṫ
u̇

]
=

[
Ath 0
Athel −Ael

] [
T
u

]
+

[
Bth 0
0 Bel

] [
zth(t)
zel(t)

]
,[

T (t0)
u(t0)

]
=

[
T0

0

]
.

(9)

Due to the one-way coupling and the consequential particular structure, equation (9) is a system of differential-
algebraic equations (DAE) of index 1. It is a generalized state-space or descriptor system. Furthermore, we add an
output equation

y(t) = [0, Cel]

[
T
u

]
(10)

to observe certain degrees of freedom of interest. Here, Cel ∈ Rm×3ñ filters out the interesting deformation
information.

MOR for coupled thermo-elastic systems

Model order reduction (MOR) for the descriptor system in (9) and (10) has been studied in the literature, see e.g.,
[12, 11, 31] and the references therein. However, these methods do not take the special structure of the system
into consideration, and therefore destroy the block structure of the system. In fact, the block structure arising from
the one-sided coupling of the thermal and elasticity model in (9) can be exploited. The application of the Schur
complement as proposed in [11] to the DAE yields an equivalent system

EthṪ = AthT (t) +Bthz(t),

y = CelA
−1
el AthelT + CelA

−1
el Belzel(t) =: C̃T + D̃zel(t),

(11)

which relies on the dimension ñ of the thermal model. Note that after the application of the Schur complement to
the one-sided coupled thermo-elastic system, all the information of the stationary elasticity model is captured by
the modified output C̃. Using the Schur complement, the given one-sided coupled DAE system (9) of dimension
n = 4ñ together with the output equation (10) can be equivalently reformulated into a system of the form (11).
Thus, any MOR method can be applied to a system of dimension ñ instead of 4ñ with a modified output C̃, which
contains the entire information of the elasticity model.

Now, the problem can easily be stated as a standard state-space linear time-invariant system, since the FE mass
matrix Eth of the thermal model is non-singular, and the classical MOR methods as mentioned above can be
applied to the standard-state-space system in (11). In [19], a coupled thermo-elastic system of the form (9), where
Bel = 0 and additionally the matrices Ath, Bth vary with respect to a moving thermal load, is treated by MOR.
The variation of the matrices Ath, Bth is modeled via two different approaches. The first approach uses switched
linear systems (SLS) to capture the movement. Then balanced truncation method is used to reduce each of the
linear systems in the SLS. A speedup factor of 62 has been achieved by the reduced-order models. The original
SLS have the same dimension n = 16, 626, and the reduced-order models are all of size 60. The second approach
handles the variability of the model via a parameter describing the moving load which results in a parametric
coupled system with dimension n = 16, 626. In this case the iterative rational Krylov algorithm (IRKA) [3] is
applied to compute a reduced-order model with size 75, which has resulted in a speedup factor of 584.
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4.1.3 A coupled Stokes-Darcy system

In [25], a coupled Stokes-Darcy system is considered. It is coupling of a free flow with a flow through porous
media. The computational domain Ω is decomposed into two sub-domains Ω1 and Ω2, as is illustrated in Figure 6,
where Γ is the interface, with associated normal unit vector n pointing from Ω1 to Ω2 and tangent with unit vector
τ . The mathematical model in the PDE form is as follows. On Ω1, a Stokes flow is considered: find velocity u and

Γin
1

Γ2

Γ1

Γ2

Γb
2

Γ1

Γ

Ω2

Ω1

τ

n

Figure 6: Illustration of the computational domains and boundaries for the coupled Stokes-Darcy system.

pressure p such that
−ν∆u +∇p = f in Ω1,

∆ · u = 0 in Ω1,
u = uin on Γin1
u = 0 on Γ1,

(12)

and on Ω2, the porous media equation is considered:

−∆ · (K∇φ) = 0 in Ω2,
−K∇φ · n2 = 0 in Γ2,

φ = φb onΓb2.
(13)

The two systems above are coupled though the following interface conditions on Γ:

u · n = − 1
nK∇φ · n on Γ,

−νn · ∂u∂n + p = gφ on Γ,

u · τ = −
√
k

αBJ
τ · ∂u∂n on Γ.

(14)

MOR for Stokes-Darcy system.

The reduced basis method is used to compute the projection matrices for MOR in [25]. The projection matrices
Vu and Vp for the velocity u and the pressure p, as well as the projection matrix Vφ for φ, are computed separately
using a greedy algorithm, where the coupling was considered when computing the reduced basis. The reduced-
order model is derived by using Galerkin projection, applying Vu, Vp, and Vφ, respectively, to the discretized
version of the model in (12)–(14). The details can be found in [25], where as a convention in the reduced basis
community, the discretized system is not explicitly presented. All the analyses are done in the operator form,
and in functional space. Compared to full simulation of the original large model, the online simulation of the
reduced-order model with relative error 6.72 × 10−4, has achieved a speed-up factor of 877. The offline time of
generating the reduced-order model is reported to be around 3 hours. After discretization in space, the dimension
of the original coupled system is n = 92, 168, and that of the reduced-order model is 171.

4.1.4 An acoustic cavity model

In [30], a cube-shaped acoustic cavity filled with air or water is considered for simulation and model order re-
duction. The geometric model and its discretization are depicted in Figure 7. The model is constructed with a
linear description of vibro-acoustics phenomena based on a displacement-pressure formulation. The behavior of
the structure-fluid undamped coupled system is described by the following equations after finite element discretiza-
tion, [

Ms 0
ρfC

T Mf

](
ü
p̈

)
+

[
Ks −C
0 Kf

](
u
p

)
=

(
Fs
0

)
, (15)
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Figure 7: Geometry (a) and its discretization (b) of the acoustic cavity model.

where Ms ∈ Rns×ns ,Ks ∈ Rns×ns , C ∈ Rns×nf ,Mf ∈ Rnf×nf ,Kf ∈ Rnf×nf . In the system above, the
equation for the displacement u includes the contribution of the pressure p, and the equation for the pressure p
includes the derivatives of u with respect to time t. The coupling occurs in both equations, so that it is a two-way
coupling, or in other words it is a strong coupling problem.

MOR for the acoustic cavity model

The classical model order reduction technique in structural dynamics is to use the eigenmodes of the uncoupled
structure and fluid systems to construct the projection matrix for MOR. More specifically, the uncoupled eigenvalue
problems

(−ω2Ms +Ks)U = 0,
(−ω2Mf +Kf )P = 0

(16)

are solved to get the eigenmodes of the structure and fluid systems Vs0 ∈ Rns×rs , and Vf0 ∈ Rnf×rf , rs �
ns, rf � nf . The reduced-order model is constructed by Galerkin projection with the projection matrix V =
diag{Vs0 , Vf0}, i.e., Vs0 , and Vf0 are the two diagonal blocks of V . The system matrices of the reduced-order
model are then constructed as:

K̂s = V Ts0KsVs0 , M̂s = V Ts0MsVs0 , Ĉ = V Ts0KsVf0 , F̂s = V Ts0Fs, K̂f = V Tf0KfVf0 , M̂f = V Tf0MfVf0 .

The classical model order reduction technique as above simply ignores the effect of the coupled modes, which
may lead to a very low accuracy. Further improved methods are proposed, see e.g., the detailed description in [30].
All the improved methods try to include the influence of the coupled modes into the projection matrix V , i.e.,
into the reduced bases, by using different techniques. The methods of using some of the important eigenmodes
of the system to construct the reduced-order model are usually called modal truncation methods in mechanical
engineering, or component mode synthesis methods (CMS) [8] in structural dynamics. It is reported in [30] that the
simulation time of solving the reduced-order model obtained by the classical MOR method of using eigenmodes
of the uncoupled systems is only 1 percent of that spent on solving the original coupled system. Although the
improved MOR methods proposed in [30] produce more accurate results, they only bring a speedup factor of 2 as
compared to direct simulating the full coupled system.

4.2 Coupling through inputs and outputs: interconnected systems
In this section, we introduce MOR methods for systems coupled through internal inputs and internal outputs [28,
33].

4.2.1 Model description

A schematic model of such a coupled system is shown in Figure 8, where Gi are the subsystems coupled through
internal inputs and internal outputs, and y and u are the external output and external input, respectively. The
mathematical model in the state space can be either in first-order form,

Ej ẋj(t) = Ajxj(t) +Bjuj(t),
yj(t) = Cjxj(t),

(17)

or in second-order form,

Mj ẍj(t) + Ej ẋj(t) +Kjxj(t) = Bjuj(t),
yj(t) = Cj1ẋj(t) + Cj2xj(t).

(18)

8



Figure 8: A schematic model of a system coupled through inputs/outputs.

The subsystems in (17) or in (18) are coupled through the relations

uj(t) = Dj1y1(t) + · · ·+Djkyk(t) +Hju(t), j = 1, . . . , k,
y(t) = R1y1(t) + · · ·+Rkyk(t).

(19)

Here Ej , Aj ,Mj , Ej ,Kj ∈ Rnj×nj , Bj ∈ Rnj×pj , Cj , Cj1, Cj2 ∈ Rmj×nj , xj(t) ∈ Rnj are internal state
vectors, uj(t) ∈ Rpj are internal inputs, yj(t) ∈ Rmj are internal outputs, Djl ∈ Rpj×ml , Hj ∈ Rpj×p, Rj ∈
Rm×mj , u(t) ∈ Rp is an external input, and y(t) ∈ Rm is an external output. Coupled systems as in (17)–(19) are
also called interconnected or composite systems [28, 33].

As stated in [28], the coupled systems in (17)–(19) may arise from spatial discretization of linear partial differ-
ential equations describing physical phenomenons, such as heat transfer, vibrations, electromagnetic radiation or
fluid flow, etc.. In simulation of linear RLC circuits that consist of resistors, capacitors, inductors, voltage and cur-
rent sources only, the corresponding model is of first-order form (17). The components of the state vector xj(t) are
the nodal voltages, the inductor currents and the currents through the voltage sources, uj(t) contains the currents
and voltages of the current and voltage sources, respectively, and yj(t) consists of the voltages across the current
sources and the currents through the voltage sources. Systems of the form in (18) appear also in mechanical and
structural dynamics, where xj(t) is the displacement vector and uj(t) is the acting force1.

4.2.2 MOR for interconnected systems

Two approaches are available for MOR of the interconnected system. One is to transform the subsystems into a
large closed-loop system and to compute the reduced-order model by any MOR method suitable for linear time
invariant systems. The other approach is to compute the reduced-order model of each subsystem, and couple them
through the same interconnection relations. In the following, we introduce the two techniques separately.

MOR for a large closed-loop system.

The method is valid for coupled systems in the first-order form in (17). Systems in second-order form as in (18)
have to be first transformed into first-order form using the transformation zj = ẋj , and x̃j = (xTj , z

T
j )T . In the

following, we only consider the system in the first order form (17).
Let n = n1 + · · ·+ nk, p0 = p1 + · · ·+ pk, and m0 = m1 + . . .+mk. Introducing the matrices

R = [R1, . . . , Rk] ∈ Rm×m0 , H = [HT
1 , . . . ,H

T
k ]T ∈ Rp0×p,

and
D = [Djl]

k
j,l=1 ∈ Rp0×m0 ,

together with the block diagonal matrices

E = diag(E1, . . . , Ek) ∈ Rn×n, A = diag(A1, . . . , Ak) ∈ Rn×n,
B = diag(B1, . . . , Bk) ∈ Rn×p0 , C = diag(C1, . . . , Ck) ∈ Rm0×n,

1In lack of a better formulation, this subsection is basically copied from [28]
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the coupled system in (17) can be rewritten in closed-loop form as

E ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(20)

where the system matrices E = E ∈ Rn×n,A = A + BDC ∈ Rn×n,B = BH ∈ Rn×p, C = RC ∈ Rm×n, are
of much larger sizes than each of the subsystems.

Model order reduction of the coupled system in (17) is then transformed into model order reduction of the closed-
loop system in (20). The closed-loop system is a linear-time invariant system, so that any MOR method which
is suitable for such systems can be applied. In [28], the balanced truncation method and the moment-matching
method are discussed for MOR of the closed-loop system. For instance, if two projection matrices W ∈ Rn×r,
V ∈ Rn×r have been computed by a certain MOR method, the reduced-order model is computed as

WTEV ż(t) = WTAV z(t) +WTBu(t),
ŷ(t) = CV z(t). (21)

It is pointed out in [28] that MOR on the closed-loop system ignores the special properties of the subsystems,
though the subsystems are usually governed by entirely different physical laws and they often act in different spaces
and time scales. Furthermore, the reduced-order model is not flexible in the sense of adding new subsystems, or
replacing some of them by new ones, or changing the coupling configuration in the original coupled system.
Once the coupled system has undergone the changes above, the reduced-order model has to be re-computed.
Furthermore, MOR for the closed-loop system is usually efficient only for systems with a small number of internal
inputs and outputs [24].

In Chapter 8 of [24], the generalized singular value decomposition (GSVD) technique is used to get low rank
approximations of the coupling blocks in the matrix A in (20); from the low rank approximations, approximated
input and output matrices B̃j and C̃j that have smaller sizes than the original ones can be extracted. When B̃ and
C̃ are used in the moment-matching method to compute the projection matrices Wi, Vi for each subsystem, the
size of the reduced-order model can be further reduced. This GSVD technique is shown to be useful for dealing
with interconnected systems with many internal inputs and internal outputs.

In the following, a different MOR approach is introduced, where the reduced-order models are separately com-
puted for each of the subsystems. A most suitable model order reduction method can be chosen for each subsystem,
by taking the structure and property of the individual subsystem into consideration. The final reduced-order model
is obtained by coupling all the reduced-order models for the subsystems through the same coupling relations as the
original system.

Separate MOR and then coupling [28].

The advantage of separate MOR and then coupling is that it preserves the structure of the original coupled system
in (17). One has the freedom of choosing different MOR methods for different subsystems. The reduced-order
model preserves the structure of the original coupled system. Furthermore, parallel computation of the reduced
subsystems is possible. The first step of the approach is to apply MOR to each subsystem, and to obtain the reduced
subsystems,

Êj żj(t) = Âjz(t) + B̂j ûj(t),

ŷj(t) = Ĉjzj(t),
(22)

where Êj , Âj ∈ Rrj×rj . B̂j ∈ Rrj×pj , Ĉj ∈ Rmj×rj , with rj � nj . The second step consists in coupling the
reduced subsystems through the same interconnection relations

ûj(t) = Dj1ŷ1(t) + · · ·+Djkŷk(t) +Hju(t), j = 1, . . . , k,
ŷ(t) = R1ŷ1(t) + · · ·+Rkŷk(t).

(23)

Note that the only difference between the coupling in (23) and the coupling for the original system in (19) is that
the outputs yj(t) in (19) are replaced by the approximate outputs ŷj(t) in (23). Due to the first equation in (23),
the input of the reduced subsystem in (22) should be ûj(t), rather than uj(t) in the original system.

To construct the reduced subsystems, various MOR methods could be used. The balanced truncation method and
the moment-matching method for MOR of the subsystems are discussed in [15, 24, 28, 29, 33]. When the subsys-
tems are systems of DAEs, they can be first transformed into a system of ordinary differential equations (ODEs) by
using ε-embedding techniques [15], and then the moment-matching method is applied to the transformed subsys-
tems. Though relaxing the constraints in DAEs this way is an often employed technique in engineering, it should
be noted that this may result in physically questionable results and is numerically hazardous, see, e.g., [18].
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5 MOR for nonlinear coupled systems
This section introduces MOR methods for nonlinear coupled systems. Compared to the linear coupled systems
in (1) or (2), a nonlinear coupled system has additional nonlinear terms at the positions ofM, E , and/or A. In the
following sections, we introduce some examples of nonlinear coupled systems. We classify the nonlinear coupled
systems into weakly coupled and strongly coupled systems, according to their coupling structure. If the coupling
is only a one-way coupling, i.e., if the ith subsystem has a coupling with the jth subsystem, and no coupling exists
the other way around, we call it weak coupling. Otherwise, we consider it as strong coupling.

5.1 Weakly coupled systems
5.1.1 A model of an electro-thermal package.

Weakly coupled systems appear, e.g., from electro-thermal modeling of nano-electronics [5]. See Figure 9 for
an electro-thermal package model. For general complex geometries, an accurate physical model in the form of
heat transfer partial differential equations is required. The electrical transport is controlled by Ohm’s law and the
current continuity equation in conductive material is

∇ · ~J = 0, ~J = σ(T ) ~E, (24)

where J (A/m2) is known as the current density, E (V/m) is the electric field, and σ (1/(Ohm m)) is the conductivity,
depending on the temperature T . The generated-energy transport is controlled by Joule’s law

∂U

∂t
= −∇ · ~Q+ Σ, ~Q = −κ(T )∇T, U = CV (T − T ∗). (25)

Of particular interest is the local heat generation, which is given by

Σ = ~E · ~J = σ(T ) (∇V )
2
. (26)

Here, Q (W/m2) is the heat flux, κ (W/(m K)) is the thermal conductivity, CV is the constant-volume heat ca-
pacitance of the material, which is also T -dependent, and T ∗ is a reference or ambient temperature. The latter
expression results in a non-linear relation (coupling) between the variables V , the electrical voltages, and the tem-
perature variables, T . Spatial discretization (using the finite-element method, or the finite volume method, like
finite integration) of (24) and (25) results in a large-scale system of ODEs in the form of[

E11(µ) 0
0 0

]
︸ ︷︷ ︸

E(µ)

[
ẋ1

ẋ2

]
=

[
A11(µ) 0

0 A22(µ)

]
︸ ︷︷ ︸

A(µ)

[
x1

x2

]
+

[
xT2 F(µ)x2

0

]
+

[
B1(µ)
B2(µ)

]
u(t),

(27)

where x = (xT1 , x
T
2 )T ∈ Rn is the state vector including the nodal voltages x1 ∈ Rn1 and nodal temperatures

x2 ∈ Rn2 varying with time. Here, µ is a scalar, describing the variation of the thickness of the top layer of the
package. The tensor F ∈ Rn1×n2×n2 represents the non-linear character of the heat source Σ. Roughly speaking,
F can be considered as a 3-D array of n1 matrices Fi ∈ Rn2×n2 , i = 1, . . . , n1. As a result, xT2 F(µ)x2 ∈ Rn1

represents a vector, where the ith component in the vector is the vector-matrix-vector product xT2 Fix2, for i =
1, . . . , n1. The matrix E ∈ Rn×n is a capacity matrix for both the electrical and the thermal part, and the matrix
A ∈ Rn×n is the conductivity matrix for both the electrical and the thermal part. The coupled system can be very
large depending on the number of meshes used for discretization. Model order reduction is required, especially for
multi-query simulations due to the variations of µ.

Figure 9: Electro-thermal package. (Courtesy of MAGWEL NV, Leuven (Belgium).)
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MOR for the package model.

In the weakly coupled system above, the state vector x2 acts as an input for the subsystem of x1. For direct
simulation, one can first compute x2 from the algebraic equation defining x2, then substitute x2 into the equation
of x1, to get a subsystem for x1 without coupling. To achieve fast simulation, MOR can be applied to both the
algebraic equation and the subsystem for x1. In [5], a parametric model order reduction method [4] is used to get a
reduced-order model of the algebraic equation in a parametric form, and a parametric reduced-order model of the
x1 subsystem. More specifically, two projection matrices V1 ∈ Rn1×r1 , r1 � n1, and V2 ∈ Rn2×r2 , r2 � n2, are
computed for the two subsystems. When computing V1, the coupling term x2Fx2 is ignored. Nevertheless, it can
be used to further improve the accuracy of V1 if necessary. The reduced-order model of the coupled system is of
the form as below,[

V T1 E11(µ)V1 0
0 0

]
︸ ︷︷ ︸

Ê(µ)

[
ż1

ż2

]
=

[
V T1 A11(µ)V1 0

0 V T2 A22(µ)V2

]
︸ ︷︷ ︸

Â(µ)

[
z1

z2

]
+

[
F̂(µ, z2)

0

]
+

[
V T1 B1(µ)
V T2 B2(µ)

]
u(t),

(28)

where F̂(µ, z2) = V T1 (zT2 V
T
2 F(µ)V2z2) ∈ Rr1 is the projected coupled term.

5.2 Strongly coupled systems
5.2.1 An electrical circuit model.

This model comes from modeling of integrated circuits with semiconductor devices [13]. The system is a coupling
of a semiconductor model and an RCL system of resistors, capacitors, and inductors, obtained by modified nodal
analysis. The RCL system is described by

E(x)dx(t)
dt = Ax(t) + f(x(t)) + Bu(t),
y = BTx, (29)

where

x =

 x1

x2

x3

 , u =

[
u1

u2

]
,

and

E(x) =

 g1(x1) 0 0
0 g2(x2) 0
0 0 0

 , A =

 0 A12 A13

−AT12 0 0
−AT13 0 0

 ,

f(x) =

 f1(x1)
0
0

 , B =

 B1 0
0 0
0 −I

 .
(30)

Here g1(x1) ∈ Rn1 , f1(x1) ∈ Rn1 and g2(x2) ∈ Rn2 are nonlinear functions of x1 ∈ Rn1 and x2 ∈ Rn2 ,
respectively. The system in (29) can be further decoupled into linear and nonlinear parts [13].

The model of the semiconductor is in the following form,

Ẽ(x̃)dx̃(t)
dt = Ãx̃(t) + f̃(x̃(t)) + b̃(x1),
ỹ = g̃(x1),

(31)

where

x̃ =

 x̃1

x̃2

x̃3

 ,
and

Ẽ(x) =

 0 0 0
0 M 0
0 0 0

 , f̃(x̃) = f̃(x̃2, x̃3). (32)

Note that the semiconductor model is coupled with the RCL system through the state vector x1.
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MOR for the coupled circuit model.

In [13], the coupled systems in (29) and (31) are decoupled into linear and nonlinear systems, by making use of
the properties of the circuits. The linear system is reduced by the algorithm PABTEC [13]. The nonlinear systems
are reduced by the proper orthogonal decomposition (POD) method, combined with discrete interpolation of the
nonlinear functions using the Discrete Empirical Interpolation Method (DEIM) [7]. The decoupled subsystems are
then replaced by their reduced-order models, which are coupled again to constitute the final coupled reduced-order
model. An illustration of the procedure is given in Figure 10. The details of MOR are discussed in [13]. From
the simulation results for the circuit example in [13], a speedup factor of 20 by using MOR can be deduced. The
dimension of the reduced-order model is 130, while the original coupled system has a size of n = 7, 510.
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Figure 10: MOR for integrated circuit with semiconductors.

5.2.2 A model of lithium ion batteries.

In [20], a coupled system consisting of two elliptic and one parabolic equations is considered for MOR. The
parabolic equation describes the concentration of lithium ions, and the two elliptic equations describe the potential
in the solid and liquid phases, respectively. These equations are coupled by a strong nonlinearity, which is a
concatenation of the square root, the hyperbolic sine, and the logarithmic functions. Moreover, the system has a
vector µ of parameters. In summary, it is a parametric nonlinear coupled system. The coupled system, after finite
element discretization (FEM) of the model of PDEs, is given as below,

Mẋ1(t) + S1x1(t) +N(x1(t), x2(t), x3(t);µ) = 0 for all t ∈ [0, T ],
x1(0) = x0

1, t = 0,
S2x2(t) +N(x1(t), x2(t), x3(t);µ) = 0 for all t ∈ [0, T ],
S3x3(t)−N(x1(t), x2(t), x3(t);µ) = 0 for all t ∈ [0, T ],

(33)

where M ∈ Rn×n, S1 ∈ Rn×n, and the nonlinear function N(·, µ) ∈ Rn. Here x1 ∈ Rn, x2 ∈ Rn, and x3 ∈ Rn
represent the FEM solutions of the parabolic equation, and two elliptic equations, respectively.

MOR for the model of lithium ion batteries

The POD method is used in [20] to compute the projection matrices V1 ∈ Rn×r1 , V2 ∈ Rn×r2 , V3 ∈ Rn×r3 , r1, r2, r3 �
n for MOR of the system above. The reduced-order model in (34) is obtained by applying Galerkin projection to
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each subsystem in (33), using V1, V2, V3, respectively,

V T1 MV1ż1(t) + V T1 S1V1z1(t) + V T1 N(V1z1(t), V2z2(t), V3z3(t);µ) = 0 for all t ∈ [0, T ],
V T1 MV1z1(0) = z0

1 ,
V T2 S2V2z2(t) + V T2 N(V1z1(t), V2z2(t), V3z3(t);µ) = 0 for all t ∈ [0, T ],
V T3 S3V3z3(t)− V T3 N(V1z1(t), V2z2(t), V3z3(t);µ) = 0 for all t ∈ [0, T ].

(34)

To accelerate the computation of the nonlinear function N(·, µ) in the reduced-order model (34), the DEIM algo-
rithm [7] and the Empirical Interpolation Method (EIM) [2] are applied to get an empirical interpolation ofN(·, µ).
It is observed that for the test example used for multiple evaluations of the system, the POD method combined with
EIM or DEIM is able to speed up the simulation by a factor of 35.

5.2.3 A coupled Schroedinger-Poisson system.

Solving a coupled Schroedinger-Poisson system of equations arises from ballistic transport simulation in nanode-
vices. In [27], the model of PDEs is described in detail. A subband decomposition approach is combined with the
finite element discretization to solve the original system of PDEs. The reduced basis method is applied to con-
struct the reduced-order model, which has significantly reduced the computational cost. Because of the involved
formulations, the equations of the model are not presented. It is worth noting that, in general, the reduced basis
method relies on a suitable a posteriori error estimation of the reduced-order model to efficiently construct the
reduced basis, i.e., the projection matrix for MOR. Usually, the method is suitable for parametric systems. For the
examples examined in [27], the reported speedup factor of the reduced basis method is around 2.

5.2.4 A batch chromatographic model.

Batch chromatography, as a crucial separation and purification tool, is widely employed in food, fine chemical
and pharmaceutical industries. The principle of batch elution chromatography for binary separation is shown
schematically in Figure 11. The governing equations in the dimensionless form are formulated as follows,

∂cz
∂t

+
1− ε
ε

∂qz
∂t

= −∂cz
∂x

+
1

Pe

∂2cz
∂x2

, 0 < x < 1,

∂qz
∂t

=
L

Q/(εAc)
κz
(
qEq
z − qz

)
, 0 ≤ x ≤ 1,

(35)

where cz, qz are the concentrations of the component z (z = a, b) in the liquid and solid phase, respectively.
Here, the four variables cz, qz , z (z = a, b) are coupled through the first equation and the adsorption equilibrium
qEq
z = fz(ca, cb) in the second equation which can be linear or nonlinear. The coupling is very complex, especially

for the nonlinear case. For instance, the following nonlinear case was considered in [35],

qEq
z = fz(ca, cb) :=

Hz1cz
1 +Ka1cf

aca +Kb1cf
bcb

+
Hz2cz

1 +Ka2cf
aca +Kb2cf

bcb
. (36)

The flow rate Q and the injection period tin (in the boundary conditions) are considered as parameters, i.e., µ :=
(Q, tin). Other parameters in the above equations are constants, and details about them can be found in [35]. In
short, this is a parametrized nonlinear time-dependent system.

MOR for the batch chromatographic model

In [35], the finite volume discretization is used to construct the discretized full-order coupled model of the PDEs
in (35). The reduced basis method is employed to construct the reduced-order models for the discretized models
of the variables cz, qz , z = a, b, separately. The final reduced-order model is obtained by coupling the individ-
ual reduced-order models using the same coupling relationship as that in the full-order coupled model. To avoid
computing the nonlinear coupled term in the full dimension, it is treated using the EIM algorithm [2]. The re-
sulting reduced-order model preserves the block structure of the full-order coupled model, and is reliable over the
whole interesting parameter domain, such that the underlying optimization problem is efficiently solved using the
reduced-order model. Solving the optimization problem with the reduced-order model is about 50 times faster than
optimization employing the original coupled system.
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Figure 11: Sketch of a batch chromatographic process for the separation of a and b.

5.2.5 Simulated moving bed (SMB) chromatography model

Simulated moving bed (SMB) chromatography is a continuous multi-column process and has been widely used
as an efficient separation technique in chemical industries. An SMB unit usually consists of several identical
chromatographic columns connected in a series, see Figure 12. The governing equations for the fluid flow in each
chromatographic column is similar to that of the batch chromatographic model, and some balance equations are
used to describe the relations of the flow between the inlet and outlet ports of two successive columns. This system
is a multi-stage system driven by a periodic switching procedure, namely, a final cyclic steady state is achieved
usually through cycle by cycle simulations.

MOR for the SMB chromatography

Several MOR methods have been applied to the SMB chromatography, see [21, 22, 36], for example.
In [21], the SMB model of PDEs is discretized using orthogonal collocation on finite elements (OCFE), and the

discretized system is written as:

Mẋ(t) = A(µ)x(t) +B(µ) + F (x(t), µ), t ∈ [0, 1], (37)

where x ∈ Rn is the state vector that represents the concentrations in the liquid and solid phases at the grid nodes,
M ∈ Rn×n, A ∈ Rn×n, B ∈ Rn are the coefficient matrices, and F (·) ∈ Rn is a nonlinear vector-valued function,
describing the coupling of the systems. Here the parameters of the system in (37) are the dimensionless time t, and
the vector µ ∈ Rq of the operating conditions.

The POD method is applied to a nonlinear SMB model in [21]. An efficient Krylov-subspace MOR method
is proposed for a linear SMB model in [22]. The reduced-order models are built without considering the block
structure of the original coupled system, and hence are dense.

More recently, the reduced basis method was applied to a linear SMB model in [36]. The finite volume method is
used to construct the discretized full-order coupled model. The reduced-order model for each variable is computed
in a separate way, and then they are coupled with the same relation as the original full-order model. The resulting
reduced-order model, therefore, preserves the block structure of the full-order coupled model. The reduced-order
model is then applied within an optimization problem to obtain the optimal operating conditions of SMB. The
optimization has been accomplished with acceptable accuracy, but with much less time, and the speedup factor is
9 as compared to standard optimization with the original coupled system.

6 Conclusions
We have reviewed MOR methods for different coupled systems with various application backgrounds. The cou-
pled systems can be linear or nonlinear, and sometimes also include symbolic parameters. For linear coupled
systems, the MOR methods used are usually balanced truncation, moment-matching, though MOR methods based
on eigenmodes of the system are usually used in the area of structural dynamics. For nonlinear systems, the most
commonly used methods are POD if the system is strongly nonlinear, and methods based on Krylov subspaces
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Figure 12: Schematic illustration of an SMB chromatographic process with four zones and eight columns.

(e.g., moment-matching) could be applied for weakly nonlinear (e.g., quadratic) systems. For parametric systems,
reduced basis methods are popular, especially for MOR of nonlinear parametric systems, whereas the Krylov
subspace based methods (e.g., multi-moment-matching) are efficient for dealing with linear parametric systems.
Certainly, this survey is not exhaustive, and the list of coupled problems discussed here is certainly incomplete.
Nevertheless, we hope to have provided a good starting point for further research in MOR for coupled problems.
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