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Abstract

We consider model order reduction of bilinear descriptor systems using an in-
terpolatory projection framework. Such nonlinear descriptor systems can be
represented by a series of generalized linear descriptor systems (also called sub-
systems) by utilizing the Volterra-Wiener approach [22]. Standard projection
techniques for bilinear systems utilize the generalized transfer function of these
subsystems to construct an interpolating approximation. However, the result-
ing reduced-order system may not match the polynomial part of the generalized
transfer functions. This may result in an unbounded error in terms of H2 or H∞
norms. In this paper, we derive an explicit expression for the polynomial part
of each subsystem by assuming a special structure of the bilinear system which
reduces to an index-1 linear DAE if the bilinear term is zero. This allows us to
propose an interpolatory technique for bilinear DAEs which not only achieves
interpolation but also retains the polynomial part of the bilinear system. The
approach extends the interpolatory technique for index-1 linear DAEs [18] to
bilinear DAEs. Numerical examples are used to illustrate the theoretical results.
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1 Introduction

The importance of model order reduction arises in the analysis of high order mathe-
matical models that describe complex dynamical systems. These high order models
are often expensive to observe and therefore, they are replaced by reduced-order sys-
tems to simulate the approximate behavior of the actual system. Various approaches
have been developed for model order reduction, see, e.g. [1, 4, 10, 23]. In case of linear
systems, balanced truncation [20], moment-matching methods [14] and the iterative
rational Krylov method [17] are well-used and well-established model reduction meth-
ods. However, most practical systems have nonlinearities and model reduction of such
systems, particularly models described by differential algebraic equations (DAEs), also
called descriptor systems, are less developed and require further research.

In this paper, we investigate Krylov projection methods for bilinear descriptor sys-
tems. In general, a bilinear descriptor system has the form

Eẋ(t) = Ax(t) +

m∑
i=1

N (i)x(t)ui(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output vectors,
respectively. The matrices E, A, N (i), i = 1, . . . ,m, B, C and D are all real with
dimensions determined by those of x(t), u(t) and y(t). Notice that the bilinear terms
in the system, involving the product of state and inputs, make it a special class of
nonlinear systems. Also the matrix E might be singular, but it is assumed that
the matrix pencil (A,E) is regular and stable, that is det(sE − A) 6≡ 0 and all finite
eigenvalues of the matrix pencil (sE−A) have strictly negative real parts, respectively.

Model reduction aims at deriving another system with much smaller state-space
dimension r � n, similar to (1), i.e.,

Erẋr(t) = Arxr(t) +

m∑
i=1

N (i)
r xr(t)ui(t) +Bru(t),

yr(t) = Crxr(t) +Dru(t),

(2)

such that the output behavior and some important properties of (1) are retained
by (2) for an admissible set of input functions u(t). The reduced-order system (2) can
be obtained via projections as follows:

� Construct basis matrices V ∈ Rn×r and W ∈ Rn×r for the subspaces V and W
respectively.

� Approximate x(t) by V xr(t).

� Ensure the Petrov-Galerkin condition:

WT

(
EV xr(t)−AV xr(t)−

m∑
i=1

N (i)V xr(t)ui(t)−Bu(t)

)
= 0.
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As a result, the state matrices associated with the reduced-order system (2) are
given by

Er = WTEV, Ar = WTAV, N (i)
r = WTN (i)V,

Br = WTB, Cr = CV.

Clearly, for a given system, the reduced-order system obtained via projection depends
on the choice of V and W , or equivalently, on the subspaces V andW. If the matrix E
is the identity matrix or nonsingular, these basis matrices and the resulting reduced-
order system can be computed by extending the standard balanced truncation and
interpolatory projection methods from linear to bilinear systems [2, 3, 7, 9, 11, 13, 21,
24]. The bilinear version of balanced truncation involves the solution of two generalized
Lyapunov equations, which is known to be computationally complex [9]. In [8] effective
methods for solving these Lyapunov equations are suggested. Their extension to the
descriptor case is an open problem, though. Therefore, we focus on interpolatory
projection methods for descriptor systems.

Recently, it was shown in [18] that for a linear descriptor system, it is necessary for
interpolatory techniques to compute a reduced-order system which not only interpo-
lates the actual transfer function of the system, but also retains its polynomial part, in
order to ensure a bounded error in terms of the H2-norm. We extend this observation
to bilinear descriptor systems and to our knowledge this has not been considered be-
fore. The idea is to compute a reduced-order system for a given bilinear DAE system
such that the generalized transfer functions associated with the reduced-order and the
actual bilinear system not only interpolate at some predefined interpolation points,
but also match the corresponding polynomial parts. This involves, first, identifying
the generalized transfer functions of the bilinear DAE system which is possible by
using the Volterra series representation [22]. Secondly, we construct the basis matri-
ces V and W , where the first k generalized transfer functions are used similar to the
standard interpolatory subspaces [11]. Then, we identify the polynomial part of each
generalized transfer function and finally project the bilinear DAE system to obtain the
required reduced-order system.

It is not straightforward to identify explicitly the polynomial part of the generalized
transfer functions. In this paper, we assume a special structure of bilinear systems
which allows us to compute explicitly a constant polynomial part of each generalized
transfer function. The special structure reduces to an index-1 linear DAE system, if
the bilinear term is zero. In Section 2, we first discuss interpolatory techniques for
such index-1 linear DAE systems. Its extension with the required modifications to the
special class of bilinear DAE systems is shown in Section 3, where an expression for
the polynomial parts of each generalized transfer function is also derived. In Section
4, we discuss computational issues arising in the interpolatory technique proposed
in Section 3. Finally, in Section 5, we present numerical results to illustrate the
implementation of our approach.
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2 Interpolatory Model Reduction for Linear DAEs

In this section, we briefly review interpolatory projection methods for model reduction
of linear descriptor systems. Note that the system in (1) reduces to a linear descriptor
system for N (i) = 0:

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(3)

Throughout our discussion in this paper, we assume single-input single-output sys-
tems, although the results can be extended to the multi-input multi-output case. This
means that B, CT represent column vectors and D is a scalar. Also, we denote the
transfer function G(s) := C(sE − A)−1B + D which can be decomposed into strictly
proper (Gsp(s)) and polynomial (P(s)) parts, i.e., G(s) = Gsp(s) + P(s).

The problem of reducing the above linear descriptor system by interpolatory pro-
jection has been considered recently in [18]. It is shown there that the standard
interpolatory techniques for model reduction of linear DAEs will generically produce
an interpolating ODE system (reduced-order) and will not necessarily match the poly-
nomial part of the DAE system. This may result in an unbounded H2 error. To
overcome this issue, an idea was proposed to identify explicitly the polynomial part
of the transfer function and ensure that the reduced-order system retains this poly-
nomial part by using modified interpolatory subspaces for projection [18]. For special
descriptor systems of index-1, this can be achieved without modifying the standard
interpolatory subspaces [18]. The approach is based on the idea given in [5, 19],
where the reduced transfer function Gr(s) = Cr(sEr − Ar)

−1Br + Dr interpolates
G(s) = C(sE − A)−1B + D with Dr 6= D, unlike for standard interpolation methods
where Dr = D. In the following, we review this idea of interpolating with Dr 6= D for
linear index-1 descriptor systems [18].
Consider a linear descriptor system of index-1,

E11ẋ1(t) + E12x2(t) = A11x1(t) +A12x2(t) +B1u(t),

0 = A21x1(t) +A22x2(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Du(t),

(4)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 . By the index-1 assumption, the matrices A22 and
E11 − E12A

−1
22 A21 are invertible. For an index-1 descriptor system, the polynomial

part P(s) is constant and can be determined by the following result.

Lemma 2.1. [18]. Let G(s) be the transfer function of the linear descriptor system (4)
in which A22 and E11 − E12A

−1
22 A21 are both nonsingular. Then, the polynomial part

of G(s) can be written as
P = CMB +D, (5)

where

M = lim
s→∞

(sE −A)−1 =

[
0 E−1A E12A

−1
22

0 −A−122

(
I +A21E

−1
A E12A

−1
22

)] (6)
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with EA = E11 − E12A
−1
22 A21 and s := 2πjf is the Laplace variable in which f is the

frequency and j is the imaginary unit.

To ensure bounded error, the reduced transfer function Gr(s) = Ĝsp(s)+P̂(s) should

not only interpolate G(s) but also match the constant part, P̂(s) = P(s) = P. This
means that the problem reduces to identify Ĝsp(s), which interpolates Gsp(s). Note

that it is easy to identify an interpolating Ĝsp(s), once we have an explicit expression
for Gsp(s). However, the goal is to identify an interpolating Gr(s) without explicitly
constructing Gsp(s) utilizing a special structure of the pencil (A,E). The following
theorem provides a possible solution.

Theorem 2.1. [5, 18] Let G(s) be the transfer function of the linear descriptor system
(3). Assume that the interpolation points σ and µ are given such that sE − A and
sEr − Ar are invertible for s = σ, µ. Define the projection matrices V ∈ Cn×r and
W ∈ Cn×r such that

� range (V ) = Kq
(
(σE −A)−1E, (σE −A)−1B

)
,

� range (W ) = Kq
(
(µE −A)−TET , (µE −A)−TCT

)
,

where Kq(A,B) = span
{
B,AB, . . . ,Aq−1B

}
. Also let F ∈ Cn×1 and G ∈ Cn×1 be

solutions to
FTV = (er1)T and WTG = er1, (7)

where er1 is the first column of an r × r identity matrix. Then, projection of the
intermediate system G̃(s) = C̃(sẼ − Ã)−1B̃ + D̃,

Ẽ = E, Ã = A+GD̂FT , B̃ = B −GD̂, C̃ = C − D̂FT , D̃ = P,

where D̂ = P −D, results in a reduced-order system Gr(s) = Cr(sEr −Ar)−1Br +Dr,
in which:

Er = WT ẼV, Ar = WT ÃV, Br = WT B̃, Cr = C̃Vr, Dr = D̃.

Assuming that Er is invertible, the polynomial parts of Gr(s) and G(s) match, that is
Dr = P. Also Gr(s) satisfies the following interpolation conditions

G(l)(σ) = G(l)r (σ), G(l)(µ) = G(l)r (µ), l = 0, . . . , q − 1,

If σ = µ, then

G(l)(σ) = G(l)r (σ), l = 0, . . . , 2q − 1.

Remark 2.1. The reduced transfer function Gr(s) is not only interpolating G(s) with
Dr 6= D (unlike for standard interpolation methods), but also matches the polynomial
part of G(s), that is Dr = P. This is possible by first computing the constant polynomial
part P of G(s), then constructing the intermediate system G̃(s) with D̃ = P, and then,
applying oblique projection to G̃(s) with standard interpolatory subspaces V and W
associated with G(s).
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Remark 2.2. Theorem 2.1 does not require the explicit computation of F and G in
order to compute the reduced-order system. The expressions for WTG and FTV can
be substituted directly from (7).

Remark 2.3. In case of Hermite interpolation with m distinct interpolation points
(i.e., using σi and µi, i = 1, . . . ,m), the conditions on F and G become

FTV = [ 1, 1, . . . , 1︸ ︷︷ ︸
m times

] and WTG = [ 1, 1, . . . , 1︸ ︷︷ ︸
m times

]T .

3 Interpolatory Model Reduction for Bilinear Descriptor
Systems

In this section, we extend the interpolatory technique with Dr 6= D as discussed before
for index-1 linear DAEs to a special class of bilinear descriptor systems. Consider a
bilinear descriptor system, where the matrix pencil (A,E) has a structure analogous
to the index-1 linear DAE, given in (4). That is,

E11ẋ1(t) + E12ẋ2(t) = A11x1(t) +A12x2(t) +N11x1(t)u(t) +N12x2(t)u(t) +B1u(t),

0 = A21x1(t) +A22x2(t) +N21x1(t)u(t) +N22x2(t)u(t) +B2u(t),

y(t) = C1x(t) + C2x2(t) +Du(t),

where A22 and E11−E12A
−1
22 A21 are invertible. In frequency domain, the input-output

representation of the bilinear system is given by the Volterra series representation of
the system. Each term of the Volterra series can be considered as a subsystem of the
bilinear descriptor system and involves generalized multivariate transfer functions. The
structure of these multivariate transfer functions corresponding to the kth subsystem
in the regular form is given as

H(s1, . . . , sk) = C(skE−A)−1N(sk−1E−A)−1N · · ·N(s1E−A)−1B+Dδ(k−1). (8)

where δ(l) = 1, if l = 0 and δ(l) = 0, otherwise. The next lemma shows that each
subsystem of (8) has a constant polynomial part:

Lemma 3.1. Let H(s1, . . . , sk) be defined as in (8), that is the regular multivari-
ate Laplace transform of the degree-k kernel associated to Σ, where A22 and E11 −
E12A

−1
22 A21 are both nonsingular. Then, the constant polynomial part of H(s1, . . . , sk)

is given by
Dk = C(MN)k−1MB +Dδ(k − 1), (9)

where M is as defined in (6).

Proof. Let F (Sk) = F (s1, . . . , sk) be the multivariable function

F (Sk) = (skE −A)−1N(sk−1E −A)−1N · · ·N(s1E −A)−1B, (10)
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then the polynomial part of H(Sk) is given by

Dk = C lim
Sk→∞

F (Sk) +Dδ(k − 1). (11)

Note that for k = 1, (10) reduces to the linear case and using (6) we have

lim
S1→∞

F (s1) = lim
s1→∞

(s1E −A)−1B = MB. (12)

It is easy to see from (11) that (9) holds for k = 1 (analog to the linear case). Now for
k = j ≥ 1, assume that

lim
Sj→∞

F (Sj) = (MN)j−1MB. (13)

We need to show that the above equation holds for k = j + 1. Note that

F (Sj+1) = (sj+1E −A)−1NF (Sj).

Taking the limit Sj+1 →∞, we have

lim
Sj+1→∞

F (Sj+1) = lim
sj+1→∞

(sj+1E −A)−1N lim
Sj→∞

F (Sj),

= lim
sj+1→∞

(sj+1E −A)−1N(MN)j−1MB,

where the last equation follows from (13). Now, we define BMN = N(MN)j−1MB
and use (6) to obtain

lim
Sj+1→∞

F (Sj+1) = lim
sj+1→∞

(sj+1E −A)−1BMN = MBMN = (MN)jMB

Thus, (11) implies that (9) holds.

Lemma 3.1 suggests that if

N =

[
N11 N12

0 0

]
, where N11 ∈ Rn1×n1 and N12 ∈ Rn1×n2 , (14)

then Dk = 0 for k > 1 and P = D1 = CMB + D. This means that only the first
subsystem has polynomial part and all other subsystems have zero polynomial part.
The next subsection addresses the issue of retaining the polynomial part, D1, in the
first subsystem of the reduced bilinear system.

3.1 Interpolating a bilinear descriptor system and retaining D1

We begin with outlining the standard interpolatory projection, where Dr = D.
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Theorem 3.1. [11] Consider arbitrary interpolation points σi, µi ∈ C such that sE−A
and sEr−Ar are invertible for s = σi, µi, i = 1, . . . , k. Define the projection matrices
V and W as follows

range
(
V (1)

)
= Kq

(
(σ1E −A)−1E, (σ1E −A)−1B

)
,

range
(
V (i)

)
= Kq

(
(σiE −A)−1E, (σiE −A)−1NV (i−1)

)
, i = 2, . . . , k,

range
(
W (1)

)
= Kq

(
(µ1E −A)−TET , (µ1E −A)−TCT

)
,

range
(
W (i)

)
= Kq

(
(µiE −A)−TET , (µiE −A)−TNTW (i−1)

)
, i = 2, . . . , k,

range (V ) =

k⋃
i=1

{
range

(
V (i)

)}
, range (W ) =

k⋃
i=1

{
range

(
W (i)

)}
.

Assume V and W are full column rank matrices. Construct the reduced-order system
matrices as

Er = WTEV, Ar = WTAV, Nr = WTNV,
Br = WTB, Cr = CV, Dr = D,

then

H(Sk) = Hr(Sk) +O ((s1 − µ1)q · · · (sk − µk)q(s1 − σ1)q · · · (sk − σk)q) .

Remark 3.1. It was shown in [11] that with the choice of the projection matrices V
and W in Theorem 3.1 also yields the matching of additional moments which involve
WTEV and WTNV .

Our aim is to utilize the basis matrices V and W as given in Theorem 3.1 and
extend the approach used in Theorem 2.1 to the bilinear descriptor system (8), with
N21 = N22 = 0 as in (14). The following theorem provides a possible solution:

Theorem 3.2. Let V and W be as defined in Theorem 3.1 and assume that the
structure of the matrix N is as in (14). Also let F ∈ Cn×1 and G ∈ Cn×1 be solutions
to

FTV = (er1)T and WTG = er1, (15)

where r is the order of the reduced-order system. Then, projection of the intermediate
system Σ̃(Ẽ, Ã, Ñ , B̃, C̃, D̃),

Ẽ = E, Ã = A+GD̂FT , Ñ = N,

B̃ = B −GD̂, C̃ = C − D̂FT , D̃ = CMB +D,

where D̂ = CMB, results in a reduced-order system Σr(Er, Ar, Nr, Br, Cr, Dr) in
which
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Er = WT ẼV, Ar = WT ÃV, Nr = WT ÑV,

Br = WT B̃, Cr = C̃Vr, Dr = D̃.

Assuming nonsingular Er, the polynomial parts of the first subsystem associated with
the reduced and original bilinear systems are matched. Also

H(Sk) = Hr(Sk) +O ((s1 − µ1)q · · · (sk − µk)q(s1 − σ1)q · · · (sk − σk)q) .

Proof. For the first subsystem, the result reduces to Theorem 2.1. However for com-
pleteness, we derive its proof in the following:

H(σ1)−Hr(σ1) = C
(
(σ1E −A)−1B − V (σ1Er −Ar)−1Br

)
− D̂ + D̂FTV (σ1Er −Ar)−1Br.

(16)

Hence,

V (σ1Er −Ar)−1Br = V (σ1Er −Ar)−1WT (B −GD̂),

= V (σ1Er −Ar)−1WT (σ1E −A−GD̂FT )(σ1E −A)−1B.

Note that Pσ = V (σEr − Ar)−1WT (σE − A − GD̂FT ) is an oblique projector onto
range(V ) and let z ∈ range(V ), then Pσz = z. This implies,

V (σ1Er −Ar)−1Br = Pσ1
(σ1E −A)−1B = (σ1E −A)−1B. (17)

Thus (16) becomes

H(σ1)−Hr(σ1) = −D̂ + D̂FT (σ1E −A)−1B.

Now from (15), we have FT (σ1E −A)−1B = 1 and this proves the matching at σ1 for
the first subsystem. Similarly, H(µ1) = Hr(µ1) holds. Next, we consider the second
subsystem

H(σ1, σ2)−Hr(σ1, σ2) = C
(
(σ2E −A)−1N(σ1E −A)−1B

− V (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br
)

+ D̂FTV (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br.
(18)

Since

V (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br︸ ︷︷ ︸
zr

= V (σ2Er −Ar)−1WTNV (σ1Er −Ar)−1Br,

it holds

V zr = V (σ2Er −Ar)−1WTN(σ1E −A)−1B,
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by using (17). Now using (15), the above equation becomes

V zr = V (σ2Er −Ar)−1WT
(

(σ2E −A)−GD̂FT
)

(σ2E −A)−1N(σ1E −A)−1B

= Pσ2
(σ2E −A)−1N(σ2E −A)−1B = (σ2E −A)−1N(σ1E −A)−1B.

Using this in (18), we have

H(σ1, σ2)−Hr(σ1, σ2) = D̂FT (σ2E −A)−1N(σ1E −A)−1B.

From (15), we have FT (σ2E−A)−1N(σ1E−A)−1B = 0. HenceH(σ1, σ2) = Hr(σ1, σ2).
Similarly H(µ1, µ2) = Hr(µ1, µ2). Using the same steps, we can deal with subsystems
of higher order and higher derivatives.

3.2 Interpolating a bilinear descriptor system and retaining the
polynomial part of the first k subsystems

So far, we have discussed how an interpolatory technique can retain the polynomial
part of the first subsystem in the reduced bilinear system by assuming that the higher
order subsystems have zero polynomial part. In this section, we consider a general
case where the higher order subsystems also have non-zero polynomial parts. The goal
is to construct a reduced bilinear system that retains the polynomial parts (non-zero)
of the first k subsystems associated with the original bilinear system, in addition to
interpolating these subsystems. As discussed in the preceding section, the structure
of the kth subsystem of the reduced bilinear system can be written as

Hr(s1, . . . , sk) =Cr(skEr −Ar)−1Nr(sk−1Er −Ar)−1Nr · · ·
· · ·Nr(s1Er −Ar)−1Br +Dk,

(19)

in which Er is nonsingular and Dk is the polynomial part of the kth subsystem of the
original bilinear system. This means that the reduced bilinear system ensures matching
of the polynomial parts of the first k subsystems corresponding to the original bilinear
system. However, we also need to ensure interpolation for these subsystems. The
following theorem provides our main result for achieving this.

Theorem 3.3. Let V and W be as defined in Theorem 3.1 and define intermediate
matrices:

Ẽ = E, Ã = A+ LA, Ñ = N − LN ,

B̃ = B − LB , C̃ = C − LC ,

where LA, LN , LB , LC are solutions to the following equations:

WTLB =
[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]T
, (20)

LCV =
[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]
, (21)

LAV =
[
LB(eq1)T , LN

[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
, (22)

WTLA =
[
LTC(eq1)T , LTN [W 1(Iq ⊗ (eq1)T ), . . . ,W k−1(Iqk−1 ⊗ (eq1)T )]

]T
, (23)
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in which D̂1 = D1−D and eq
j

1 is the first column of an identity matrix of size qj × qj.
Then, projection of the intermediate system results in a reduced-order system:

Er = WT ẼV, Ar = WT ÃV, Nr = WT ÑV,

Br = WT B̃, Cr = C̃V,

that satisfies

H(Sk) = Hr(Sk) +O ((s1 − µ1)q · · · (sk − µk)q(s1 − σ1)q · · · (sk − σk)q) .

Proof. Consider the first subsystem at s1 = σ1:

H(σ1)−Hr(σ1) = C
(
(s1E −A)−1B − V (s1Er −Ar)−1Br

)
+ LCV (s1Er −Ar)−1Br − (D1 −D︸ ︷︷ ︸

D̂1

). (24)

Since, V (σ1Er −Ar)−1Br = V (σ1Er −Ar)−1WT (B − LB) and from (22), LA(σ1E −
A)−1B = LB , therefore

V (σ1Er −Ar)−1Br = V (σ1Er −Ar)−1WT ((σ1E −A)− LA)(σ1E −A)−1B.

Now, introducing the oblique projector Pσ = V (σEr−Ar)−1WT ((σE −A)− LA) and
utilizing Pσz = z for z ∈ range(V ), we get

V (σ1Er −Ar)−1Br = Pσ1(σ1E −A)−1B = (σ1E −A)−1B. (25)

Using this in (24), we get

H(σ1)−Hr(σ1) = LC(s1E −A)−1B − D̂1.

From (21), LC(σ1E − A)−1B = D̂1. Hence H(σ1) = Hr(σ1). Similarly, H(µ1) =
Hr(µ1) holds. Now, consider the second subsystem

H(σ1, σ2)−Hr(σ1, σ2) = C
(
(σ2E −A)−1N(σ1E −A)−1B

− V (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br
)

+ LCV (σ2Er −Ar)−1Nr(σ1Er −Ar)−1Br −D2.

(26)

Hence,

V (σ2Er−Ar)−1Nr(σ1Er−Ar)−1Br︸ ︷︷ ︸
ẑr

=V (σ2Er−Ar)−1WT (N−LN )V (σ1Er−Ar)−1Br,

= V (σ2Er −Ar)−1WT (N − LN )(σ1E −A)−1B,

where the last equation follows from (25). Now (22) implies

LA(σ2E −A)−1N(σ1E −A)−1B = LN (σ1E −A)−1B.

10



Thus,

V ẑr = V (σ2Er −Ar)−1WT ((σ2E −A)− LA)(σ2E −A)−1N(σ1E −A)−1B,

= Pσ2
(σ2E −A)N(σ2E −A)−1B = (σ2E −A)N(σ1E −A)−1B.

Using this in (18), we have

H(σ1, σ2)−Hr(σ1, σ2) = LC(σ2E −A)−1N(σ1E −A)−1B −D2.

Now from (21), LC(σ2E − A)−1N(σ1E − A)−1B = D2 and therefore H(σ1, σ2) =
Hr(σ1, σ2). Similarly, H(µ1, µ2) = Hr(µ1, µ2). Using similar steps, we can also deal
with higher subsystems and higher derivatives.

4 Computational Issues and Time-domain
Representation of the Reduced-order System

In this section, we discuss the computational issues associated with the intermediate
system Σ̃. As discussed before, the intermediate system requires the solution of (20)–
(23) for matrices LA, LN , LB and LC . Since LB and LC are independent of other
unknowns, they can be easily computed. However, the main issue is the computation
of LA and LN . These matrices require the simultaneous solution of (22) and (23) for
given LB and LC . To ensure the existence of the simultaneous solution, we derive a
necessary condition, called the compatibility condition. This follows by equating the
right hand sides of (22) and (23) after pre-multiplying by WT and post-multiplying
by V , respectively:

WT
[
LB(eq1)T , LN

[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
=

[LTC(eq1)T , LTN [W 1(Iq ⊗ (eq1)T ), . . . ,W k−1(Iqk−1 ⊗ (eq1)T )]]TV.
(27)

The following theorem guarantees that the above compatibility condition is satisfied.

Theorem 4.1. Assume LB and LB satisfy (20) and (21), respectively, and let LN ∈
Rn×n satisfy,

WTLNV = T

 D2 · · · Dk+1

...
. . .

...
Dk+1 · · · D2k

 T T , (28)

where T =
k−1∑
i=0

(er1+qi)
T ⊗ eki+1, r = q + · · · + qk is the order of the reduced-order

system and Dj is the polynomial part of the jth subsystem. Then, the compatibility
condition (27) is satisfied.

Proof. Consider the first row of the block matrix given in (27):(
W 1
)T [

LB(eq1)T , LN
[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
= eq1LCV.

11



To show that the above equation holds, we use (20) and (28)(
W 1
)T [

LB(eq1)T , LN
[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
= [eq1D̂1(eq1)T , eq1D2(eq1)T (Iq ⊗ (eq1)T ), . . . , eq1Dk(eq

k−1

1 )T (Iqk−1 ⊗ (eq1)T )],

= eq1[D̂1(eq1)T , D2(eq1)T ⊗ (eq1)T , . . . , Dk(eq
k−1

1 )T ⊗ (eq1)T ],

= eq1[D̂1(eq1)T , D2(eq
2

1 )T , . . . , Dk(eq
k

1 )T ],

= eq1LCV,

where the last equality follows from (21). Now consider the ith row of the block matrix
in (27):(
W i
)T [

LB(eq1)T , LN
[
V 1(Iq ⊗ (eq1)T ), . . . , V k−1(Iqk−1 ⊗ (eq1)T ))

]]
=
[
LTNW

i−1(Iqi−1 ⊗ (eq1)T )
]T
V,

=
[
eq

i

1 Di(e
q
1)T , eq

i

1 Di+1(eq1)T (Iq ⊗ (eq1)T ), . . . , eq
i

1 Di+k−1(eq
k−1

1 )T (Iqk−1 ⊗ (eq1)T )
]
,

= (Iqi−1 ⊗ (eq1)T )T eq
i−1

1

[
Di(e

q
1)T , Di+1(eq

2

1 )T , . . . , Di+k−1(eq
k

1 )T
]
,

=: R.

Using the condition on LN given in (28), we obtain

R = (Iqi−1 ⊗ (eq1)T )T
[
(W i−1)TLNV

1, (W i−1)TLNV
2, . . . , (W i−1)TLNV

k
]
,

= (Iqi−1 ⊗ (eq1)T )T
[
(W i−1)TLNV

1, (W i−1)TLNV
2, . . . , (W i−1)TLNV

k
]
,

=
[
LTNW

i−1(Iqi−1 ⊗ (eq1)T )T
]T
V.

This means that each row of the block matrix corresponding to the left and right side
of the compatibility condition given in (27) are equal. Therefore, if LN is chosen to
satisfy the assumption (28), then it is ensured that (27) holds.

Remark 4.1. It is interesting to see that in order to compute the reduced model, we do
not need to compute explicitly the matrices LA, LN , LB and LC . We only require the
expressions for WTLB, LCV , WTLAV and WTLNV . One can substitute WTLB and
LCV directly from (20) and (21). The expression of WTLNV can be easily identified
using (28). Similarly, one can obtain the expression of WTLAV without explicitly
computing LA by pre-multiplying (22) by WT and use (28) and (20).

Now, we summarize the complete methodology of computing the reduced-order sys-
tem for the system (8) in the following algorithm.
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Algorithm 1 Interpolatory Model-Order Reduction for Bilinear Systems

1: Input: E,A,N,B,C,D, [σ1, · · · , σk], [µ1, · · · , µk], q.
2: Output: Er, Ar, Nr, Br, Cr.
3: Construct V and W from Theorem 3.1.
4: Compute the polynomial part of the kth subsystem

Dk = C(MN)k−1MB +Dδ(k − 1).
5: Identify the expression of WTLB , LCV , WTLAV and WTLNV as

WTLB =
[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]T

=: RB , D̂1 = D1 −D.

WTLB =
[
D̂1(eq1)T , D2(eq

2

1 )T , . . . , Dk(eq
k

1 )T
]

=: RC .

WTLNV = T

 D2 · · · Dk+1

...
. . .

...
Dk+1 · · · D2k

 T T =: RN ,

where T =
k−1∑
i=0

(er1+qi)
T ⊗ eki+1 and r =

∑k
i=1 q

i + · · ·+ qk.

WTLAV =
[
RB(eq1)T , RN (:, 1 : q)(Iq ⊗ (eq1)T ), . . . ,

RN (:, q + · · ·+ qk−1 + (1 : qk))(Iqk−1 ⊗ (eq1)T )
]

=: RA
6: Compute the reduced model as

Er = WTEV , Ar = WTAV +RA, Nr = WTNV −RN ,
Br = WTB −RB , Cr = CV −RC .

Remark 4.2. As shown in [11], two-sided projections might lead to much better ap-
proximation since more multi-moments are matched for higher order subsystems. The
same holds for the proposed modified Krylov subspace technique. To see this we con-
sider an example similar to the one used in [11]. Let us assume the projection subspaces
V and W are as follows

span(V ) = span
{
A−1B, . . . , (A−1E)5A−1B,A−1NA−1B,A−1N(A−1E)A−1B

}
,

span(WT ) = span
{
CA−1, . . . , C(A−1E)5A−1, CA−1NA−1, C(A−1E)A−1NA−1

}
.

According to Theorem 3.3, the reduced model preserves 12 multi-moments of the first
subsystem

C(A−1E)l1A−1B +Dδ(l1) = CTr (A−1r Er)
l1A−1r Br +D1δ(l1),

where l1 = 0, . . . , 11. For the second subsystem, 29 multi-moments match

C(A−1E)l2A−1N(A−1E)l1A−1B = CTr (A−1r Er)
l2A−1r Nr(A

−1
r Er)

l1A−1r Br +D2δ(l1)δ(l2),

where, l1, l2 = 0, 1, . . . , 5 or l1 = 6, l2 = 0, 1 and l1 = 0, 1, l2 = 6. For the third
subsystem, 37 multi-moments match

C(A−1E)l3A−1N · · ·N(A−1E)l1A−1B = CTr (A−1r Er)
l3A−1r Nr · · ·Nr(A−1r Er)

l1A−1r Br

+D3δ(l1)δ(l2)δ(l3),

13



where l1 = 0, 1, . . . , 5, l2 = 0, l3 = 0, 1 or l1 = 0, 1, l2 = 0, l3 = 2, 3, 4, 5 or l1 = 0, 1, l2 =
1, l3 = 0, 1. For the fourth subsystem, 4 multi-moments match

C((A−1E)l4A−1N · · ·N(A−1E)l1A−1B = Cr((A
−1
r Er)

l4A−1r Nr · · ·Nr(A−1r Er)
l1A−1r Br

+D4δ(l1)δ(l2)δ(l3)δ(l4),

where l1 = 0, 1, l2 = 0, l3 = 0, l4 = 0, 1.

4.1 Time-Domain Representation

Till now we have shown how to achieve interpolation for the leading k subsystems along
with retaining their polynomial parts. In this subsection we show the time domain
representation of the reduced bilinear system whose kth order subsystem is of the form
given in (19). The following theorem summarizes our results.

Theorem 4.2. Given a bilinear system, whose kth order transfer function has the
form given in (19). Then, the time domain representation of this bilinear system can
be written as

Erẋr(t) = Arxr(t) +Nrxr(t)u(t) +Bru(t),

yr(t) = Crxr(t) +

∞∑
k=1

Dku
k(t).

(29)

Proof. We begin with the kth order transfer function

Hr(s1, . . . , sk) = Cr(skEr −Ar)−1Nr(sk−1Er −Ar)−1Nr · · ·
· · ·Nr(s1Er −Ar)−1Br +Dk,

= Ĉ(skIr − Â)−1N̂(sk−1Ir − Â)−1N̂ · · ·
· · · N̂(s1Ir − Â)−1B̂ +Dk, (30)

where
Â = E−1r Ar, N̂ = E−1r Nr, B̂ = E−1r Br, and Ĉ = Cr. (31)

Now by utilizing the multivariate inverse Laplace transform on (30), we obtain the
regular Volterra kernel as

hk(t1, t2, . . . , tk) = ĈeÂtkN̂eÂtk−1N̂ · · · N̂eÂt1B̂ +Dkδ(tk)δ(tk−1) · · · δ(t1). (32)

As discussed in [22], the output yr(t) of a nonlinear system can be described in terms
of the Volterra kernel hk(t1, t2, . . . , tk) and input u(t) as follows:

yr(t) =

∞∑
k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

hk(t1, t2, . . . , tk)u(t−
k∑
i=1

ti) · · ·u(t− tk)dtk · · · dt1.

Substituting (32) in the above equation, we can write
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yr(t) = y(1)r (t) + y(2)r (t),

where

y(1)r (t) =

∞∑
k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

ĈeÂtkN̂ · · · N̂eÂt2N̂eÂt1B̂u(t−
k∑

i=1

ti) · · ·u(t− tk)dtk · · · dt1,

y(2)r (t) =

∞∑
k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

Dkδ(tk)δ(tk−1) · · · δ(t1)u(t−
k∑

i=1

ti) · · ·u(t− tk)dtk · · · dt1.

The response y
(1)
r (t) is simply the Volterra series representation of a bilinear ODE

system with zero initial condition [22]. This means that corresponding to y
(1)
r (t), we

have

ẋr(t) = Âxr(t) + N̂xr(t)u(t) + B̂u(t),

y(1)r (t) = Ĉxr(t), xr(0) = 0.
(33)

For y
(2)
r (t), we use the properties of the Dirac delta function [12] which leads to

y(2)r (t) =

∞∑
k=1

Dku(t) · · ·u(t) =

∞∑
k=1

Dku
k(t).

By combining the responses y
(1)
r (t) and y

(2)
r (t) and substituting the expression of

Â, N̂ , B̂ and Ĉ from (31), we obtain a bilinear system as in (29) and this proves
the theorem.

Since the output equation in (29) contains the sum of an input dependent infinite
series, we need to compute the summation at each time step. This increases the com-
putational cost and may suppress the importance of the model reduction procedure.
In the following, we discuss some cases where this infinite summation can be computed
cheaply.

Case 1: For the particular structure of N as in (14), Dk = 0 for all k > 1. Thus
∞∑
k=1

Dku
k(t) reduces to D1u(t), which is computationally cheap.

Case 2: There are some applications where the input u(t) can be considered constant
or unity (u(t) = α or u(t) = 1). These scenarios may appear, for example in the
parameter varying systems [6]. In such a case

∞∑
k=1

Dku
k(t) = D1α+D2α

2 +D3α
3 · · · .
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Substituting the expression of Dk from Lemma 3.1 in the above equation, we get

∞∑
k=1

Dku
k(t) = (CMB +D)α+ C(MN)MBα2 + C(MN)2MBα3 + · · · ,

= αC(I + αMN + α2(MN)2 + · · · )MB + αD.

Now, if we assume ‖αMN‖2 < 1, we have

∞∑
k=1

Dku
k(t) = (C(I − αMN)−1MB +D)α.

Thus we can identify an expression of the convergent series for constant inputs.

Case 3: In this case, we assume convergence for ‖Dk‖, i.e.
∞∑

k=j+1

‖Dk‖ < τ � 1.

Then for bounded inputs, we can truncate the infinite summation after the jth
term. That is

∞∑
k=1

Dku
k(t) ≈

j∑
k=1

Dku
k(t).

Thus, we can save the computations associated with
∞∑

k=j+1

Dku
k(t).

5 Numerical Experiments

In this section we present numerical results for model reduction of a structured bi-
linear DAE system using different approaches. The reduced-order system can be
computed either by direct implementation of Theorem 3.1, without matching the
polynomial part in the reduced-order system (classical interpolatory technique) or
by our proposed methodology which achieves matching of the polynomial part in ad-

dition to interpolation. All the numerical results were simulated in MATLAB
®

ver-
sion 7.11.0.584(R2010b) 64-bit (glnza64) on Intel(R) Core(TM)2 Quad CPU Q9550 @
2.83GHz, 6 MB cache, 4GB RAM, openSUSE 12.1 (x86-64).

5.1 Artificial Example

The bilinear DAE system, that is to be reduced, is generated randomly with order
n = 100 and with partitioning n1 = 90, n2 = 10. It is ensured that the structure of
the pencil is similar to the index-1 pencil of a linear DAE. The polynomial parts of
the first 4 subsystems of the bilinear system are D1 = 0.1472, D2 = 5 × 10−3, D3 =
1.92× 10−4, D4 = 7.35× 10−6, where Di is the polynomial part of the ith subsystem.
The interpolation points are selected as σ = µ = [0, 0.5] with multiplicity q = 1
resulting in a reduced-order system of order r = 4. We truncate the infinite summation
in Lemma 4.1 after first 4 terms since ‖Di‖ decreases exponentially.
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We compute the reduced model using the classical interpolation technique and the
proposed methodology using the same interpolation points and multiplicity. The time
response of the actual and the reduced bilinear systems, obtained by using the implicit
Euler method, is shown in Figure 1 for an exponential input. The relative errors
associated with the two approaches are shown in Figure 2.
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Figure 1: Transient response, u(t) = e−10t.
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Figure 2: Relative Error, u(t) = e−10t.

Certainly, the reduced-order system obtained from the direct implementation shows
completely different dynamics whereas the proposed methodology captures the dy-
namics of the original system well.
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5.2 Nonlinear RC Circuit

As a second example, we consider a nonlinear RC circuit that represents a modified
form of the transmission line circuit proposed in [16]. The circuit includes resistors,
capacitors and diodes as shown in Figure 3.

i
=

u
(
t
)

v1

g
(
v
) C

g(v) g(v)

v2

C C

g(v)

vn1−1

C

g(v)

vn1

C

vn1+1

R R R

vn

i
=

u
(
t
)

Figure 3: Nonlinear transmission line circuit.

All the resistances and capacities are set to 1 and all the diodes ensure iD = e40vD +
vD − 1, where iD represents current and vD voltage across the diodes. The input u(t)
is the current source i and the output y(t) represents the average voltage over all nodes
ranging from 1 to n.

Using Kirchhoff’s current law, at each node we have

v̇1 = −2v1 + v2 + 2− e40v1 − e40(v1−v2) + u(t),

v̇k = −2vk + vk−1 + vk+1 + e40(vk−1−vk) − e40(vk−vk+1), (2 ≤ k ≤ n1 − 1)

v̇n1
= −2vn1

+ vn1−1 + vn1+1 − 1 + e40(vn1−1−vn1 ),

0 = 3vk − vk−1 − vk+1, (n1 + 1 ≤ k ≤ n− 1)

0 = −2vn + vn−1 + u(t).

(34)

In order to represent the above nonlinear system as a quadratic-bilinear system, we
set v1 to vk,k+1 (vk,k+1 = vk − vk+1), k = 1, . . . , n1 − 1 and vn1+1 to vn as the
state variables and perform some changes of variables by defining y1 = e40v1 − 1 and
yk = e40(vk−1,k) − 1, 2 ≤ k ≤ n1. Together with the differential equations of all yk’s,
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the above changes lead to the following quadratic system

v̇1 = −v1 − v1,2 − y1 − y2 + u(t),

v̇1,2 = −v1 − 2v1,2 + v2,3 − y1 − 2y2 + y3 + u(t),

v̇k,k+1 = −2vk,k+1 + vk−1,k + vk+1,k+2 + yk − 2yk+1 + yk+2, (2 ≤ k ≤ n1 − 2)

v̇n1−1,n1 = −2vn1−1,n1 + vn1−2,n1−1 + vn1 − vn1+1 + yn1−1 − 2yn1 ,

0 = 3vk − vk−1 − vk+1, (n1 + 1 ≤ k ≤ n− 1)

0 = −2vn + vn−1 + u(t),

ẏ1 = 40(y1 + 1)(−v1 − v1,2 − y1 − y2 + u(t)),

ẏ2 = 40(y2 + 1)(−v1 − 2v1,2 + v2,3 − y1 − 2y2 + y3 + u(t)),

ẏk = 40(yk + 1)(−2vk−1,k + vk−2,k−1 + vk,k+1 + yk−1 − 2yk + yk+1),

˙yn1 = 40(yn1 + 1)(−2vn1−1,l1 + vn1−2,n1−1 + vn1 − vn1−1 + yn1−1 − 2yn1).

In the above set of equations, we fixed vn1
to v1 −

n1∑
i=2

vk−1,k. This means that the

circuit can be modelled by a quadratic-bilinear descriptor system of order ñ = n1 +n.
It is easy to see that the matrix pencil associated with this quadratic system has
nilpotency index-1. Next, we utilize the Carleman bilinearization, thus ensuring that
the resulting bilinearized system also has an index-1 matrix pencil [15]. The order of
the bilinearized DAE system is N = (n1 + n)(2n1 + 1). The polynomial part of the
first subsystem of the bilinearized system is D1 = 0.0333 and higher order subsystems
have zero polynomial part.

For our experiment, we choose n1 = 10 and n = 30. The bilinearized system is
therefore of order N = 840. Using Theorem 3.1, we compute the projection matrices
such that the reduced-order system guarantees interpolation of the first two subsystems
at σ = µ = [10, 50, 300]. The multiplicities of all the interpolation points are set to
1. The reduced models of the bilinearized system are computed using the classical
and the proposed methodology using the same interpolation points and multiplicities.
Since we do not have specific criteria yet to choose this interpolation points and their
multiplicities which can ensure a stable reduced-order model for both the modified and
the classical method. For our result, it is possible to get stable reduced-order models
using this methodology for the same interpolation points and same multiplicities in
case of one-sided projection, i.e. W = V .

The time response of the resulting reduced-order bilinear systems is shown in Fig-
ure 4 by utilizing the implicit Euler method. Also the absolute error (|y− ŷ|) is shown
in Figure 5.
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Figure 4: The time response of the original and the reduced models with input u(t) =
cos(20πt) + 1.
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Figure 5: The absolute error for the original bilinearized system and the reduced bi-
linear systems with input u(t) = cos(20πt) + 1.

Clearly the proposed interpolatory technique shows substantial improvement in the
transient response of the system.
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6 Conclusions

We proposed interpolatory techniques for a special class of bilinear descriptor system
with particular attention to its polynomial part. An expression that explicitly identifies
the polynomial part of each subsystem associated with the bilinear system has been
derived. This extends the expression for the polynomial part of linear index-1 DAE
systems discussed in [18] to bilinear systems. Also, we have derived conditions on
interpolatory subspaces that not only guarantees interpolation of the first k subsystems
but also retains the polynomial part of the bilinear system. The approach can also
be applied to other bilinear DAE structures as long as the polynomial part of each
subsystem is constant.
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