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Abstract

In this paper, we establish a model reduction technique for periodic discrete-time
descriptor systems exploiting the generalized inverses of the periodic singular matrix
pairs associated with the systems. We compute the generalized inverses of periodic
singular matrix pairs to implement a structure preserving iterative method for the
solution of the periodic projected Lyapunov equations that arise in analysis and
modelling of periodic discrete-time descriptor systems. We extend the Smith method
to solve the large scale projected periodic discrete-time algebraic Lyapunov equations
in lifted form. A low-rank version of this method is also presented, which avoids
the explicit lifted formulation and works directly with the period matrix coefficients.
Moreover, we consider an application of the Lyapunov solvers in balanced truncation
model reduction of periodic discrete-time descriptor systems. Numerical results are
given to illustrate the efficiency and accuracy of the proposed methods.

Keywords: periodic descriptor systems, lifted state space representation, periodic pro-
jected Lyapunov equations, alternating direction implicit method, Smith iteration, model
order reduction.

1 Introduction

Periodic systems and control theory have received a lot of attention in the last few
decades because they have wide applications in many areas of science and engineering,
specially in the areas where the periodic control is deserved, such as aerospace realm,
control of industrial processes and communication systems, modeling of periodic time-
varying filters and networks [15, 20, 19, 34].

In this paper, we consider linear time-varying (LTV) discrete-time descriptor systems of
order n = (n0, n1, . . . , nK−1), as

Ekxk+1 = Akxk +Bkuk, yk = Ckxk, k ∈ Z, (1)

where Ek ∈ Rµk×nk+1 , Ak ∈ Rµk×nk , Bk ∈ Rµk×mk , Ck ∈ Rpk×nk are the system
matrices, xk ∈ Rnk is the (generalized) state or descriptor vector, uk ∈ Rmk is the control
input, and yk ∈ Rpk is the output. The system matrices are periodic with a periodK ≥ 1,
and

∑K−1
k=0 µk =

∑K−1
k=0 nk = n,

∑K−1
k=0 mk = m as well as

∑K−1
k=0 qk = q. If all Ek are

nonsingular, then (1) can be transformed into a periodic standard system.

Efficient numerical methods for computing poles and zeros, L∞-norm, minimal and
balanced realizations have been developed for such systems [6, 38, 39, 40]. All these
methods are restricted to problems of small or medium size because they are based on the
reduction of the periodic pairs {(Ek, Ak)}K−1k=0 to a periodic Kronecker-like form [37]. In
the last decade, attention has been devoted to the iterative solution of large-scale sparse
Lyapunov equations using the alternating directions implicit (ADI) method [17, 21],
the Smith method [9, 21, 26], and Krylov subspace methods [11, 24]. All these methods
have also been generalized to projected Lyapunov equations [30, 31]. On the other hand,
an extension of the Smith method and the block-Arnoldi based Krylov subspace method
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to standard periodic Lyapunov equations has been presented in [14]. These methods
cannot be directly applied to the projected periodic Lyapunov equations.

Analysis and reduced order modeling of such systems may require to invert the periodic
matrix pairs associated with these systems in some appropriate sense. For square and
invertible systems, one can explicitly formulate these inverses. For non-square systems,
explicit formulation of these inverse may not be always possible [37]. The inversion
formulas for periodic systems in standard form have been considered first in [12, 22, 23].
A special form of the generalized inverses, known as (1,2)-inverses, of periodic systems
in the descriptor form has been considered in [37], which works on the corresponding
lifted form of the associated system pencil of the periodic system.

In this paper, we discuss the computation of the generalized inverses of periodic discrete-
time descriptor systems using the left and right deflating projectors associated with the
eigenstructures of the periodic singular matrix pairs. This technique has been imple-
mented in [31] for continuous-time descriptor system to compute the solution of the
corresponding projected Lyapunov equations. We will generalize the idea of [31] for the
discrete periodic setting and use those periodic inverses to compute the solutions of the
periodic projected Lyapunov equations. Moreover, we reformulate the Smith method to
solve the large projected periodic discrete-time algebraic Lyapunov equations in lifted
form. The block diagonal structure of the periodic solutions is preserved in every Smith
iteration step which is one of the challenging task in many of the iterative computations
in the periodic setting. It should be noted that generalized versions of the ADI method
and the Smith method have been proposed in [2] for the solution of projected periodic
Lyapunov equations. But, the methods fail to preserve the block diagonal structure
during the iteration, and it is only achieved upon convergence.

The rest of the paper is organized as follows. In Section 2, we briefly review discrete-
time periodic descriptor systems and their cyclic lifted representations. We also study
the causal and noncausal decomposition of the periodic descriptor systems. In Section 3,
we introduce the periodic matrix equations under consideration and review the different
techniques for the solutions of those matrix equations associated to the causal and non-
causal systems. We also discuss the challenges of iterative techniques used in computing
the structure preserving solution of those matrix equations. In Sections 4, we discuss the
generalized inverses of periodic discrete-time descriptor systems using the left and right
deflating projectors associated with the eigenstructures of the periodic singular matrix
pairs. Iteratively solving of the causal and noncausal lifted Lyapunov equations exploit-
ing the generalized inverses is discussed in Sections 5 and 6, respectively. Low-rank
versions of these methods are also presented, which avoid the explicit lifted formulation
and work directly with the period matrix coefficients. A balanced truncation model
reduction method for periodic descriptor systems is considered in Section 7. Section 8
contains numerical examples that illustrate the properties of the described iterative
methods for projected Lyapunov equations and their application to model reduction.
Some conclusions are given in Section 9.
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2 Periodic descriptor systems

Analysis and modeling of periodic discrete-systems are often described by an analogous
time-invariant representation of the periodic systems, known as lifted representation
[4, 7, 38], which uses the input-state-output behavior of the system over time intervals
of length K, rather then 1. Using the lifting isomorphism one can exploit the theory of
time-invariant systems for the analysis and control of periodic systems, provided that
the results achieved can be easily re-interpreted in a periodic framework. The lifted
representation of discrete-time periodic descriptor systems plays an important role in
extending many theoretical results for descriptor systems to the periodic setting.

2.1 Cyclic lifted representation of periodic systems

We consider here the cyclic lifted representation which was introduced first for standard
periodic systems in [20]. The essence of the cyclic lifted system is putting inputs, states
and outputs of the original LTV descriptor system at cyclic places of those of the lifted
LTI system.

The cyclic lifted representation of the periodic descriptor system (1) is given by

EXk+1 = AXk + B Uk, Yk = CXk, (2)

where

E = diag(E0, E1, . . . , EK−1), B = diag(B0, B1, . . . , BK−1),

A =


0 · · · 0 A0

A1 0
. . .

...
0 AK−1 0

 , C =


0 · · · 0 C0

C1 0
. . .

...
0 CK−1 0

 . (3)

The descriptor vector, system input and output of (2) are related to those of (1) via

Xk =


x1
...

xK−1
x0

 , Uk =


u0
u1
...

uK−1

 , Yk =


y0
y1
...

yK−1

 ,
respectively. The transfer function of the lifted system (2) can be rewritten as

H(z) = C(zE − A)−1B. (4)

The cyclic lifted system (2) describes the eigenstructure and system dynamics of the
LPTV discrete-time descriptor system (1). Regularity of the periodic matrix pairs
{(Ek, Ak)}K−1k=0 implies the regularity of the cyclic matrix pair (E ,A) [16, 27, 15]. The
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reverse argument also holds true. Stability of the cyclic lifted system (2) is defined by
the regularity of the cyclic matrix pencil zE − A, defined as [27]

z


E0

E1

. . .

EK−1

−


A0

A1

. . .

AK−1

 . (5)

The cyclic matrix pencil zE − A is said to be regular when det(zE − A) 6= 0, for any
z ∈ C. The cyclic lifted system (2) is asymptotically stable iff zE − A is regular and all
its finite eigenvalues lie inside the unit circle. System (1) is asymptotically stable if and
only if the corresponding cyclic lifted system (2) is asymptotically stable.

2.2 Decomposition of periodic descriptor systems

The structure and periodic nature of the matrices Ek, for k = 0, 1, . . . ,K − 1, play an
important role in the analysis and modelling of the periodic descriptor system (1). In the
descriptor setting, the matrices Ek in (1) are singular for k = 0, 1, . . . ,K−1. Hence, the
transformation of system (1) to a standard system is not possible by an explicit inversion
of Ek. However, one should avoid the explicit inversion of Ek, even if the Ek in (1) are
invertible, due to numerical instability. In this case, we proceed by separating the causal
and the noncausal parts of the periodic descriptor system (1). The canonical structures
of the periodic matrix pairs {(Ek, Ak)}K−1k=0 can be used to find such a decomposition

[6, 37]. The periodic Kronecker canonical form [33, 28] of the matrix pairs {(Ek, Ak)}K−1k=0

for k = 0, 1, . . . ,K − 1, can be represented as

UkEkVk+1 =

[
I
nf
k+1

0

0 Ebk

]
, UkAkVk =

[
Afk 0
0 In∞k

]
, (6)

where Uk, Vk are nonsingular, VK = V0, A
f
k+K−1A

f
k+K−2 · · ·A

f
k = Jk is an nfk×n

f
k Jordan

matrices corresponding to finite eigenvalues, EbkE
b
k+1 · · ·Ebk+K−1 = Nk is an n∞k × n∞k

nilpotent Jordan matrix corresponding to infinite eigenvalues, and nk = nfk + n∞k , µk =

nfk+1 + n∞k .

Let νk be the nilpotency index of Nk for k = 0, 1, . . . ,K − 1 such that Nνk−1
k 6= 0 and

Nνk
k = 0. Then the index ν of the set of periodic matrix pairs {(Ek, Ak)}K−1k=0 and also

of the periodic descriptor system (1) is defined by

ν = max{ν0, ν1, . . . , νK−1}.

Using (6), we can decompose the periodic states xk, periodic input matrices Bk, and the
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periodic output matrices Ck, for k = 0, 1, . . . ,K − 1. For every k ∈ Z, let

xk = Vk

[
xfk
x∞k

]
, UkBk =

[
Bf
k

B∞k

]
, CkVk =

[
Cfk C

∞
k

]
.

We then decompose the periodic descriptor system (1) into causal (forward) and non-
causal (backward) periodic subsystems

xfk+1 = Afkx
f
k +Bf

kuk, yfk = Cfkx
f
k ,

E∞k x
∞
k+1 = x∞k +B∞k uk, y∞k = C∞k x

∞
k ,

respectively, with yk = yfk + y∞k . The left and right spectral projectors Pl(k) and Pr(k),
for k = 0, 1, . . . ,K − 1, can be represented as [1, 6, 30],

Pl(k) = U−1k

[
I
nf
k+1

0

0 0

]
Uk, Pr(k) = Vk

[
I
nf
k

0

0 0

]
V −1k , (7)

respectively.
Remark 1. The index of the periodic descriptor system (1) and the index of the lifted
system (2) are closely related to each other. The index η of the lifted pencil λE − A is
defined as the nilpotency index of the matrix

E∞ =


0 Eb1 · · · 0
...

. . .
. . .

...

0
. . .

. . . EbK−1
Eb0 0 · · · 0

 .

Taking into account that EK∞ = diag(N1, . . . , NK−1, N0), the index of λE − A can be
bounded as η ≤ Kν [6, 30].

3 Periodic Matrix Equations and their Solution

Stability analysis and model reduction of periodic systems are strongly related to the
matrix equations associated with the systems. For disctere-time periodic descriptor sys-
tems, they are well known as generalized projected periodic discrete-time algebraic Lya-
punov equations (PPDALEs). It has been shown in [2, 6] that the periodic Gramians of
the asymptotically stable discrete-time descriptor systems (1) satisfy the PPDALEs with
special right-hand sides. The causal and noncausal reachability Gramians Xk and X̂k are
the unique symmetric, positive semidefinite periodic solutions of the PPDALEs

AkXkA
T
k − EkXk+1E

T
k = −Pl(k)BkB

T
k Pl(k)T ,

Xk = Pr(k)XkPr(k)T ,
(8)
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and
AkX̂kA

T
k − EkX̂k+1E

T
k = Ql(k)BkB

T
k Ql(k)T ,

X̂k = Qr(k)X̂kQr(k)T ,
(9)

respectively, where XK = X0, X̂K = X̂0. Note that Pl(k), Pr(k), for k = 0, 1, . . . ,K − 1,
are the spectral projectors onto the k-th left and right deflating subspaces of the periodic
matrix pairs {(Ek, Ak)}K−1k=0 corresponding to the finite eigenvalues [1, 6], and Ql(k) =
I − Pl(k) and Qr(k) = I − Pr(k) in (9).

Similarly, the causal and noncausal observability Gramians Yk and Ŷk are the unique
symmetric, positive semidefinite periodic solutions of the PPDALEs

AkYkA
T
k − EkYk+1E

T
k = −Pl(k)BkB

T
k Pl(k)T ,

Yk = Pr(k)YkPr(k)T ,
(10)

and
AkŶkA

T
k − EkŶk+1E

T
k = Ql(k)BkB

T
k Ql(k)T ,

Ŷk = Qr(k)ŶkQr(k)T ,
(11)

respectively, where YK = Y0, ŶK = Ŷ0.

The numerical solution of (8) has been considered in [6] for time-varying matrix coef-
ficients. The method proposed there is based on an initial reduction of the periodic
matrix pairs {(Ek, Ak)}K−1k=0 to the generalized periodic Schur form [13, 37] and on solv-
ing the resulting generalized periodic Sylvester and Lyapunov equations. As a result, the
method is computationally expensive and not suitable for large scale problems.

An efficient approach which works with the cyclic lifted representation of (1) and the
corresponding lifted form of (8) has been considered in [1]. Following the work of [1],
the PPDALEs (8) and (9) are equivalent to the following projected lifted discrete-time
algebraic Lyapunov equation (PLDALE)

AXAT − EX ET = −PlBBTPTl , X = PrXPTr , (12)

AX̂AT − EX̂ET = QrBBTQTr , X̂ = QrX̂QTr , (13)

respectively, where E , A and B are as in (3), and

X = diag(X1, . . . , XK−1, X0), X̂ = diag(X̂1, . . . , X̂K−1, X̂0).

In that case, the projectors in lifted forms are given by

Pl = diag(Pl(0), Pl(1), . . . , Pl(K − 1)), Ql = I − Pl,

Pr = diag(Pr(1), . . . , Pr(K − 1), Pr(0)), Qr = I − Pr.

The matrices X and X̂ are called the causal and noncausal reachability Gramians of
the lifted system (2). A similar result can also be stated for the causal and noncausal
observability Gramians [1].
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In practice, one should avoid these direct methods for large-scale problems because the
computational complexity for solving a Lyapunov equation of the form (12) or (13)
using direct methods is at least of order (O(Kn3max)), where nmax = max(nk), and
they require extensive storage. Therefore, iterative methods have been developed for
the solutions of such equations.

3.1 Revised Iterative Methods for Solutions of PLDALEs

Iteratively solving (8) and (9) using their corresponding lifted structures, i.e., (12) and
(13), has been considered in [2]. A generalized version of the alternating direction implicit
(ADI) method and the Smith method is proposed there for the solutions of (12) and (13),
respectively. Note that, for the descriptor system (1), the matrix E = diag(E0, . . . , EK−1)
is singular. However, both the ADI and Smith iterations fail to converge for the resulting
Lyapunov equations since the iteration operator of the ADI and the Smith iterations, in
this case, does not have spectral radius less than one. This problem has been circum-
vented by considering a generalized Cayley transformation given by

C(E ,A) = λ(A− E)− (A+ E) (14)

see, e.g., [18]. This transformation transfers the PLDALE (12) to an equivalent projected
continuous-time algebraic Lyapunov equation (PCALE)

EGcrAT + AGcrET = −2PlBBTPTl , Gcr = PrGcrPTr , (15)

where λE − A = λ(A − E) − (A + E) is the Cayley-transformed pencil. The finite
eigenvalues of λE −A lying inside the unit circle are mapped to the finite eigenvalues of
λE−A in the open left half-plane, and the eigenvalue of λE − A at infinity is mapped
to λ = 1.

The solutions of the PLDALE (12) and the PCALE (15) are identical and have the block
diagonal structure. Therefore, it is desired that the iterative solution of (15) will have
the block diagonal structure analogous to (12) at each ADI iteration step. Unfortunately,
the case is not so. It is observed that the generalized ADI method does not preserve the
block diagonal structure at every ADI iteration step due to the specific structure of the
matrices E and A, although the approximate Gramian is block diagonal [2]. Therefore,
we use the concept of generalized inverses of periodic matrix pairs associated with the
periodic system to preserve the block diagonal structure of the approximate solution at
each iteration step.

4 Generalized inverses of periodic matrix pairs

For periodic systems, the inversion problem has been introduced in [12, 22] by exploit-
ing the concept of left and right invertibility of system (1) in the standard case (i.e.,
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with Ek = Ink+1
). A generalization of that concept, which computes the generalized

inverses of periodic descriptor systems via the corresponding lifted representation has
been considered in [37]. A special class of generalized inverse, called reflexive generalized
inverse, of the system pencil has been proposed in [31] to find the solutions of projected
continuous-time algebraic Lyapunov equations using Krylov subspace methods, and also
in [3] for computing a partial realization for descriptor systems. Similar inverses have
been proposed in [36] to compute generalized inverses of rational matrices in descriptor
state-space representation, and named there (1,2)-inverse as they satisfy the first two
Moore-Penrose conditions. Details of these definitions can be found in [5]. This paper
generalizes the idea of [31] for an analogous representation of the generalized inverses
associated with the periodic matrix pairs {(Ek, Ak)}K−1k=0 . Note that in the periodic set-
ting we do not have any matrix pencil, but a set of periodic matrix pairs. Analogous to
[31], we can find the reflexive generalized inverses for Ek with respect to the projectors
Pl(k) and Pr(k) as

Ēk = Vk+1

[
I
nf
k+1

0

0 0

]
Uk, Āk = Vk

[
(Afk)−1 0

0 In∞k

]
Uk, (16)

for k = 0, 1, . . . ,K − 1. For nonsingular Ak, the exact inverse of Ak is equal to its
reflexive generalized inverse for each k = 0, 1, . . . ,K − 1. The main advantage of this
approach is that the resulting system preserves the block sparsity of the lifted system
matrices. Moreover, the generalized inverses follow the relations

ĒkEkĒk = Ēk, EkĒk = Pl(k), ĒkEk = Pr(k + 1), (17)

for k = 0, 1, . . . ,K − 1. These reflexive generalized inverses of the periodic matrix pairs
{(Ek, Ak)}K−1k=0 will be exploited in the next two sections to find the block diagonal
approximate solutions of (12) and (13) using the Smith iterative method.

5 Generalized Smith method for causal PLDALEs

Consider again the PLDALE (12), i.e.,

AXAT − EX ET = −PlBBTPTl , X = PrXPTr .

Multiplying the above equation from the left and right by Ē , and (Ē)T , we get

PrXPTr − ĒAXAT (Ē)T = ĒPlBBTPTl (Ē)T , X = PrXPTr , (18)

where ĒE=Pr by the definition of the reflexive generalized inverse, and Ē = diag(Ē0, Ē1, · · · , ĒK−1).
Equation (18) can be written in a more usual form as

X − (ĒA)X (ĒA)T = PrĒB (PrĒB)T , (19)
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where X = PrXPTr . Note that in the above representation, we use the relation PrĒ =
ĒPl. Clearly, Pl and Pr are the spectral projectors onto the invariant subspace of the
matrix ĒA corresponding to eigenvalues inside the unit circle. Then the unique solution
of (19) can be obtained using the generalized Smith method [21, 30] and is given by

Xi =
i∑

`=0

(ĒA)`PrĒB BT ĒTPTr ((ĒA)T )`. (20)

Therefore, the Cholesky factor Ri, where Xi = RiRTi , is given by

Ri = [ PrĒB, (ĒA)PrĒB, . . . , (ĒA)i PrĒB ]. (21)

Remark 2. At each iteration step i, the Smith iteration (21) does not preserve an
analogous block diagonal structure as given in (12). Note that X = diag(X1, . . . ,
XK−1, X0), and Xk = RkR

T
k for k = 0, 1, . . . ,K − 1. Hence, we demand to compute the

block diagonal Cholesky factor Ri = diag(R1,i, . . . , RK−1,i, R0,i) at each iteration step i
of (21). Unfortunately, the iterations do not result so. This is because in each iteration
step i, except for the first iteration, in the right side of (21) we have a different block
cyclic matrix.

5.1 Structure Preserving Solutions of PLDALEs

The problem of preserving the block diagonal structure at the iterative computation of
the Cholesky factor Ri can be circumvented by introducing a cyclic permutation matrix
in each iteration step i of (21). Consider the permutation matrix Π

Π =


0 In1 · · · 0 0
... 0 In2 0

. . .
...

0 0 InK−1

In0 0 · · · 0

 ; Πi = Πi; i = 1, 2, . . . , (22)

We introduce a permutation matrix Πi for each iteration step i in the computation of
(20), where Πi changes in a cyclic manner by a backward block-row shift at each iteration
step. For an example, suppose that K = 3, and k = 0, 1, 2. Then for i = 1,Πi = Π is
given by

Π =

 0 In1 0
0 0 In2

In0 0 0

 . (23)

For i = 2, we get

Π2 =

 0 0 In2

In0 0 0
0 In1 0

 , (24)
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which is just a backward shift of the first block-row of Π1 in (23). Clearly Π3 = Π0 = I.
One can also prove this using the proposed relation as

Π0 =

 In0 0 0
0 In1 0
0 0 In2

 , (25)

which is nothing but a backward shift of the first block-row of Π2. One nice property of
this permutation matrix is that it satisfies the periodicity property, i.e., ΠK+k = Πk; k =
0, 1, . . . ,K− 1.

Hence (20) takes the new form

Xi =
i∑

`=0

(ĒA)`PrĒBΠ` (Π`)TBTĒTPT
r ((ĒA)T)`.

Therefore, in this new representation the Cholesky factor Ri has the form

Ri = [ PrĒBΠ, (ĒA)PrĒBΠ2, . . . , (ĒA)i PrĒBΠi ] (26)

Note that the Smith iteration (26) preserves the block diagonal structure in the computa-
tion of the Cholesky factor Ri, where Ri = diag(R1,i, . . . , RK−1,i, R0,i) at each iteration
step i, i = 1, 2, . . ., and Xk = RkR

T
k for k = 0, 1, . . . ,K − 1. The whole iterative process

can be summarized in Algorithm 1.

Algorithm 1 Generalized Smith method for causal PLDALE

Input: A, Ē ,B, Pr, cyclic permutation matrix Π.
Output: A low-rank Cholesky factor Ri such that Xi = RiRTi .

1: for i = 1 do
2: W1 = PrĒB
3: Z1 = W1

4: R1 = Z1

5: end for
6: for i = 2, 3 to . . . do
7: Wi = (ĒA)Wi−1
8: Zi = WiΠ

i−1

9: Ri = [Ri−1, Zi]
10: Compute the rank-revealing QR decomposition

[Vi, Qi, rn] = RRQR(RTi , τ);

11: Update Ri = QiVTi [ Irn , 0 ]T ;
12: end for

10



When the column ranks of the Bk matrices, i.e., mk, k = 0, 1, . . . ,K − 1, are big, Ri
may face rank deficiency, because, in each k-th iteration step, Algorithm 1 will add as
many more columns as in B to the previous Ri. Hence, we propose the rank-revealing
QR decomposition (RRQR) [8] of Ri with tolerance τ to compute a low-rank factor of
Ri.

The approximate solution satisfies Ri = PrRi in every iteration step i. Algorithm 1 is
to be stopped as soon as the normalized residual norm given by

η(Ri) =
‖ARiRTi AT − ĒRiRTi ĒT + PlBBTPTl ‖F

‖PlBBTPTl ‖F

satisfies the condition η(Ri) < tol with a user-defined tolerance tol or a stagnation of
residual norms is observed.

5.2 Cyclic computations of causal PLDALEs

In fact, the iteration (26) implemented in Algorithm 1 not only proves that the computed
Cholesky factors Ri stay block diagonal at each iteration step i, it also enables us to
rewrite (21) in such a way that one can directly compute the periodic Cholesky factors for
different k, k = 0, 1, . . . ,K − 1. From simple algebraic manipulation of (26), we observe
that the periodic matrices Ek, Ak, and Bk appear in a cyclic manner in the computation
of the periodic Cholesky factors Rk,i in every iteration step i for different values of k,
k = 0, 1, . . . ,K − 1. Observing these cyclic relations and handing them technically, we
can compute the periodic Cholesky factors Rk,i, k = 0, 1, . . . ,K−1, i = 1, 2, . . ., directly.
We represent some of those computations in the following.

For i = 1 and k = 0, 1, . . . ,K − 1, we get

R0,1 = Pr(1)Ē0B0, % Ē0 = ĒK ,B0 = BK

R1,1 = Pr(2)Ē1B1,

...

RK−1,1 = Pr(0)ĒK−1BK−1, % Pr(0) = Pr(K)

For i = 2 and k = 0, 1, . . . ,K − 1, we get

R0,2 = Ē0A0Pr(0)ĒK−1BK−1

R1,2 = Ē1A1Pr(1)Ē0B0

...

RK−1,2 = ĒK−1AK−1Pr(K − 1)ĒK−2BK−2.
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For i = 3 and k = 0, 1, . . . ,K − 1, we get

R0,3 = Ē0A0ĒK−1AK−1Pr(K − 1)ĒK−2BK−2

R1,3 = Ē1A1ĒKAKPr(K)ĒK−1BK−1
...

RK−1,3 = ĒK−1AK−1ĒK−2AK−2Pr(K − 2)ĒK−3BK−3,

and so on. The whole computation is summarized in Algorithm 2. Note that in the
above computations and also in Algorithm 2, we use the periodicity of the coefficient
matrices and that of the projectors. Here, Pr(K) = Pr(0), Pr(K − 1) = Pr(−1), ĒK =
Ē0, Ē−1 = ĒK−1, and the similar for others. For the easy index setting, we consider
k = 1, 2, . . . ,K in Algorithm 2, and obviously XK = X0 = RKR

T
K = R0R

T
0 . It should

be also noted that in Algorithm 2, Rk,j means the computed Rk at the jth iteration
steps. Finally, Rbk,j collocates all these iterative counterparts for an individual k, where

k = 1, 2, . . . ,K. That means for k = 1, we compute Rb1,j = [R1,1, R1,2, . . . , R1,J ], and
similarly the others.

One can define a stoping criteria for Algorithm 2 by setting a normalized residual norm
given by

η(ρk) =
‖AkRkRTkATk − EkRk+1R

T
k+1E

T
k + Pl(k)BkB

T
k Pl(k)T ‖F

‖Pl(k)BkB
T
k Pl(k)T ‖F

, (27)

which satisfy the condition η(ρk) < tol for k = 0, 1, . . . ,K − 1, where tol is a user
predefined tolerance. A similar computation can also be stated for the causal periodic
observability Gramians Yk of (10).

6 Smith method for noncausal PLDALEs

Consider again the PLDALE (13), i.e.,

AX̂AT − EX̂ET = QrBBTQTr , X̂ = QrX̂QTr .

For nonsingular A, this equation is equivalent to the PLDALE

X̂ − (A−1E)X̂ (A−1E)T = QrA−1BBTA−TQTr ,
X̂ = QrX̂ QTr .

(28)

In this case, the relation QrA−1E = A−1EQr holds true [30], and such an equation can
be solved by the Smith method [26] given by

X̂1 = QrA−1BBTA−TQTr ,

X̂i = QrA−1BBTA−TQTr + (A−1E)X̂i−1(A−1E)T .
(29)
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Algorithm 2 Smith method for cyclic computation of causal PLDALEs.

Input: (Ek, Ak, Bk), spectral projectors Pr(k) for k = 1, . . . ,K.
Output: Low-rank periodic Cholesky factor Rk such that Xk = RkR

T
k .

1: for i = 1 : K do
2: Rk,1 = Pr(k + 1)ĒkBk % note that Pr(K + 1) = Pr(1)
3: end for

4: for i = 1 : K do
5: Pk,1 = Ink

% initialization of a cyclic matrix
6: end for

7: for j = 2, 3, . . . do
8: for k = 1 : K do
9: m = mod(k + 1,K)

10: Pk,j = Pk,j−1Ēm−j Am−j
11: Rk,j = Pk,j Pr(m− j) Ēm−j−1Am−j−1
12: end for
13: end for

14: for k = 1 : K do
15: for j = 1, 2, 3, . . . do
16: if j = 1 then
17: Rbk,j = Rk,j
18: else
19: Rbk,j = [Rbk,j−1 Rk,j ]
20: end if
21: end for
22: Rk = RRQR(Rbk,j , τk)
23: end for

Note that in the noncausal case we do not need to compute the generalized inverses of the
periodic matrix pairs {(Ek, Ak)}K−1k=0 , since (29) requires only the inversion of the cyclic
lifted matrix A. In that case Qr is the spectral projector onto the invariant subspace
of the matrix A−1E corresponding to the zero eigenvalues. Then QrA−1E = A−1EQr
is nilpotent with the nilpotency index ν, where ν is the index of the periodic descriptor
system (1). In this case, after ν iterations we obtain

X̂ν =

ν−1∑
i=0

(A−1E)iQrA−1BBTA−TQTr ((A−1E)T )i = X̂ . (30)

Therefore, the Cholesky factor R̂ of the solution X̂ = R̂R̂T of (28) and also of the
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PLDALE (13) takes the form

R̂ = [QrA−1B,A−1EQrA−1B, . . . , (A−1E)ν−1QrA−1B]. (31)

The generalized Smith iteration discussed above does not preserve the block diagonal
structure at every iteration step in the computation of the Cholesky factor R̂ [2], but the
approximate Gramian X̂i = R̂iR̂Ti computed there has block diagonal structure at each
iteration step, i = 0, 1, . . . , ν − 1. By introducing a cyclic permutation matrix in each
iteration step, one can easily preserve the block diagonal structure at every iteration
step in the computation of the Cholesky factor R̂ using relation (31).

6.1 Structure preserving solutions for noncausal PLDALEs

Let us again consider a cyclic permutation matrix P̂ of the form

P̂ =


0 · · · 0 In0

In1 0
. . .

...
0 InK−1 0

 ; P̂i = P̂ i; i = 1, 2, . . . , ν. (32)

Like in the causal case, we introduce a permutation matrix P̂i for each iteration step i
in the computation of (30), where the permutation matrix P̂i changes at each iteration
step in a cyclic manner by a forward block-row shift. Similar to the causal case, the
permutation matrix is periodic with a periodicityK, i.e., P̂K+k = P̂k, k = 0, 1, . . . ,K−1.
Then (30) gets the new form

X̂ν =
ν−1∑
i=0

(A−1E)iQrA−1BP̂i+1P̂Ti+1BTA−TQTr ((A−1E)T )i = X̂ . (33)

Therefore, the Cholesky factor R̂ has the form

R̂ = [QrA−1BP̂,A−1EQrA−1BP̂2, . . . , (A−1E)ν−1QrA−1BP̂ν ]. (34)

It can be verified that each factor inside (34) preserves the block diagonal structure
analogous to the solution of (28). The computation of this factor is presented in Algo-
rithm 3.

We note that if the index η is unknown, then Algorithm 3 can be stopped as soon as
‖Wi‖F ≤ ε or ‖Wi‖F /‖R̂i‖F ≤ ε with the machine precision ε. Thus, for systems of low
index, the solution of (9) can be obtained with few computations.
Remark 3. In order to guarantee that the second equation in (13) (and also in (28))
is satisfied in finite precision arithmetic, we have to project Wi onto the image of Qr by
pre-multiplication with Qr.
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Algorithm 3 Generalized Smith method for noncausal PLDALEs

Input: A, E ,B, spectral projector Qr, cyclic permutation matrix P̂.
Output: Low-rank factor R̂i such that X̂i = R̂iR̂Ti .

1: for i = 1 do
2: W1 = QrA−1B
3: Z1 = W1P̂
4: R̂1 = Z1

5: end for
6: for i = 2, 3, . . . , ν do
7: Wi = A−1EWi−1
8: Zi = WiP̂i
9: R̂i = [R̂i−1, Zi]

10: end for

The generalized Smith iteration preserves the block diagonal structure at every iteration
step in Algorithm 3. Clearly, at the ith iteration step R̂i has the block diagonal structure
R̂i = diag(R̂1,i, . . . , R̂K−1,i, R̂0,i), where R̂k,i stands for the periodic Cholesky factors of

X̂k,i = R̂k,iR̂
T
k,i for different values of k, k = 0, 1, . . . ,K−1, at the ith iteration step. Since

X̂ = R̂νR̂Tν , where R̂ν = diag(R̂1, . . . , R̂K−1, R̂0), one can easily read off the periodic

solutions X̂k = R̂kR̂
T
k of (13) from the block diagonal structure of R̂i for different values

of k.

6.2 Cyclic computations of periodic noncausal Cholesky factors

In fact, the iteration (34) implemented in Algorithm 3 not only proves that the computed
Cholesky factors Ri stay block diagonal at each iteration step i, it also enables us to
rewrite (31) in such a way that one can directly compute the periodic Cholesky factors for
different k, k = 0, 1, . . . ,K − 1. From simple algebraic manipulation of (34), we observe
that the periodic matrices Ek, Ak, and Bk appear in a cyclic manner in the computation
of the periodic Cholesky factors R̂k,i in every iteration step i for different values of k,
k = 0, 1, . . . ,K − 1. Observing these cyclic relations and handing them technically, we
can compute the periodic Cholesky factors R̂k,i, k = 0, 1, . . . ,K−1, i = 1, 2, . . ., directly.
We represent some of those computations in the following.

For i = 1 and k = 0, 1, . . . ,K − 1, we get

R̂0,1 = Qr(0)A−10 B0

R̂1,1 = Qr(1)A−11 B1

...

R̂K−1,1 = Qr(K − 1)A−1K−1BK−1.
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For i = 2 and k = 0, 1, . . . ,K − 1, we get

R̂0,2 = A−10 E0Qr(1)A−11 B1

R̂1,2 = A−11 E1Qr(2)A−12 B2

...

R̂K−1,2 = A−1K−1EK−1Qr(K)A−1K BK .

For i = 3 and k = 0, 1, . . . ,K − 1, we get

R̂0,3 = A−10 E0A
−1
1 E1Qr(2)A−12 B2

R̂1,3 = A−11 E1A
−1
2 E2Qr(3)A−13 B3

...

R̂K−1,3 = A−1K−1EK−1A
−1
K EKQr(K + 1)A−1K+1BK+1,

and so on.

The whole computation is summarized in Algorithm 4. Similar to the causal case, we
consider the periodicity of the coefficient matrices and that of the projectors in Algo-
rithm 4. Here Qr(K) = Qr(0), EK = E0, etc. We also consider k = 1, 2, . . . ,K in
Algorithm 4, and X̂K = X̂0 = R̂KR̂

T
K = R̂0R̂

T
0 . In Algorithm 4, R̂k,j means the com-

puted R̂k at the jth iteration step. Finally, R̂bk,j collocates all these iterative counterparts
for an individual k, where k = 1, 2, . . . ,K. That means for k = 1, we compute

R̂b1,j = [R̂1,1, R̂1,2, . . . , R̂1,J ],

and similarly the others.

When the index of the system, i.e., η, is unknown, we propose the rank-revealing QR
decomposition (RRQR) [8] of Rbk,j with tolerance τ to truncate redundant columns in the
iterations of Algorithm 4. In that case, we assume that after the Jth iteration we have
the exact computation of the periodic Cholesky factors R̂k satisfying relation ‖R̂k,j‖F ≤ ε
or ‖R̂k,j‖F /‖R̂k‖F ≤ ε, where ε is the machine precision, and then, X̂k = R̂kR̂

T
k are the

periodic solutions of (9) for k = 0, 1, . . . ,K − 1.
Remark 4. In order to guarantee that the second equation in (9) is satisfied in finite
precision arithmetic, we need to project Rk,j onto the image of Qr by pre-multiplication
with Qr.
Remark 5. As the Ak can well be singular in the discrete-time case, Algorithm 4 is
restricted in that case.
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Algorithm 4 Generalized Smith method for noncausal PLDALEs.

Input: (Ek, Ak, Bk), spectral projectors Qr(k) for k = 1, . . . ,K.
Output: Low-rank periodic Cholesky factor R̂k such that X̂k = R̂kR̂

T
k .

1: for k = 1 : K do
2: R̂k,1 = Qr(k)A−1k Bk % note that R̂K,1 = R0,1

3: end for

4: for k = 1 : K do
5: Pk,1 = Ink

% initialization of a cyclic matrix
6: end for

7: for j = 2 : ν do
8: for k = 1 : K do
9: m = mod(j + 1,K)

10: Pk,j = Pk,j−1A
−1
m+k Em+k

11: R̂k,j = Pk,j Qr(k +m+ 1)A−1k+m+1Bk+m+1

12: end for
13: end for
14: for k = 1 : K do
15: for j = 1 : ν do
16: if j = 1 then
17: R̂bk,j = R̂k,j
18: else
19: R̂bk,j = [R̂bk,j−1 R̂k,j ]

20: end if
21: end for
22: R̂k = RRQR(R̂bk,j , τ)
23: end for

Remark 6. The causal and noncausal observabiliy Gramians of the periodic descriptor
system (1) can also be determined from the corresponding PLDALEs that are dual to the
PLDALE (12) and (13), see [1] for details. Applying Algorithm 1 and Algorithm 3 (and
also their corresponding cyclic reformulations Algorithm 2 and Algorithm 4) to these
equations, we find, respectively, the low-rank Cholesky factors Lk of the causal observ-
ability Gramians Yk ≈ LkL

T
k and the Cholesky factor Ỹk of the noncausal observability

Gramians Ŷk = L̂kL̂
T
k .

7 Application to model order reduction

Model order reduction (MOR) is an approach, where a large dynamical system is appro-
ximated by a reduced-order model which can be fast and efficiently simulated and

17



which has nearly the same response characteristics as compared to the original large
model. For the periodic descriptor system (1), a reduced-order model of dimension
r = (r0, r1, . . . , rK−1) has the form

Ẽkx̃k+1 = Ãkx̃k + B̃kuk, ỹk = C̃kx̃k, k ∈ Z, (35)

where Ẽk ∈ Rγk×rk+1 , Ãk ∈ Rγk×rk , B̃k ∈ Rγk×mk , C̃k ∈ Rqk×rk are K-periodic matrices,∑K−1
k=0 γk =

∑K−1
k=0 rk = r, and r � n. It is also important that the reduced-order model

preserves physical properties of the original system such as regularity and stability, and
that the approximation error is small.

In this section, we present a generalization of a balanced truncation model reduction
method to periodic descriptor systems. Balanced truncation for periodic standard
discrete-time system and periodic descriptor systems has been considered in [7, 35],
and [6], respectively.
Definition 7. A realization (Ek, Ak, Bk, Ck) of a periodic descriptor system (1) is called
balanced if

Xk = Yk =

[
Σk 0
0 0

]
, X̂k = Ŷk+1 =

[
0 0
0 Θk

]
,

where Σk=diag(σk,1, . . . , σk,nf
k
), Θk=diag(θk,1, . . . , θk,n∞k ), k = 0, . . . ,K−1.

Consider that the set of periodic matrix pairs {(Ek, Ak)}K−1k=0 is periodic stable, and the
Cholesky factors of the causal and noncausal Gramians satisfy

Xk = RkR
T
k , Yk = LkL

T
k ,

X̂k = R̂kR̂
T
k , Ŷk = L̂kL̂

T
k .

Then the causal and noncausal Hankel singular values of the periodic descriptor system
(1) are defined as

σk,j =
√
λj(XkE

T
k−1YkEk−1) = ζj(L

T
kEk−1Rk),

θk,j =
√
λj(X̂kA

T
k Ŷk+1Ak) = ζj(L̂

T
k+1AkR̂k),

respectively, where λj(.) and ζj(.) denote the eigenvalues and singular values of the
corresponding product matrices. For a balanced system, truncation of states related to
the small causal Hankel singular values does not change system properties essentially.
Unfortunately, we can not do the same for the noncausal Hankel singular values because
truncation of small non-zero noncausal Hankel singular values may lead the system to
become unstable with respect to small perturbations [10].

Let us consider the singular value decompositions of the product matrices

LTkEk−1Rk = [Uk,1, Uk,2]

[
Σk,1

Σk,2

]
[Vk,1, Vk,2]

T ,

L̂Tk+1AkR̂k = Uk,3ΘkV
T
k,3,

(36)
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where [Uk,1, Uk,2], [Vk,1, Vk,2], Uk,3 and Vk,3 are orthogonal,

Σk,1 = diag(σk,1, . . . , σk,rfk
), Σk,2 = diag(σ

k,rfk+1
, . . . , σ

k,nf
k
),

with σk,1 ≥ · · · ≥ σ
k,rfk

> σ
k,rfk+1

≥ . . . ≥ σ
k,nf

k
, and Θk=diag(θk,1, . . . , θk,r∞k ) is non-

singular for k = 0, 1, . . . ,K − 1. Note that the number of non-zero noncausal Hankel
singular values of (1) can be estimated by the following relation

r∞k = rank(L̂Tk+1AkR̂k) ≤ min(ηm, ηq, n∞k ),

where η is the index of the lifted pencil λE −A [29, 2]. Defining the projection matrices
[6] as

Sk,r = [Lk+1Uk+1,1Σ
−1/2
k+1,1, L̂k+1Uk,3Θ

−1/2
k ] ∈ Rµk×γk+1 ,

Tk,r = [RkVk,1Σ
−1/2
k,1 , R̂kVk,3Θ

−1/2
k ] ∈ Rnk×rk ,

with rk = rfk + r∞k and γk+1 = rfk+1 + r∞k , we compute the reduced-order system (35) as

Ẽk = STk,rEkTk+1,r, Ãk = STk,rAkTk,r, B̃k = STk,rBk, C̃k = CkTk,r, (37)

Let H̃(z) be the transfer functions of the reduced-order lifted system formed from the
reduced-order matrices in (37). Then we have the following H∞-norm error bound

‖H − H̃‖H∞ = sup
ω∈[0,2π]

‖H(eiω)− H̃(eiω)‖2

≤ 2 trace (diag(Σ0,2, . . . ,ΣK−1,2)),
(38)

where H(z) is the transfer function of the lifted system defined in (4), ‖.‖2 denotes the
spectral matrix norm, and Σk,2, k = 0, 1, . . . ,K−1, contains the truncated causal Hankel
singular values. This error bound can be obtained similarly to the standard state space
case [35].

8 Results

Example 1. We consider first an artificial periodic discrete-time descriptor system
from [2, Example 1] which is reformulated from its original model in [6, Example 1].
In this reformulation, the periodic descriptor system has µk = nk = 404, mk = 2 and
pk = 3 for the periodicity K = 10, i.e., k = 0, 1, . . . , 9. The set of periodic matrix pairs
{(Ek, Ak)}K−1k=0 is periodic stable with nfk = 400 and n∞k = 4 for k = 0, 1, . . . , 9. The
original lifted system has order n = 4040. The finite eigenvalues of the lifted system are
shown in Fig. 1 which illustrates the stability of the original descriptor system.

We solve the causal and noncausal lifted projected Lyapunov equations using Algorithm 2
and Algorithm 4, respectively. Since, Algorithm 2 is the cyclic reformulation of Algo-
rithm 1, we compute the normalized residual norms at each Smith iteration step for the
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Figure 1: Finite eigenvalues of the pencil λE − A.

reachability and observability type of the causal lifted Lyapunov equations using Algo-
rithm 1. To illustrate the efficiencies of the proposed algorithms, we compare the results
with the corresponding ADI (Alternating Direction Implicit) computation of [2]. Fig. 2
shows the decay of the residual norms computed at each Smith iteration step.

This iteration is stopped as soon as the normalized Lyapunov residual reaches the toler-
ance tol = 10−10. In Fig. 3(a), we present the approximate causal Hankel singular values
σk,j computed from the singular value decompositions of the matrices LTkEk−1Rk, where
Rk and Lk are the low-rank Cholesky factors of the causal reachability and observability
Gramians, respectively.

We approximate system (1) by a reduced-order model obtained by truncating the states
corresponding to the small causal Hankel singular values satisfying σk,j < 10−4. The
largest 80 causal Hankel singular values of the original lifted system, and the approxi-
mate 71 causal Hankel singular values for the reduced-order lifted system are shown in
Fig. 3(b).

For different subsystems, the numbers of the computed non-zero noncausal Hankel singu-
lar values are identical and given by r∞k = 2 for k = 0, 1, . . . , 9. The computed reduced-
order model has subsystems of orders (9, 9, 9, 9, 9, 9, 9, 9,
10, 9). Note that stability is preserved in the reduced-order system.

Fig. 4(a) shows the norms of the frequency responses H(eiω) and H̃(eiω) of the original
and reduced-order lifted systems for a frequency range [0, 2π]. We observe a good match of
the system norms. Finally, in Fig. 4(b), we display the absolute error ‖H(eiω)−H̃(eiω)‖∞
and the error bound given in (38).
Example 2. As a second model problem we consider here an artificial continuous-time
model from Section 4.3 of [32], where a spring-damper model is considered as an artificial
model of piezo-mechanical systems. We consider n = 500, l = 100,nin = 2,nout = 3 for
our model problem, and hence the dimension of the continuous-time model is 2n + l =
1100. The formulated continuous-time model is converted to a discrete-time model by
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Figure 3: (a) Causal Hankel singular values for subsystems; (b) Causal Hankel singular
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Figure 5: Sparsity patterns of A0 (left) and E0 (right).

an Euler discretization method [25]. We then change the damping matrix periodically by
introducing some periodic coefficients inside it. As a result, the model is time-varying
and periodic. The details of this periodic model formulation are given in the appendix.

For the resulting periodic model, we have nk = 1100, mk = 2, pk = 3, and a period
K = 10. The periodic matrix pairs {(Ek, Ak)}K−1k=0 are periodic stable with nfk = 1000
and n∞k = 100 for every k = 0, 1, . . . , 9. The resulting periodic system is of index 1, and
the original lifted system has order n̄ = 11000. The sparsity pattern of the periodic pair
at k = 0 is shown in Fig. 5.

In Fig. 6(a), we present the largest 260 causal Hankel singular values computed by the
proposed Smith method in Algorithm 2. We approximate system (1) to the tolerance 10−4

and truncate the states corresponding to the smallest 200 causal Hankel singular values.
The system has 20 noncausal Hankel singular values which are positive, but very small.
The values of these noncausal Hankel singular values lie in the range of [10−13, 10−15],
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Figure 6: (a) Causal Hankel singular values for original and reduced-order lifted sys-
tems. (b) Noncausal Hankel singular values for original and reduced-order
lifted systems.
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Figure 7: The frequency responses and error bounds of the original and the reduced-order
lifted systems.

and they are shown in Fig. 6(b). It is to be mentioned that our model problem is of index
1, and hence we need only one iteration to compute the noncausal Cholesky factor for
noncausal PLDALEs using Equation (34).

The computed reduced-order model has subsystems of order r = (9, 8, 8, 7, 8,
9, 7, 8, 8, 8), and r̄ = 80. In Fig. 7(a), we show the norms of the frequency responses
H and H̃ for a frequency range [0, 2π]. The absolute error ‖H − H̃‖∞ and the error
bound are also displayed in Fig. 7(b). One can see that the error bound is tight in this
example.

9 Conclusions

We discussed the structure preserving Smith iterations to compute the low-rank factors
for the solutions of large sparse projected periodic discrete-time algebraic Lyapunov
equations exploiting the generalized inverses of the periodic matrix pairs associated
with the periodic descriptor system. These low-rank factors are used in a balanced
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truncation model reduction approach to find a reduced-order model for periodic discrete-
time descriptor systems. The proposed model reduction method delivers a reduced-order
model that preserves the regularity and stability properties of the original system.

An important advantage of our computational approach is that one can directly compute
the generalized inverses of the periodic descriptor system, without explicitly manipulat-
ing the lifted representations. Beside this, the proposed Smith iterations preserve the
cyclic block diagonal structures at all iteration steps which is the main challenging task
in periodic iterative computations.

The major drawback of our proposed method is that it computes the periodic projectors
explicitly for the computations of periodic generalized inverses which is numerically
expensive and not a wise approach for higher index systems. Hence we restrict the
proposed model reduction approach for systems of index-1.

Appendix

The MATLAB codes of the periodic model formulation used in the second model prob-
lem. The following codes will construct the periodic matrices Ek, Ak, Bk, and Ck for
k = 0, 1, . . . , 9. Note that Ek are constant matrices in the following construction.

-----------------------------------------------------

This is an index 1 problem

-----------------------------------------------------

n=500;

l=100;

nin=3; % number of output

nout=2; % number of output

K=10; %period

den=0.001;

I=speye(n);

M=.5*I+spdiags(-0.2*ones(n,1),2,n,n)+spdiags(-0.2*ones(n,1),-2,n,n)+...

spdiags(0.2*ones(n,1),4,n,n)+spdiags(0.2*ones(n,1),-4,n,n);

K_uu=spdiags(5*ones(n,1),0,n,n)+spdiags(-1*ones(n,1),2,n,n)+...

spdiags(-1*ones(n,1),-2,n,n)+ spdiags(2*ones(n,1),4,n,n)+...

spdiags(2*ones(n,1),-4,n,n);

D=cell(1,K);

for i=1:K

mu(i)=0.05+.01*i;

nu(i)=.8+.01*i;

D{i}=mu(i)*M+nu(i)*K_uu;

end
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K_pp=spdiags(-5*ones(l,1),0,l,l)+spdiags(ones(l,1),2,l,l)+...

spdiags(ones(l,1),-2,l,l)+spdiags(-2*ones(n,1),4,l,l)+...

spdiags(-2*ones(n,1),-4,l,l);

K_up=sprand(n,l,den);

% Transformation to first order system %

E1=[I spalloc(n,n,0);spalloc(n,n,0) M];

J1=cell(1,K);

for i=1:K

J1{i}=[spalloc(n,n,0) I;-K_uu -D{i}];

end

J2=[spalloc(n,l,0);-K_up];

J3=[-K_up’ spalloc(l,n,0) ];

J4=-K_pp;

clear M K_uu D K_pp K_up

B11=[spalloc(n,nin,0);spdiags(ones(n,1),0,n,nin)];

B2=spdiags(zeros(l,1),0,l,nin);

C11=[spdiags(ones(n,1),0,nout,n) spalloc(nout,n,0)];

C22=spdiags(zeros(l,1),0,nout,l);

E= [E1 spalloc(size(J2,1),size(J2,2),0);

spalloc(size(J3,1),size(J3,2),0)

spalloc(size(J4,1),size(J4,2),0)]; % note E{i}=E; for i=0,1,...,9.

% Set the periodic matrices %

Ad=cell(1,K);B=cell(1,K); C=cell(1,K);

for i=1:K

Ad{i}=[J1{i} J2;J3 J4];

B1{i}=B11*cos(i);

B{i}=[B1{i}; B2];

C1{i}=C11*sin(i);

C{i}=[C1{i} C22];

end

A=cell(1,K);

for i=1:K

A{i}=(0.6*E-.015*Ad{i});

end
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