MAX-PLANCK-GESELLSCHAFT

Max Planck Institute Magdeburg
Preprints

Hamdullah Yiicel Martin Stoll Peter Benner

Adaptive Discontinuous Galerkin

Approximation of Optimal Control
Problems Governed by Transient
Convection-Diffusion Equations

MAX-PLANCK-INSTITUT

FUR DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME
MAGDEBURG

MPIMD/15-11 July 16, 2015



Abstract

In this paper, we investigate an a posteriori error estirohte control constrainedp-
timal control problem governed by a time-dependent comvedtiffusion equation. Con-
trol constraints are handled by using the primal-dual acdet algorithm as a semi-smooth
Newton method or by adding a Moreau-Yosida-type penaltgtion to the cost functional.
An adaptive mesh refinement indicated by a posteriori esbmates is applied for both
approaches. A symmetric interior penalty Galerkin methoshiace and a backward Euler
in time are applied in order to discretize the optimizatioalglem. Numerical results are
presented, which illustrate the performance of the prapeseor estimator.
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1 Introduction

Optimal control problems (OCPs) governed by convectiofusdibn partial differentiabqua-
tions (PDESs) arise in environmental modeling, petroleusereoir simulation and in many
other engineering applications [9, 10, 27]. Efficient nuicedrmethods are essential to suc-
cessful applications of such optimal control problems.

Several well-established techniques have been proposathince stability and accuracy
of the optimal control problems governed by the steady cctime diffusion equations, i.e.,
the streamline upwind/Petrov Galerkin (SUPG) finite eletmaathod [8], the local projec-
tion stabilization [4], the edge stabilization [18, 35]sdbntinuous Galerkin methods [22, 36,
37, 38, 39]. Also, only few papers are published so far fortesdy optimal control prob-
lems governed by convection diffusion equations, i.e.ctigracteristic finite element method
[11, 12], the streamline upwind/Petrov Galerkin (SUPG)térdlement method [31], the lo-
cal discontinuous Galerkin (LDG) method [41], the nonsyrtrinénterior penalty Galerkin
(NIPG) [33], and the symmetric interior penalty GalerkinR&) method [1].

Adaptive finite element approximations are particularlyaattive for the solution of opti-
mal control problems governed by elliptic convection doatéd partial differential equations
(PDEs), since the solution of the governing state PDE orahegisn of the associated adjoint
PDE may exhibit boundary and/or interior layers, localiregions where the derivative of the
PDE solution is large. It allows local mesh refinement arotiedlayers as needed, thereby
achieving a desired residual error bound with as few degréésedom as possible. The
a posteriori error analysis of the optimal control problegoserned by parabolic equations
is discussed in [25, 26, 34]. For the optimal control protdegoverned by time-dependent
convection diffusion equations, the a posteriori errolyses are investigated by using a char-
acteristic finite element discretization in [13] and by gsihe edge stabilization in [40].

We here will derive an a posteriori error analysis of the mglicontrol problems governed
by the transient convection diffusion equations using tiseahtinuous Galerkin method in
space and the backward Euler method in time. We apply diseanis Galerkin (DG) dis-
cretization for convection dominated optimal control dewbs due to their better convergence
behavior, local mass conservation, flexibility in approating rough solutions on compli-
cated meshes and mesh adaptation. We would like to refer iy[380] for the discontinuous
Galerkin methods in details. To solve the optimization peoh we use both the primal-dual
active set strategy and the Moreau-Yosida regularizatBuitable error estimators are intro-
duced for both cases. However, the a posteriori error aisabjthe Moreau-Yosida regular-
ized optimization problem depends on the regularizatioampated. Therefore, we formally
assume that the Moreau-Yosida regularization parametbe tiixed in advance as done in
[15, 36].

The rest of the paper is organized as follows: in the nexti@ectve introduce control
constrained optimal control problems governed by transienvection diffusion equation.
We apply the symmetric interior penalty Galerkin (SIPG) Inoet for the diffusion and the
upwind discretization for the convection in order to disiae the optimization problem in
space. The primal-dual active set strategy as a semi-srit@atton method is also introduced
to solve the optimality system. The error estimator of thmpl-dual active set approach and
the reliability of the error estimator are derived in Set® The other approach to solve the
control constrained optimal control problem, the Moreaisila regularization, is given in



Section 4. Section 5 contains the numerical experimenttutstriate the performance of the
proposed error estimators.

2 Approximation schemes for the optimal control problem

In this section, we introduce the discontinuous Galerkiitdfinlement discretization in space
and the backward Euler discretization in time for the appnations of the distributed linear-
guadratic optimal control problems governed by unsteadyection diffusion PDEs.

We adopt the standard notations for Sobolev spaces on catignél domains and their
norms. Q and Qu are bounded open sets R? with Lipschitz boundarie®Q and 0Qy,
respectively. Although adaptive finite element methodvid®a real benefit on non-convex
domains, for example such with reentrant corners in praképplications, we assume that
Q andQy are convex polygons for simplicity. The inner productd.#{Qy ) andL?(Q) are
denoted by(-,-)y and(-,-), respectively. Herea < b means that < Cb for some positive
constanC. Further, we consider the Bochner spaces of functions maghie time interval
(0,T) to a Bansch spadé in which the normi| - ||y is defined. For > 1, we define

.
L"(0,T;V) = {z:[0,T] = V measurable / 1)1 dt < oo}
0
with
1
Bz a)” . < <o,

ess sup|lz(-)|lv, if r =oco.
te(0,T]

||Z(')HLF(0,T;V) =

In this paper, we shall take the state spate: L2(0,T;V) with V = H3(Q), and the control
spaceX = L?(0,T;U) withU = L?(Qu). We are interested in the following distributed optimal
control problem governed by a transient convection difagquation:

i . Tl 2 a 2
UE[JT-;LnQXJ(y’ U) = /0 (é ||y_deL2(Q) + E HU— udHLz(QU)) dt’ (1)
subject to
oy —eAy+B-0Oy= f +Bu, xeQ, te(0,T], (2a)
y(x,t) =0, x€o0Q, te(0,T], (2b)
y(%,0) = yo(x), xeQ, (2¢)

where the closed convex admissible set of control consgsramiven by
Uagg={ueX:ua<u<up, a.e.inQu x (0,T]} 3)

with the constant bounds, < up. The functionuy, called desired control, is a guideline for
the control, see, e.g., [7]. Note that this formulation adlows for the special (and most
common caselly = 0, i.e. there is no a priori information on the optimal cohtr8 is a



linear continuous operator from X t&(0, T;V') realizing the transition betweed, andQ.
GenerallyQy can be a subset 61. In the special cas@y = Q, B=1 is the identity operator
onl?(Q).

We make the following assumptions for the functions andpaters in the optimal control
problem (1)-(3):

(i) The source functiotfi, the desired statg, and the desired contra} satisfy the following
regularity:
f,ya € L2(0,T;L?(Q)) and ug € L?(0,T;U).

(i) The initial condition is defined ag(x) € V = H(Q).

(i) B denotes a velocity field. It belongs fv>*(Q))? and satisfies the incompressibility
condition, i.e.d- B = 0. The diffusion parameteris also taken as & € < 1.

Using the assumptions defined above, the following resutegualarity of the state solution
can be stated.

Proposition 2.1 ([24]) Under the assumptions defined above and for a given contel u
L?(0,T;L%(Qu)), the state y satisfies the following regularity condition

y € HY(0, T;L3(Q)) NL3(0,T; H3(Q))
and the weak formulation
(0ry(u),v)+a(y,v) = (f +Bu,v) WevV, 4)
y(x,0) = Yo,
where the (bi)-linear forms are defined by

a(y,v):/Q(sDy-Dv—i—B-Dyv)dx, (f,v):/vadx

Then, the variational formulation corresponding to (1)€&n be written as

T/1 a
R TR I PR
subjectto(dy,v) +a(y,v)=(f+Buyv) WeV, te(0,T], (5b)
¥(x,0) = Yo,

(y,u) € HY(0, T;L(Q)) "W x Ugg.

It can be derived by the standard techniques (see, e.g.afith]23] ) that the control problem
(5) has a unique solutiofy, u), and that(y, u) is the solution of (5) if and only if there exists
an adjointp € H(0, T;L?(Q)) "W such thaty, u, p) satisfies the following optimality system
fort € (0,T]

(0ry,v) +a(y,v) = (f +Bu,v) WeV, Yy(x0)=yo, (6a)
—(0ty, W) +a(y, p) = (Y — Y, ¥) vgev, pxT)=0, (6b)
/OT (a(u—ug)+B*p,w—u), dt>0 YW € Ugg, (6¢)



whereB* denotes the adjoint d&. From the second equation (6b), we deduce that the adjoint
p satisfies the following transient convection diffusion atjon:

_atp_sAp_B'Dy:y_yd XEQa tE(O,T], (7a)
p(x,t) =0 x€o0Q, te(0,T], (7b)
p(x,T)=0 xe Q. (7¢)

2.1 Discontinuous Galerkin (DG) scheme

In the following, we construct the discontinuous Galerkiité element scheme for the state
equation (2).

Let {7y}, be a family of shape-regular simplicial triangulation€bfEach mesky, consists
of closed triangles such th& = UKgffhK holds. We assume that the mesh is regular in the
following sense: for different trianglelsi,K; € I, i # j, the intersectior; NK; is either
empty or a vertex or an edge, i.e., hanging nodes are notedlofhe diameter of an element
K and the length of an eddgeare denoted bk andhg, respectively. Further, the maximum

value of the element diameter is denotediby maxh .
KeTy

We split the set of all edges;, into the setf?? of interior edges and the séﬁ of boundary

edges so thak, = £2 U Z°. Letn denote the unit outward normal 88. The inflow and
outflow parts oPQ are denoted by~ andl"*, respectively,

MM ={xedQ: B-nx)<0}, I ={xeaQ: B-n(x)>0}.
Similarly, the inflow and outflow boundaries of an elemirdare defined by
0K~ ={x€dK: B-nk(x) <0}, OK'={xeoK: B-nk(x) >0},

whereng is the unit normal vector on the boundaiy of an elemenkK.

Let the edgee be a common edge for two eleme#tsaandK®. For a piecewise continuous
scalar functiory, there are two traces gfalongE, denoted byy|g from insideK andy®|e
from insideK®. The jump and average gfacross the edge are defined by:

] = vlenw + ylenke,  yl =5 (vle +Y7le). ®

Similarly, for a piecewise continuous vector fiély, the jump and average across an edge
E are given by

[0y] = Oyle - nk + Oy®*le - nke, {0y} = }(Dyle +Oy°lE). 9)

2
For a boundary edge € KNT, we set{y}} = Oy and[y] = yn, wheren is the outward
normal unit vector o
We only consider discontinuous piecewise linear finite eletspaces to define the discrete
spaces of the state and test functions

Vh=Wh = {yeL?Q) : y[xkePK) VK€ T}. (10)



Remark 2.2 When the state equation (2) contains nonhomogeneous Rirlsbundary con-
ditions, the space of discrete stateg &id the space of test functiong &an still be taken to
be the same due to the weak treatment of boundary conditidd&imethods.

We now consider the discretization of the control variableet {7V }, be also a fam-
ily of shape-regular simplicial triangulations 8%, such thatQy = UKUG’ThU Ky holds. For

KfJ , KljJ € ‘IhU, i #j, the intersectiovI’KfJ N KljJ is either empty or a vertex or an edge. The max-

imum diameter is defined By, = ma>§J hk, , wherehy, denotes the diameter of an element
Ky e,

Ku. The discrete space of the control variable associated{ﬂﬁl‘w}h is also a discontinuous
piecewise linear finite element space

Xn={ueL?Qu): ulk, € P(Ky) VKu e R’}. (11)

We can now give the DG discretizations of the state equaBpim(space for a fixed control
u. The DG method proposed here is based on the upwind disgietiof the convection term
and on the SIPG discretization of the diffusion term. Rettadt in discontinuous Galerkin
methods we do not explicitly impose continuity constraiotsthe trial and test functions
across the elementinterfaces. As a consequence, weakl&imms include jump terms across
interfaces, and penalty terms are typically added to cotiteump terms. We refer to [3, 30]
for a rigorous derivation of the following (bi-)linear fosrapplied toy, € H(0, T;W,) for a
fixed controlu, andvt € (0, T1:

(0tYn, Vh) + @n(Yh, Vh) = (f +Bun,Vh)  VVh € Vi, (12)
where
O€
)= 3 K/ oDy Dvde- 5 E/ (Heoyp - M+ {e0v - [v]) ds+ PR E/ vl [V ds
+ Z /B-Dyvdx+ Z / B-n(y*—y)vds— z / B-nyvds  (13)
KeThi K€ ok\r KETh ok -

with the nonnegative real parametebeing called the penalty parameter. We chomse be
sufficiently large, independent of the mesh dizand the diffusion coefficierg to ensure the
stability of the DG discretization as described in [30, S2¢€.1].

2.2 Primal-dual active set (PDAS) strategy

We here explain our first approach to solve the control caivetd optimal control problem
(2)-(3), called the primal-dual active set (PDAS) strategsoduced in [5]. We first define the
semi-discrete approximation of the optimal control probi®) as follows:

ur?gLiJr%d /OT (% Keth llyn — Yd||fz(K) + % Kugqhu |lun — UdHEz(KU)) dt, (14a)
subject to (0tYn, Vh) + an(Yh,Vh) = (f +Bun,Vh) YWh €Vh, te(0,T],

Yn(x,0) = YR(x), (14b)
(Yh, Un) € HY(0, T;Wh) x UR,



where
={uh € L?(0,T; %) : Ua < up<up a.e.inQu x (0,T]} (14c)

is a closed convex set inZ(O,T;Xh). For ease of exposition, we also assUdﬁé’ C UggN
L%(0,T; %n).

Let J(-) be a continuous functional ib?(Q). Then, there exists a least one solution for
the optimization problem (14) since the discrete syétg) can be bounded in the given norm
as shown in [1, 33]. Then, it follows that the control probléb4) has a unique solution
(Vh,Un) € HY(0, T;Wh) x U2 (see, e.g., [23]) and that a pdim, Un) is the solution of (14) if
and only if there is an adjoing, € H(0,T;W,) such that the tripléyh, un, pr) Satisfies the
following optimality system:

(OtYh, Vh) +an(Yh,Vh) = (f +BUn,Vh)  YWh €V, (15a)
Yn(%,0) =2,
—(0tPn, Pn) +an(Wh, Pn) = (Ynh—Yd:Wh)  VPh €V, (15b)
ph(x T) O,
.
/o (o (un+ Ug) + B*pn,Wh — Up), dt>0 Ywh, € Uﬁd. (15c)

We now consider the fully-discrete approximation for theimal control problem (1)-(3)
using the standard backward Euler scheme in time and therdiecous Galerkin discretiza-
tion in space. _

Let Nt be a positive integer. The discrete time intedval [0, T] is defined as

O=to<ti< - <ty <ty =T

with sizek, =t —th_1forn=1,...,Ny andk = ma>l<\lT kn.

.....

Then, the fully-discrete approximation scheme of the sdisirete problem (14) is

min zkn(i Y o= VilZp+y Y luna—tliZy,).  (6a)

Unn€URS =1 KT, Ky'egY
subject to
<WV> +an(yhmV) = (fo+Blhn,V)  WEVh, (16b)
Yho(%,0) = Ya(X),
where
UZS={unn€Xn : Ua<Unn<up a.e.inQu} for n=1,2,... Ny. (16c)

The fully discretized minimization problem (16) has at te@se solution due to the bound-
edness of the solution as shown in [1, Lemma 6]. Then, thg fliicretized control prob-
lem (16) has a unique solutidiVhn,Unn) € W x Uﬁd, n=12,....,Nr,and(Ynn,Unp), n=

., N is the solution of (16) if and only if there is an adjoRt,—1 € Vh, i = 1,2,...,Nr,
and such thatYy n,Un n, Phn-1) € Wh X Uﬁ‘d x V, satisfies the following optimality system:



(%v) +an(Yhn,V) = (fn+BUnn,V) W E Vi, (17a)

Yho = Yh n=12...Nr,
<W,q> +an(0,Phn-1) = (Yan —¥7,0) Vg € Vh, (17b)

Pt =0 n=Nr,...,2,1,
(a(uh,n—uﬁ)+B*Hm,l,w—uh,n) >0 W e U2, n=12...Nr. (17c)

By following the strategy introduced in [26], we define foe= 1,2,... Ny

Yol 2ta) = ((ta—=0)Y¥hn 1+ (t—th-1)¥hn) /K, (18a)
Phlt, 1) = ((th—0)Phn1+(t—th-1)Phn) /ki, (18b)
Unlg, 14 = Unn: (18c)

LetW(X,t) ety tn] = WX, tn) @NAW(X, t) |t 1, 1) = W(X,ta—1) for any functionw € C(0, T; L2(Q)).
Then, the optimality system (17) can be restated as

<aath )+ah(Yh,) (f+BUn,v) WV E Vi, (19a)
Yh(x,0) = yR(x) n=1,2,...,Nr,
(a;ﬂ) +an(q, Ph) = (Yh— 4,0 VQ € Vi, (19b)
P(xT)=0 n=Nr,....2,1,
(a(uh—ad)+8*ﬁ1,w—uh) >0 wweUd,  n=12..Nr. (19¢)

We solve the optimality system (17) by using the primal-caaive set (PDAS) algorithm
as a semi-smooth Newton method [5]. To use this approachysteéed to define the active
sets

A" ={x€Q : —Php1—0a(ug—uf) <0},
A" = {x€Q : —Php1—0a(up—ul) >0},

and the inactive sef" = Q\(ﬂ” Uﬂ”) for each time stepy,. Forn=1,2,... Ny, the dis-
cretized optimality system (17) is equivalent to

(M +kaK) Yo — MYn_1 = £(fn) + MUp, (20a)
(Ka KT + M) Pr1— MPy = M Yo — £(Y2), (20b)
M Un — axnl (V) + MK 1Pa1 = M (Xan Ua+ X0t ). (20c)

whereX is the stiffness matrix correspondingdg(-,-) andM is the mass matrixy 4, Xan,
andy  denote the characteristic functions.@f, 47, and 1", respectively. Furthet,(z) =
Jo zv dxwith v € V. By considering all time steps, we then apply the active krirdhm
described in Algorithm 1 for the iteration number



Algorithm 1 Active set algorithm

Choose initial values foy®, u(©, andp(©@.
Set the active seta'?, Sro) and inactive sef ©).
fork=1,2,...do
Solve (20) and update active se?ték>, ﬂﬂr@ and inactive sef ¥ for all time steps.
it 2% = 2% 2 = 2% and109 = 1k+D) then
STOP
end if
end for

3 A posteriori error estimates

We here analyse the a posteriori error estimates of the aptiontrol problem governed by
transient convection diffusion equations discretizedhi®ydiscontinuous Galerkin scheme in
space and the backward Euler scheme in time. In general tarfpgserror analysis of the
unsteady optimal control problems is more complicated thanones of the steady optimal
control problems due to the fact that the properties of time tvariable and its discretization
are quite different from those of the space variables. Ttifferent approaches are needed to
handle the two groups of variables, and their interactions.

To derive a sharp estimator for the control, we dividle for each timen=1,2,..., Nt as
follows:

Ql® = {xeQu :(B*F)(Xth-1) > a(ug(X,tn) — Ua), Unn = Ua},
Q* = {xeQu :(B'P)(Xth-1) > 0(Ug(X,tn) — Ua), Unn> Ua},
QY = {xeQu : (B*Ph)(Xth 1) < a(Ud(X,tn) — Up), Unn= Up}, (21)
oM = {xeQu : (BR)(Xth 1) < A(Ug(Xth) — Up), Unn < U},
QP = {xeQu :a(ug(xth) —Up) < (B*P)(X,th 1) < a(Ug(X tn) — Ua)}-
Itis assumed that the intersection of the above sets is eirepty}[}i ﬂQB’j =0fori#j,i,je

{0,a,a+,b,b—} and
Qu (tn) = Q°(t) U QT (tn) U QG (tn) U QG (1) U QS ().
To ease the notation, we define
ol =otfuQlruqlh .

In the following lemma, we derive an estimate of the contanliable in the optimization
problem (1)-(3) by making a connection with the adjoint aate.

Lemma 3.1 Let (y,u, p) and (Yn,Un, Py) be the solutions of (6) and (17), respectively. Then,
we have the following estimate

Ju=UnlZ2 012000 < C (3+ 1P = PUNIZ 0120 ) - (22)



where

Nt _
nu= Y //Qn (0(Un — Tg) + BFy) dx dt+ [[a(ua — Ga) P20 12(qy ) (23)
n:lt 1 (V)

and the auxiliary solutions, i.e.{n), p(Un) € HX(0,T;L?(Q)) NW, are defined as follows:

(3Y(Un)w) +aly(Un).w) = (f + B, e (242)
y(Un) (X t)laa =0,  ¥(Un)(X,0) = yo(x), XeQ,

( :t P(Un), Q) +a(g, p(Un)) = (y(Un) —ya.q), VQeV, (24b)
P(Un)(X.t)lao =0,  p(Un)(x,T) =0, xXeQ.

Proof. The inequality (6c) gives us
5 T T
aHu_UhHLZ(O,T;LZ(QU)) :/0 (GU,U—Uh)U dt—/(; (aUp,u—Up)y dt
T T
g/ (aug —B*p,u—Up)u dt—/ (aUp,u—Up)y dt
0

—/ o(Up —Ug) —i—BF‘nUh—u dH—/ ud—Gd),u—Uh)Udt

. ) My i M,
+/O (B*(Fh — p(Un)), u—Up), dt+/0 (B*(p(Un) — p).u— Uy, dt.
M3 My

(25)
We first derive an estimate & for anyt € (ti_1,t],
(a(Up —Tg) + B*Ph,Un — u), :/Qn,* (a(Up—Ug) + B*Ian) (Un—u) dx
U
[ (@Un—G) +BR) (Un—) dx (26)
QiPuaf

By the definitions o> andQ{'" in (21), we have

/Qn,aUQn,b (G (Uh - ad) + B*ﬁ'l) ) (Uh - U) dx
U U

= na(O(( ud)+BPh dx+/ o(up — 0g) + B* Ph)(ub—u) dx
Qy ————
>0 <0 >0

<0.



Then, with the help of Young’s inequality, we

T _
My = /O(cx(Uh—Gd)+B*Pn,Uh—u) . dt

< Z /|| (Un o) + BF) [ 2o - dt+z /Hu Unl g dt

1tn 1 _1tn 1

S u+ ”u_Uh”EZ(O,T;LZ(Qu))' (27)

Next, we estimatdl, andM3 by invoking again Young's inequality
T A~
My, = /(; (a(ud—ud),u—Uh)U dt
S ||(X(Ud )|||_2 0,T:L2(Qy)) + Hu_ UhHEZ(O,T;LZ(QU))a (28)

)
Ma = [ (B'(Ph—p(Un).u=Unu o

A

]
/ 18 (P — P(UR)) P2 gy A+ [ lu=UnlZ g
S ||Ph_ p(Un) HLZ(O,T;LZ(Q))+Hu_UhHEZ(O,T:LZ(QU))' (29)

Finally, the auxiliary equations in (24) yield

)
Ma = [ (p(Un) — p.B(u=Un), dt

= /OT(at(y—y(Uh)) dt+/ a(y —y(Un), p(Un) — p)) dt
= /0 ! (0t (y —y(Un)), p(Un) — p) dt+ /0 (8t(p(Un) — p),y —y(Un)) dt
+ / —Y,y—y(Un)) dt

Application of integration by parts on time derivatives kging the fact(y— y(Uh)) li—o=0
and(p(Un) — p)|t= = 0 yields
T
Ma= [ (y(Un) = yy—y(Un) dt <O (30)

By inserting the estimates (27-30) iify — My into (25), we obtain the desired result. [
Before deriving error estimates for the state and adjoimaéqns, we need the following
result for the Lagrange interpolation operalfity, and the trace inequality.

Lemma 3.2 ([6]) LetMN}be the standard Lagrange interpolation operator. FoE0,1, > 1
and ve W29(Q), there exists a positive constant C such that

|V— rth|Wm,q(Q) < Ch27m|V|W2.q(Q>.

10



Lemma 3.3 ([21]) Forallve W9(Q), 1< g < oo,

-1 1-1
[Vllwoak) < C (hK /q||VHw0=q(K) +hi /q|V|Wl,q(K)) ,
We have the following inequalities, derived in [2],
Mg, < CREMMIZ2), e DVIIZ e, < ChEOVIZ2 (31)

where the constat depends on the shape regularity of the mesh. Then, the ateyealities
yield the following estimation

S Ihell {0V IEE <C 3 IOVIZ ) WV E V. (32)
EcE, KeTy

We finally define the following stability results derived ibd] for convection diffusion equa-
tions.

Lemma 3.4 ([19]) Assume thaf is a convex domain. Lep and be the solutions of the
dual problems (33) and (34), respectively. Then, for givenlE?(0,T;L?(Q))

[Vl 0,T;L2

otrz@) < IFleeorize).
1OVI20T200) S IFll20rz@):
1AV 2011200)) < lIFll20r2(0))5
IMllizorizi) S IIFllzoT@):
where ve {@, |} satifies
(Q_EACP_FBDCPZ Fa (X,t)GQX(O,T],
o(x,t) =0, (x,t) €0Q x [0,T], (33)
®(x,0) =0, x€ Q.
or
_th—sAlIJ_B'DlIJ:E (X7t)€QX(OaT]a
W(x,0) =0, xe Q.

Now, we turn to estimate the errp, — p(Uh)”EZ(O,T;LZ(Q))'

Lemma 3.5 Let (y,u,p) and (Y, Un,P,) be the solutions of (6) and (17), respectively. The
auxiliary solutions yUy) and pUp) are defined by the system (24). Assume@hita convex
domain, then,

7
[[Ph— p(Uh)”EZ(O’T;LZ(Q)) < Ya— Y(Uh)HEZ(o,T;LZ(Q)) + _Znizv
i=

where
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ot

~ 112
ny = / > h3/ sDPhH dsdt
0 e&,
”Yh - YhHLZ(O’T;LZ(Q)) + Hyd - deEZ(O,T;LZ(Q))a

i - [ e[ e

EET,
T ~ ~
g = [ |ED(91—H1)|2+|B-D(H1—H1)|2)dxdt,
ng = /OKeT / hE BnE dsdtJr/0 z / hEBnEPh) dsdt

KErg +mr+
2= [y hE/E[[B(F«—F«)ﬂ ds dt

EE€E,

T 0P, ?
2 z 4 — H,] Pn
r]l A KET hKA (Yh yd+ +EA +Bh D ) dX dL

>
@
Il

Proof. Let @ be solution of (33) withF = B, — p(Up). Let@ = My be the Lagrange interpo-
lation of @ defined as in Lemma 3.2. Then, by using the adjoint equati®h)(the auxiliary
equation (24), and the dual problem (33), we obtain

)
1= PN Eeoriziay =, (Ph—p(UN.F)

= /T (Ph—p(Un), @ —ebp+B-Og) dt

.
_ 0 ( %Pn p(Un)) cp)+a(<P,Pn—p(Uh))> dt
. .
_ 0 ( %ph puh)(p—(n)+a((p—(ﬂﬂ1—p(uh))) dt
;

* 0 ( (agpn pUh>(ﬂ)+a(<n,ﬁ1—p(uh))+a(<pﬂ1—ﬁn)> dt

0P,
= [ (-5 -y +y0.0-@) +at@ ) o
0

+/0( an(@,Pn) + (Yh— 94, @) — (Y(Uh)—Yda(ﬂ)‘Fa((Pvaﬁﬂ)dt

Integrating by parts, we obtain

T aph
||Ph—D(Uh)HE2(o,T;L2(Q)):/O (—W—?—AF’h B- 0Py — Y+ Ya, @— (ﬂ> dt

I1
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T _ T R
+ KEZ%/M(EDF‘“'”X‘P““”S"”/O (%o = y(Un) + ya — 9,0) ci

|
Iy 3

s[05 [ ({eonl) o1+ oo [[A])) asar

4
[ 3 2 [A] e dsdt+/oT/Q(SD(H]—ﬁ])DCP—B'D(%—ﬁ)CP) dxdt
E

le

/B-n(ﬁn—ﬁﬁ)mdSJrz / B- NP ds) dt

KF\T KETh oK+

17

+ [y [ (BenE—Rpdsat (35)

0 Keffh

Is

We now estimate the terms on the right-hand side of (35) tertetn. To estimate the first
term in the right-hand side of (35), we use Lemma 3.2 and Ledwhauch that

T 4 ~ 0P _ \?2 T )
b < / ZhK/ (Yh—yd+E+SAPh+[3-DPn) dxdt+/ 22 Ot
0 ke, 7K 0
< n%"'”ph_p(Uh)||EZ(0,T;L2(Q))- (36)

Next, if we rewrite the ternby in terms of the jump ofIP, and use the Lemmas 3.2-3.4, we

obtain
l, — /OT >3 /EHSDﬁ]H(GJ—dm)dsdt

EET,
T 3 5 2 T 2
< h / 0B || ds dt+ / dt
J 2" [[=0m] o 9k
< n%+||H"I_p(Uh)HEZ(O’T;LZ(Q»- (37)

Then, Lemma 3.4, Young’s and the triangle inequalities give

N

I3 H?h - (Uh)”LZ 0,T;L2(Q)) + Hyd - deEZ(O’T;LZ(Q)) + HCPHEZ(O,T;LZ(Q))

ﬂ%+ ”Yh - (Uh)HLZ(O!T;LZ(Q)) + th - p(Uh)HEZ(O’T;LZ(Q))' (38)

A

Similarly, using Young's inequality, Lemma 3.3, Lemma 3rlghe inequality in (32), we
obtain
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la < n3+ni+P—PUn)lE2 01 20)): )

s < NG+ [Ph—PUn)lIf20120)) (40)
. N B T

lo < /o /Q(|sD(H1—F‘n)|2+|I3'D(F‘n—Pn)|2) dxdt+/o (10012 0) + l9lEz(q)) dt

< N2+ |Ph— p(Uh)HEZ(O,T;LZ(Q))’ (1)

;7 < r]%‘f’”Hﬁ_p(Uh)HEZ(O,T;LZ(Q))' (42)

Finally, rewriting the ternig in terms of the jump operator and using Lemma 3.3 and Lemma 3.4

we have
|8 < I’]7+ ”H‘I p(Uh)HLZ 0,T; LZ(Q)) (43)

Inserting (36-43) into (35), the desired result is obtained O
Now, we need to estimatth — y(Un)| 2(01.12(q))-

Lemma 3.6 Let (y,u, p) and (Y, Un,P,) be the solutions of (6) and (17), respectively. The
auxiliary solutions yUy) and pUp) are defined by the system (24). Assume@hita convex
domain, then,

14
['Yh — y(Un) HEZ(O,T;LZ(Q)) < ‘zgnizv
i=

where

oY 2
fh—BUh—a——i—SAYh—Bh DYh dxdt,

=
N
Il
o\
_|
-
P
~

s
_'
m
E;M ;M
=,
m\

2 — Hsmvhﬂ dsdt
T
r]%o = / hE/ H H dsdt
0 ggz, JE
T ~
2, — /0 / [3 nE Yh dsdt+/ / hg (B-ne%h)® ds dt
KE‘Z}BK \r KE‘ZFBK Ar-
N = If=flitorizi) + 1P = PilE2 020
T ~ ~
Nis = /0/Q(|8D(Yh_Yh)|2+|B'D(Yh_Yh)|2) dxdt
NZa = [%(%0)=yoX)lIF2(q,

Proof. Similar as before, ley be the solution of (34) withr = Y, —y(Uy). Lety = My
be the Lagrange interpolation g@fdefined as in Lemma 3.2. Then, we conclude from (19a),
(24), and (34), that

]
Yo = YUz = [ (O =Y(Un).F)

)
= [ (= y(Un). 1 — edp— B- D)
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—/ (%—EAYh-FB DYh—fh—BUh,l]J l]J|) dt—l—/ / €|:|?h-n)(L|J—L|J|)det
Keffh
[ 3 e / [%0]) w1 s at+ / / et [[W]] + {{en% ) - [wil) s e
T o~
—/O KEZI“BK/\F B-n)¥e— YW dsdt+/ KE%K 4 (B-n)¥aly ds dt
T T .
[ (- dte [ ath—hw) dt+ (- y(Un) (x.0),4(x0)). (44)
Applying the same arguments as in (36-43), the desiredtrissoibtained. O

From Lemma 3.1, 3.5 and 3.6, we have the following a postiezioor estimate.

Theorem 3.7 Let (y,u, p) and (Y, Up, P,) be the solutions of (6) and (17), respectively. The
auxiliary solutions yUy) and pUp) are defined by the system (24). Assume@hista convex
domain, then,

14
lu=UnlE20.12(0)) T+ 1Y = YollEzi0 120y + 1P = PrllEz0m20)) < NG+ _;n?-

Proof. It follows from (6) and (24) that

”y(Uh) - yHEZ(O’T;LZ(Q» < ||U - UhHEZ(O’T;LZ(QU))a (453)
”y(Uh) - yHEZ(O’T;LZ(Q»- (45b)

A

[p(Un) — pHEZ(O,T;LZ(Q))
Lemma 3.1, 3.5 and 3.6 yield
Hu_Uh”EZ(O’T;LZ(QU)) S nu+ ||H"I p(Uh)”LZ 0T; LZ(Q))
§ r]u + ”Ph - PHHLZ(O,T;LZ(Q)) + th - p(Uh)HEZ(o’T;LZ(Q))

14
< na+ 3yt (46)
u I; |

Then, the desired result is obtained by applying the triaimgtquality and using the inequali-
ties (45)-(46) with Lemmas 3.1, 3.5 and 3.6. O

4 Moreau-Yosida regularization
The Moreau-Yosida regularization is a popular techniquetlie optimal control problems
with state constraints. Some recent progress in this ared&an summarised in [15, 16,

20, 36], and the references cited therein. However, it atewiges challenges for the control
constrained case, see, e.g., [28, 32].
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We penalize the control constraint, i < u < up, with a Moreau-Yosida-based regular-
ization by modifying the objective functiond(y,u) in (1). Now, we wish to minimize

1 /7 .
Iy,u) + %/0 (IImax{0,u— p} 22 0 + | Min{O,u— ua} 1% g, ) dit @47)

subject to the state system (2). Hedds the Moreau-Yosida regularization parameter. The
min- and max-expressions in the regularized objectivetfanal arises from regularizing the
indicator function corresponding to the set of admissilletols.

The unconstrained optimal control problem (47) has a unsgplition(y,u) € W x X if and
only if there is an adjoinp € W such thaty, u, p) satisfies the following system foe (0, T]

(0ry,v) +a(y,v) = (f +Bu,v) Ywev, (48a)

y(x,0) = Yo,
-Gy, @) +ay,p) = (y Yo, ) VeV, (48b)

( ) 7
/()T(a(u—ud)+B*p+0,w—u)U dt=0 Ywe U, (48¢)

where the multiplier corresponding to the control constre
1 .
0=3 (max{O, U—Up} + min{O,u— ua}) .

Then, the fully discretized optimality system of the regided optimal control problem
(47) is written as

Wv) +an(MamV) = (o4 BUnmV) WV, (49a)
Yho=W n=12,...,N,
(W,Q) +an(0,Phn-1) = (Yon — Y3, 0) Vd € Vh, (49b)
Pt=0 n=Nr,...,2,1,
(a(uh,n —u%) + B*Php_1+ Ohn, W— Uh,n)u —0 YWE X, n=1,2,....,Nr. (49c)

where 1
Ohn = 3 (max{O,Uh,n —Up} +min{0,Unn— ua}) )
As in the previous section, we restate the optimality sy#®) as follows:

(a;“ >+ah(Yh, V)= (fr+BUnY)  WEW (50a)

Yh(x,0) = yR(x) n=1,2,...,Nr,
(%—?7q) +an(q, Ph) = (Yo — Y4, 0) Vg € Vh, (50D)

P(xT)=0 n=Nr,...,2,1,
(a(uh—ad)+|3*ﬁ1+6h,w—uh)u:o YWeXe,  n=12... N (50c)
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whereGy, = £ ( max{0,Un — up} +min{0,Up — ua} ).
The optimality system (49) of the Moreau-Yosida approactu$eto the following linear
systemfom=1,...,Nt

(M +kn %K) Yo — MYn_1 = £(fn) + MU,
(kn KT + M) Pro1— MPy = MYn — £(yd), (51a)

1 1
(GM+SX%MXEH) Un—aé(uﬂ)JrMPnfl:E(X%ngguaerﬂngﬂgua),
where
A2={x€Q :u—Uy<0}, A°={x€Q :u—up,>0}, and 4, = 22U 2".

Similarly, we now derive an a posteriori error estimate fog Moreau-Yosida regularized
optimization problem (47).

Lemma4.1 Let(y,u, p) and(Ys,Un, Py) be the solutions of (48) and (49), respectively. Then,
we have the following estimate

||U— Uh”EZ(O,T;LZ(QU)) <C ((nuM)2+ Hﬁﬁ_ p(Uh)HEZ(O’T;LZ(Q))) ) (52)
where
N
=3 / . (a(Un= ) + 8P 5 (Xap(Un —Ua) + Xy (Un — ) )
n=1 tho1

+lot(ua — Ga) lF20.7 200 )) (53)
and the auxiliary functions, i.e.(Yy) and pUy), are defined as in (24).

Proof. By using the inequalities (48c), (49c) and (50c), we obtain

T T
GHU_UhHEZ(O,T;LZ(QU)) = /O(aud—B*p—o,u—Uh)U dt—/O (aUp,u—Up)y dt

T - T N
/0 (a(Uh—Gd)+B*Pn+6h,Uh—u)U dt—i—/(; (On—0o,u—Up)y dt

M1 M;
T - T
+ [ (B (P p(Un)).u=Un)y, dt [ (B7(p(Un) — p).u—Up),
Ms Mgy
+/ o(ug — Ug) U—Uh)U dt. (54)

Ms
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We only derive a bound fd¥l, in detail, since the estimation of the other terms is sintitar
the procedure in Lemma 3.1. Recall that the following inditjea

[ min{0,a} —min{0,b}[[ 2q) < [la—bll 2q)
[max{0,a} —max0,b}|| 2y < [[a—Dbl2q)

hold. We here assume that the regularization paramesdiixed as done in [15, 36], then we
obtain

T
My = /%(max{O,Uh—ub}—maX{OaU—Ub}aU—Uh)dt
0

T
+/ %(min{o,uh — Ua} —min{0,u— Ua},u—Up) dt
0

N

1 2
EHU = Unll201L2(00)) 9

O
Similarly, we have the following a posteriori error esti@&br the regularized optimization
problem (47) from Lemma 4.1, 3.5 and 3.6.

Theorem 4.2 Let (y,u, p) and (Y, Up, P,) be the solutions of (6) and (17), respectively. The
auxiliary solutions yUy) and gUp) are defined in the system (24). Assume that a convex
domain, then,

14
lu=UnllZz 071200 + 1Y = Y0l 207020 + 1P = Pl 2070200 = (M) + Zi”iz'
i=

5 Numerical Implementation

In this section, we present numerical results to demorestin@ performance of the estimators
proposed in Sections 3 and 4. The state, the adjoint, andbtfteot variables are discretized

by using piecewise linear polynomials, i.€x,y,1—x—y). The initial guess for the control
variable is equal to zero for all discretization levels irgéfithm 1. The penalty parameter
within SIPG is chosen as = 6 on the interior edges and 12 on the boundary edges as in [30].
The Moreau-Yosida regularization paramelas equal to 106. We use uniform time steps
and time-step size is= 1/50. Further, we tak@ = Qy andB = |. Our adaptive strategy can

be briefly described as follows:

Adaptive Algorithm
(Input) Given an initial mesh partitiofiy,, refinement parametéy a tolerance parametéol.

Step 1. (Solve) Solve the optimality system (20) obtained by the primalidigtive set (PDAS)
algorithm on the current mesh or the optimality system (Sdtpimed by applying the
Moreau-Yosida regularization.

Step 2. (Estimate) Calculate the local error indicators on each eleneand then sum them
over the whole space-time domain.

18



Step 3. (Mark) The edges and elements for the refinement are specified by th&m pos-
teriori error indicator and by choosing subséig C 7y, such that the following bulk
criterion is satisfied for the given marking parameter

0y P 3 (e
KeTy KeMy

Step 4. (Refine) The marked elements are refined by longest edge bisectiarevthe ele-
ments of the marked edges are refined by bisection.

Step 5. Return to Step 1 on the new mesh to update the solutions,thatédrror estimators
are less than the given tolerance valg.

5.1 Example 1

We first consider the following transport of a rotating Gaaisgulse example given in [13]
with only lower bound, i.e.u; = 0. Fu et al. use this example in their analysis of the norm-
residual based estimator in combination with a charatiefisite element approximation.
The problem data are given by

Q=[-050572 T=1 £=10*% B=(—xx)", and w=1

The corresponding analytical solutions are given by

Yxt) = =298 gy - BaX0)+ (o yo)®
" 205+ 4te 205+ 4te ’
p(x,t) =0,

[ 1/2, x1+%>0,
Z(X’t)_{o, X1+ %2 <0,

Ug(x,t) = sin(tt /2) sin( pixz ) sin(pixz) + z,
u(x,t) = max(o, Ug — Ep) ,

where the centefxo,Yo), the standard deviation3 = 0.0447, andx; = X; cogt) + Xz sin(t),
X2 = Xpcogt) — xgsin(t). The sourcef and the desired state functions are takerf as—u
andyq =y, respectively.

The optimal control problem exhibits a strong jump (dis@muity) introduced by the de-
sired controlug(x,t). Figure 1 shows that a high density of vertices are distedhalong
X1 + X2 = 0. By using the a posteriori error indicatays (23) orn) (53) of the control vari-
able, we pick out the discontinuity caused by the desiredrobog(x,t) and construct an
optimal adaptive mesh to obtain a better accuracy for thérabas shown in Figure 2 with
adaptive parameté= 0.35.
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Figure 1: Example 5.1: Adaptively refined meshes for différalues of(xo, o), i.€., left (-
0.25, 0) , middle (0, 0), right (0.25,0.25), &t 1 using the primal-dual active set
strategy. The number of refinement steps and vertices a¥f249), (10,3615), and
(9,4728) (from left to right) with adaptive parameées 0.35 .

. State . Adjoint Control
10 —— 10 : : .
o, | 10 Bepll
PRy L|®S o SRSl
(RN Sl 10 ‘x_* Soa (S . ot SO
2|\ ES Y ~ ol ~s RS
B N ~ SRR b -~ ~
07y \%t¥ Sty SR RIS ST Y Iy RSN ful P
5 Tl 5 R T VR R n, i,
] o S ° o 107 T TR T 410 D s
N N N N : e SRR S N 107 -
- L] RPN - a Tie - 3
3 N ~% . . S [ : <
10 b : e By 3¢ - : o -
% - PDAS Adapiive | ™ . e 107"} - * - PDAS Adaptive By e : -
- © - PDAS Uniform o - % - PDAS Adaptive |
= © = PDAS Uniform s Tl - @ -PDAS Uniform | B«
- B - MY Adaptive Y -8-MY Adépllve - B - MY Adaptive e
_y|| = © = MY Uniform _|L= @ = MY Uniform _a|| = @ = MY Uniform Ta
10 2 3 4 10 2 3 4 10 2 3 4
10 10 10 10 10 10 10 10 10
Number of vertices Number of vertices Number of vertices

Figure 2: Example 5.1: Global errors of the state, adjoirt @ontrol in theL?(0,T;L?(Q))
norm with (xo,Yo) = (0,0).

As the statey exhibits different regularity, we make experiments forfatiént values of
the center point such d%o,Yo) € {(—0.25,0),(0,0),(0.25,0.25)}. For all cases, we obtain
a higher density of vertices in the neighborhood>af, x2) = (Xo,Yo) as shown in Figure 1.
Therefore, the adaptive meshes in Figure 1 show that thetarpwserror estimators provided
in Section 3 pick out the regions well, where more refinemargmneeded.

Figure 2 displays the summation of thé(0,T;L?(Q)) errors for each time step for the
state, adjoint and control variables&§, yo) = (0,0), obtained using the primal-dual active set
strategy and the Moreau-Yosida regularization. For bofir@ches, the errors on adaptively
refined meshes are decreasing faster than the errors omrahjifiefined meshes. Especially,
we obtain a better convergence result for the adaptive imghtation of the Moreau-Yosida
approach as shown in Figure 2.
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State Control

Figure 3: Example 5.1: The computed state (left) and coftigiht) on an adaptively refined
mesh with 3,618 vertices by using the Moreau-Yosida regaton for (Xo, yo) =
(0,0) att = 1 after 10 refinement steps.

Iterationznumbers for three refinement Iegels

10 10
10°
£
(]
z -
g 107
o
[0}
(]
o
107
-5 | . . L -5 | . . L -6 | . . L
0 %4 6 810120 2 4 6 81012 % 2 4 6 8 1012

lterations

Figure 4: Example 5.1: GMRES iterations for three differegftnement levels. A block-
triangular preconditioner was used and the stopping @ites set to 10* for the
relative preconditioned residual.
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Figure 3 shows the computed solutions on an adaptively kfiressh with 3,618 vertices by
using the Moreau-Yosida regularization fop, yo) = (0,0) att = 1 after 10 refinement steps.
We conclude that substantial computing work can be savedibyg efficient adaptive meshes
for both approaches and the Moreau-Yosida technique apthe errors of the control better
than the primal-dual active set strategy.

Additionally, our approach is also amendable by efficiemcpnditioning strategies such
as the ones given in [28, 29] where an iterative method ofdrglubspace type is combined
with efficient and robust Schur complement approaches.re&igghows the iteration numbers
of GMRES with a block-triangular preconditioner for threensecutive stages of refinement
and the associated systems within the Newton method.

5.2 Example 2
We set up our second example according to
Q=[-112% T=05 £=10° and B=(23)", and w=0.1

The source functiori and the desired stayg are computed by using the following analytical
solutions:

y(x,t) =16 sinTt)x1 (1 — x1)X2(1 — X2)

» (;1[% (%_(xl_g)z_(m_g)z)]),
p(x,t) =0,

Ug(x,t) :sin(m)sin(gxl)sin(gxz),

u(x,t) :max(O, min (0.5, Uq — E)) ,

Figure 5: Example 5.2: Adaptively refined mesh with 4.417%iges att = 0.5 after 6 refine-
ment steps witl® = 0.55 by using the primal-dual active set strategy.
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State Adjoint Control

L2 Error

|.2 Error
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Figure 6: Example 5.2: Global errors of the state, adjoirt emntrol in theL?(0, T;L%(Q))
norm.

Control
State i

Figure 7: Example 5.2: The computed state (left) and coftigiht) on an adaptively refined
mesh with 3.340 vertices by using the Moreau-Yosida reguation att = 0.5 after

6 refinement steps with = 0.55.

The optimal state exhibits an interior layer depending endiffusion parameteg. Also,
it is a hump changing its height in the course of the time. Fdushows a high density of
vertices being distributed along the interior layer andtaonset. It again demonstrates that
the error indicators proposed in Section 3 work well.

The globallL?(0,T;L?(Q)) errors of the state, adjoint, and the control variablesaiokt
using both approaches, are given in Figure 6. We here onBeptehe results of the primal-
dual active set strategy on the uniform meshes for the stateadjoint, since the results for
both approaches are quite similar. The Moreau-Yosida ambrespecially produces better
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convergence results for the control variable.

Finally, Figure 7 exhibits the computed solutions of théestand control, obtained by using
the Moreau-Yosida approach, on an adaptive mesh with 3.8ditgs after 6 refinement steps
with the adaptive parametér= 0.55.

6 Conclusions

We discuss the optimal control problem governed by tramsi@nvection diffusion equations,
discretized by the symmetric interior penalty GalerkinRS) method in space and the stan-
dard backward Euler in time. In order to handle control caists, we apply the primal-dual
active set strategy and the Moreau-Yosida-based regatemiz For both approaches, we pro-
pose error estimators to guide the mesh refinement. Nunheeisalts show that substantial
computing work can be saved by using efficient adaptive neefhrdoth approaches and the
Moreau-Yosida technique captures the errors of the cob&tbér than the PDAS strategy.
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