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Abstract
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1 Introduction

Optimal control problems (OCPs) governed by convection diffusion partial differentialequa-
tions (PDEs) arise in environmental modeling, petroleum reservoir simulation and in many
other engineering applications [9, 10, 27]. Efficient numerical methods are essential to suc-
cessful applications of such optimal control problems.

Several well-established techniques have been proposed toenhance stability and accuracy
of the optimal control problems governed by the steady convection diffusion equations, i.e.,
the streamline upwind/Petrov Galerkin (SUPG) finite element method [8], the local projec-
tion stabilization [4], the edge stabilization [18, 35], discontinuous Galerkin methods [22, 36,
37, 38, 39]. Also, only few papers are published so far for unsteady optimal control prob-
lems governed by convection diffusion equations, i.e., thecharacteristic finite element method
[11, 12], the streamline upwind/Petrov Galerkin (SUPG) finite element method [31], the lo-
cal discontinuous Galerkin (LDG) method [41], the nonsymmetric interior penalty Galerkin
(NIPG) [33], and the symmetric interior penalty Galerkin (SIPG) method [1].

Adaptive finite element approximations are particularly attractive for the solution of opti-
mal control problems governed by elliptic convection dominated partial differential equations
(PDEs), since the solution of the governing state PDE or the solution of the associated adjoint
PDE may exhibit boundary and/or interior layers, localizedregions where the derivative of the
PDE solution is large. It allows local mesh refinement aroundthe layers as needed, thereby
achieving a desired residual error bound with as few degreesof freedom as possible. The
a posteriori error analysis of the optimal control problemsgoverned by parabolic equations
is discussed in [25, 26, 34]. For the optimal control problems governed by time-dependent
convection diffusion equations, the a posteriori error analyses are investigated by using a char-
acteristic finite element discretization in [13] and by using the edge stabilization in [40].

We here will derive an a posteriori error analysis of the optimal control problems governed
by the transient convection diffusion equations using the discontinuous Galerkin method in
space and the backward Euler method in time. We apply discontinuous Galerkin (DG) dis-
cretization for convection dominated optimal control problems due to their better convergence
behavior, local mass conservation, flexibility in approximating rough solutions on compli-
cated meshes and mesh adaptation. We would like to refer to [3, 17, 30] for the discontinuous
Galerkin methods in details. To solve the optimization problem, we use both the primal-dual
active set strategy and the Moreau-Yosida regularization.Suitable error estimators are intro-
duced for both cases. However, the a posteriori error analysis of the Moreau-Yosida regular-
ized optimization problem depends on the regularization parameterδ. Therefore, we formally
assume that the Moreau-Yosida regularization parameter tobe fixed in advance as done in
[15, 36].

The rest of the paper is organized as follows: in the next section, we introduce control
constrained optimal control problems governed by transient convection diffusion equation.
We apply the symmetric interior penalty Galerkin (SIPG) method for the diffusion and the
upwind discretization for the convection in order to discretize the optimization problem in
space. The primal-dual active set strategy as a semi-smoothNewton method is also introduced
to solve the optimality system. The error estimator of the primal-dual active set approach and
the reliability of the error estimator are derived in Section 3. The other approach to solve the
control constrained optimal control problem, the Moreau-Yosida regularization, is given in
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Section 4. Section 5 contains the numerical experiments to illustrate the performance of the
proposed error estimators.

2 Approximation schemes for the optimal control problem

In this section, we introduce the discontinuous Galerkin finite element discretization in space
and the backward Euler discretization in time for the approximations of the distributed linear-
quadratic optimal control problems governed by unsteady convection diffusion PDEs.

We adopt the standard notations for Sobolev spaces on computational domains and their
norms. Ω and ΩU are bounded open sets inR2 with Lipschitz boundaries∂Ω and ∂ΩU ,
respectively. Although adaptive finite element methods provide a real benefit on non-convex
domains, for example such with reentrant corners in practical applications, we assume that
Ω andΩU are convex polygons for simplicity. The inner products inL2(ΩU) andL2(Ω) are
denoted by(·, ·)U and(·, ·), respectively. Here,a > b means thata ≤ Cb for some positive
constantC. Further, we consider the Bochner spaces of functions mapping the time interval
(0,T) to a Bänsch spaceV in which the norm‖ · ‖V is defined. Forr ≥ 1, we define

Lr(0,T;V) = {z : [0,T]→V measurable :
∫ T

0
‖z(·)‖r

V dt < ∞}

with

‖z(·)‖Lr (0,T;V) =





(∫ T
0 ‖z(·)‖r

V dt
)1/r

, if 1 ≤ r < ∞,

ess sup
t∈(0,T]

‖z(·)‖V , if r = ∞.

In this paper, we shall take the state spaceW = L2(0,T;V) with V = H1
0(Ω), and the control

spaceX =L2(0,T;U)withU = L2(ΩU). We are interested in the following distributed optimal
control problem governed by a transient convection diffusion equation:

min
u∈Uad⊆X

J(y,u) :=
∫ T

0

(1
2
‖y− yd‖2

L2(Ω) +
α
2
‖u−ud‖2

L2(ΩU )

)
dt, (1)

subject to

∂ty− ε∆y+β ·∇y= f +Bu, x∈ Ω, t ∈ (0,T], (2a)

y(x, t) = 0, x∈ ∂Ω, t ∈ (0,T], (2b)

y(x,0) = y0(x), x∈ Ω, (2c)

where the closed convex admissible set of control constraints is given by

Uad = {u∈ X : ua ≤ u≤ ub, a.e. inΩU × (0,T]} (3)

with the constant bounds,ua ≤ ub. The functionud, called desired control, is a guideline for
the control, see, e.g., [7]. Note that this formulation alsoallows for the special (and most
common case)ud = 0, i.e. there is no a priori information on the optimal control. B is a

2



linear continuous operator from X toL2(0,T;V
′
) realizing the transition betweenΩU andΩ.

Generally,ΩU can be a subset ofΩ. In the special caseΩU = Ω, B= I is the identity operator
onL2(Ω).

We make the following assumptions for the functions and parameters in the optimal control
problem (1)-(3):

(i) The source functionf , the desired stateyd, and the desired controlud satisfy the following
regularity:

f ,yd ∈ L2(0,T;L2(Ω)) and ud ∈ L2(0,T;U).

(ii) The initial condition is defined asy0(x) ∈V = H1
0(Ω).

(iii) β denotes a velocity field. It belongs to(W1,∞(Ω))2 and satisfies the incompressibility
condition, i.e.∇ ·β = 0. The diffusion parameterε is also taken as 0< ε ≪ 1.

Using the assumptions defined above, the following result onregularity of the state solution
can be stated.

Proposition 2.1 ([24]) Under the assumptions defined above and for a given control u∈
L2(0,T;L2(ΩU)), the state y satisfies the following regularity condition

y∈ H1(0,T;L2(Ω))∩L2(0,T;H1
0(Ω))

and the weak formulation

(∂ty(u),v)+a(y,v) = ( f +Bu,v) ∀v∈V, (4)

y(x,0) = y0,

where the (bi)-linear forms are defined by

a(y,v) =
∫

Ω
(ε∇y ·∇v+β ·∇yv) dx, ( f ,v) =

∫
Ω

f v dx.

Then, the variational formulation corresponding to (1)-(3) can be written as

min
u∈Uad

J(y,u) :=
∫ T

0

(1
2
‖y− yd‖2

L2(Ω)+
α
2
‖u−ud‖2

L2(ΩU )

)
dt (5a)

subject to(∂ty,v)+a(y,v) = ( f +Bu,v) ∀v∈V, t ∈ (0,T], (5b)

y(x,0) = y0,

(y,u) ∈ H1(0,T;L2(Ω))∩W×Uad.

It can be derived by the standard techniques (see, e.g., [14]and [23] ) that the control problem
(5) has a unique solution(y,u), and that(y,u) is the solution of (5) if and only if there exists
an adjointp∈ H1(0,T;L2(Ω))∩W such that(y,u, p) satisfies the following optimality system
for t ∈ (0,T]

(∂ty,v)+a(y,v) = ( f +Bu,v) ∀v∈V, y(x,0) = y0, (6a)

−(∂ty,ψ)+a(ψ, p) = (y− yd,ψ) ∀ψ ∈V, p(x,T) = 0, (6b)∫ T

0
(α(u−ud)+B∗p,w−u)U dt ≥ 0 ∀w∈Uad, (6c)
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whereB∗ denotes the adjoint ofB. From the second equation (6b), we deduce that the adjoint
p satisfies the following transient convection diffusion equation:

−∂t p− ε∆p−β ·∇y= y− yd x∈ Ω, t ∈ (0,T], (7a)

p(x, t) = 0 x∈ ∂Ω, t ∈ (0,T], (7b)

p(x,T) = 0 x∈ Ω. (7c)

2.1 Discontinuous Galerkin (DG) scheme

In the following, we construct the discontinuous Galerkin finite element scheme for the state
equation (2).

Let{Th}h be a family of shape-regular simplicial triangulations ofΩ. Each meshTh consists
of closed triangles such thatΩ =

⋃
K∈Th

K holds. We assume that the mesh is regular in the
following sense: for different trianglesKi ,K j ∈ Th, i 6= j, the intersectionKi ∩K j is either
empty or a vertex or an edge, i.e., hanging nodes are not allowed. The diameter of an element
K and the length of an edgeE are denoted byhK andhE, respectively. Further, the maximum
value of the element diameter is denoted byh= max

K∈Th

hK .

We split the set of all edgesEh into the setE0
h of interior edges and the setE∂

h of boundary
edges so thatEh = E∂

h ∪E0
h . Let n denote the unit outward normal to∂Ω. The inflow and

outflow parts of∂Ω are denoted byΓ− andΓ+, respectively,

Γ− = {x∈ ∂Ω : β ·n(x)< 0} , Γ+ = {x∈ ∂Ω : β ·n(x)≥ 0} .

Similarly, the inflow and outflow boundaries of an elementK are defined by

∂K− = {x∈ ∂K : β ·nK(x)< 0} , ∂K+ = {x∈ ∂K : β ·nK(x)≥ 0} ,

wherenK is the unit normal vector on the boundary∂K of an elementK.
Let the edgeE be a common edge for two elementsK andKe. For a piecewise continuous

scalar functiony, there are two traces ofy alongE, denoted byy|E from insideK andye|E
from insideKe. The jump and average ofy across the edgeE are defined by:

[[y]] = y|EnK + ye|EnKe, {{y}}= 1
2

(
y|E + ye|E

)
. (8)

Similarly, for a piecewise continuous vector field∇y, the jump and average across an edge
E are given by

[[∇y]] = ∇y|E ·nK +∇ye|E ·nKe, {{∇y}}= 1
2

(
∇y|E +∇ye|E

)
. (9)

For a boundary edgeE ∈ K ∩Γ, we set{{∇y}} = ∇y and [[y]] = yn, wheren is the outward
normal unit vector onΓ.

We only consider discontinuous piecewise linear finite element spaces to define the discrete
spaces of the state and test functions

Vh =Wh =
{

y∈ L2(Ω) : y |K∈ P
1(K) ∀K ∈ Th

}
. (10)
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Remark 2.2 When the state equation (2) contains nonhomogeneous Dirichlet boundary con-
ditions, the space of discrete states Wh and the space of test functions Vh can still be taken to
be the same due to the weak treatment of boundary conditions in DG methods.

We now consider the discretization of the control variable.Let {T U
h }h be also a fam-

ily of shape-regular simplicial triangulations ofΩU such thatΩU =
⋃

KU∈T U
h

KU holds. For

K i
U ,K

j
U ∈ T U

h , i 6= j, the intersectionK i
U ∩K j

U is either empty or a vertex or an edge. The max-
imum diameter is defined byhU = max

KU∈T U
h

hKU , wherehKU denotes the diameter of an element

KU . The discrete space of the control variable associated with{T U
h }h is also a discontinuous

piecewise linear finite element space

Xh =
{

u∈ L2(ΩU) : u |KU∈ P
1(KU ) ∀KU ∈ T U

h

}
. (11)

We can now give the DG discretizations of the state equation (2) in space for a fixed control
u. The DG method proposed here is based on the upwind discretization of the convection term
and on the SIPG discretization of the diffusion term. Recallthat in discontinuous Galerkin
methods we do not explicitly impose continuity constraintson the trial and test functions
across the element interfaces. As a consequence, weak formulations include jump terms across
interfaces, and penalty terms are typically added to control the jump terms. We refer to [3, 30]
for a rigorous derivation of the following (bi-)linear forms applied toyh ∈ H1(0,T;Wh) for a
fixed controluh and∀t ∈ (0,T]:

(∂tyh,vh)+ah(yh,vh) = ( f +Buh,vh) ∀vh ∈Vh, (12)

where

ah(y,v) = ∑
K∈Th

∫

K

ε∇y ·∇v dx− ∑
E∈Eh

∫

E

(
{{ε∇y}} · [[v]]+ {{ε∇v}} · [[y]]

)
ds+ ∑

E∈Eh

σε
hE

∫

E

[[y]] · [[v]] ds

+ ∑
K∈Th

∫

K

β ·∇yv dx+ ∑
K∈Th

∫

∂K−\Γ

β ·n(ye− y)v ds− ∑
K∈Th

∫

∂K−∩Γ−

β ·nyv ds (13)

with the nonnegative real parameterσ being called the penalty parameter. We chooseσ to be
sufficiently large, independent of the mesh sizeh and the diffusion coefficientε to ensure the
stability of the DG discretization as described in [30, Sec.2.7.1].

2.2 Primal-dual active set (PDAS) strategy

We here explain our first approach to solve the control constrained optimal control problem
(1)-(3), called the primal-dual active set (PDAS) strategyintroduced in [5]. We first define the
semi-discrete approximation of the optimal control problem (5) as follows:

min
uh∈Uad

h

∫ T

0

(1
2 ∑

K∈Th

‖yh− yd‖2
L2(K)+

α
2 ∑

KU∈T U
h

‖uh−ud‖2
L2(KU )

)
dt, (14a)

subject to(∂tyh,vh)+ah(yh,vh) = ( f +Buh,vh) ∀vh ∈Vh, t ∈ (0,T],

yh(x,0) = y0
h(x), (14b)

(yh,uh) ∈ H1(0,T;Wh)×Uad
h ,
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where

Uad
h = {uh ∈ L2(0,T;Xh) : ua ≤ uh ≤ ub a.e. inΩU × (0,T]} (14c)

is a closed convex set inL2(0,T;Xh). For ease of exposition, we also assumeUad
h ⊂ Uad∩

L2(0,T;Xh).
Let J(·) be a continuous functional inL2(Ω). Then, there exists a least one solution for

the optimization problem (14) since the discrete statey(uh) can be bounded in the given norm
as shown in [1, 33]. Then, it follows that the control problem(14) has a unique solution
(yh,uh) ∈ H1(0,T;Wh)×Uad

h (see, e.g., [23]) and that a pair(yh,uh) is the solution of (14) if
and only if there is an adjointph ∈ H1(0,T;Wh) such that the triple(yh,uh, ph) satisfies the
following optimality system:

(∂tyh,vh)+ah(yh,vh) = ( f +Buh,vh) ∀vh ∈Vh, (15a)

yh(x,0) = y0
h,

−(∂t ph,ψh)+ah(ψh, ph) = (yh− yd,ψh) ∀ψh ∈Vh, (15b)

ph(x,T) = 0,∫ T

0
(α(uh+ud)+B∗ph,wh−uh)U dt ≥ 0 ∀wh ∈Uad

h . (15c)

We now consider the fully-discrete approximation for the optimal control problem (1)-(3)
using the standard backward Euler scheme in time and the discontinuous Galerkin discretiza-
tion in space.

Let NT be a positive integer. The discrete time intervalĪ = [0,T] is defined as

0= t0 < t1 < · · ·< tNT−1 < tNT = T

with sizekn = tn− tn−1 for n= 1, . . . ,NT andk= max
n=1,...,NT

kn.

Then, the fully-discrete approximation scheme of the semi-discrete problem (14) is

min
uh,n∈Uad

h,n

NT

∑
n=1

kn

(1
2 ∑

K∈Th

‖yh,n− yd
n‖2

L2(K)+
α
2 ∑

KU∈T U
h

‖uh,n−ud
n‖2

L2(KU )

)
, (16a)

subject to (
yh,n− yh,n−1

kn
,v

)
+ah(yh,n,v) = ( fn+Buh,n,v) ∀v∈Vh, (16b)

yh,0(x,0) = y0
h(x),

where

Uad
h,n = {uh,n ∈ Xh : ua ≤ uh,n ≤ ub a.e. inΩU} for n= 1,2, . . . ,NT . (16c)

The fully discretized minimization problem (16) has at least one solution due to the bound-
edness of the solution as shown in [1, Lemma 6]. Then, the fully discretized control prob-
lem (16) has a unique solution(Yh,n,Uh,n) ∈Wh×Uad

h , n= 1,2, . . . ,NT , and(Yh,n,Uh,n), n=
1,2, . . . ,NT is the solution of (16) if and only if there is an adjointPh,n−1 ∈Vh, i = 1,2, . . . ,NT ,
and such that(Yh,n,Uh,n,Ph,n−1) ∈Wh×Uad

h ×Vh satisfies the following optimality system:
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(
Yh,n−Yh,n−1

kn
,v

)
+ah(Yh,n,v) = ( fn+BUh,n,v) ∀v∈Vh, (17a)

Yh,0 = y0
h n= 1,2, . . . ,NT ,(

Ph,n−1−Ph,n

kn
,q

)
+ah(q,Ph,n−1) = (Yh,n− yd

n,q) ∀q∈Vh, (17b)

Ph,T = 0 n= NT , . . . ,2,1,(
α(Uh,n−ud

n)+B∗Ph,n−1,w−Uh,n

)
U
≥ 0 ∀w∈Uad

h,n, n= 1,2, . . . ,NT . (17c)

By following the strategy introduced in [26], we define forn= 1,2, . . . ,NT

Yh|(tn−1,tn] = ((tn− t)Yh,n−1+(t − tn−1)Yh,n)/ki , (18a)

Ph|(tn−1,tn] = ((tn− t)Ph,n−1+(t− tn−1)Ph,n)/ki , (18b)

Uh|(tn−1,tn] = Uh,n. (18c)

Let ŵ(x, t)|t∈(tn−1,tn]=w(x, tn) andw̃(x, t)|t∈(tn−1,tn]=w(x, tn−1) for any functionw∈C(0,T;L2(Ω)).
Then, the optimality system (17) can be restated as

(
∂Yh

∂t
,v

)
+ah(Ŷh,v) = ( f̂ +BUh,v) ∀v∈Vh, (19a)

Yh(x,0) = y0
h(x) n= 1,2, . . . ,NT ,

−
(

∂Ph

∂t
,q

)
+ah(q, P̃h) = (Ŷh− ŷd,q) ∀q∈Vh, (19b)

Ph(x,T) = 0 n= NT , . . . ,2,1,(
α(Uh− ûd)+B∗P̃h,w−Uh

)
U
≥ 0 ∀w∈Uad

h,n, n= 1,2, . . . ,NT . (19c)

We solve the optimality system (17) by using the primal-dualactive set (PDAS) algorithm
as a semi-smooth Newton method [5]. To use this approach, we first need to define the active
sets

An
− = {x∈ Ω : −Ph,n−1−α

(
ua−ud

n

)
< 0},

An
+ = {x∈ Ω : −Ph,n−1−α

(
ub−ud

n

)
> 0},

and the inactive setI n = Ω\
(
An
− ∪An

+

)
for each time steptn. For n = 1,2, . . . ,NT , the dis-

cretized optimality system (17) is equivalent to

(M + knK )Yn−M Yn−1 = ℓ( fn)+M Un, (20a)
(
knK T +M

)
Pn−1−M Pn = M Yn− ℓ(yd

n), (20b)

αM Un−αχI nℓ(ud
n)+M χI n−1Pn−1 = αM

(
χAn

−ua+χAn
+
ub

)
, (20c)

whereK is the stiffness matrix corresponding toah(·, ·) andM is the mass matrix.χAn
− , χAn

+
,

andχI n denote the characteristic functions ofAn
−, An

+, andI n, respectively. Further,ℓ(z) =∫
Ω zv dxwith v ∈ Vh. By considering all time steps, we then apply the active set algorithm

described in Algorithm 1 for the iteration numberk.
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Algorithm 1 Active set algorithm

Choose initial values fory(0),u(0), andp(0).

Set the active setsA(0)
− , A

(0)
+ and inactive setI (0).

for k= 1,2, . . . do
Solve (20) and update active setsA

(k)
− , A

(k)
+ and inactive setI (k) for all time steps.

if A
(k)
− = A

(k+1)
− , A

(k)
+ = A

(k+1)
+ , andI (k) = I (k+1) then

STOP
end if

end for

3 A posteriori error estimates

We here analyse the a posteriori error estimates of the optimal control problem governed by
transient convection diffusion equations discretized by the discontinuous Galerkin scheme in
space and the backward Euler scheme in time. In general, a posteriori error analysis of the
unsteady optimal control problems is more complicated thanthe ones of the steady optimal
control problems due to the fact that the properties of the time variable and its discretization
are quite different from those of the space variables. Thus,different approaches are needed to
handle the two groups of variables, and their interactions.

To derive a sharp estimator for the control, we divideΩU for each timen= 1,2, . . . ,NT as
follows:

Ωn,a
U = {x∈ ΩU : (B∗Ph)(x, tn−1)> α(ud(x, tn)−ua), Uh,n = ua},

Ωn,a+
U = {x∈ ΩU : (B∗Ph)(x, tn−1)> α(ud(x, tn)−ua), Uh,n > ua},
Ωn,b

U = {x∈ ΩU : (B∗Ph)(x, tn−1)< α(ud(x, tn)−ub), Uh,n = ub}, (21)

Ωn,b−
U = {x∈ ΩU : (B∗Ph)(x, tn−1)< α(ud(x, tn)−ub), Uh,n < ub},
Ωn,0

U = {x∈ ΩU : α(ud(x, tn)−ub)≤ (B∗Ph)(x, tn−1)≤ α(ud(x, tn)−ua)}.

It is assumed that the intersection of the above sets is empty, i.e.,Ωn,i
U ∩Ωn, j

U = /0 for i 6= j, i, j ∈
{0,a,a+,b,b−} and

ΩU(tn) = Ωn,0
U (tn)∪Ωn,a

U (tn)∪Ωn,a+
U (tn)∪Ωn,b

U (tn)∪Ωn,b−
U (tn).

To ease the notation, we define

Ωn,∗
U = Ωn,0

U ∪Ωn,a+
U ∪Ωn,b−

U .

In the following lemma, we derive an estimate of the control variable in the optimization
problem (1)-(3) by making a connection with the adjoint variable.

Lemma 3.1 Let (y,u, p) and(Yh,Uh,Ph) be the solutions of (6) and (17), respectively. Then,
we have the following estimate

‖u−Uh‖2
L2(0,T;L2(ΩU )) ≤C

(
η2

u+ ‖P̃h− p(Uh)‖2
L2(0,T;L2(Ω))

)
, (22)
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where

ηu =
NT

∑
n=1

tn∫

tn−1

∫
Ωn,∗

U

(
α(Uh− ûd)+B∗P̃h

)
dx dt+ ‖α(ud − ûd)‖2

L2(0,T;L2(ΩU )), (23)

and the auxiliary solutions, i.e., y(Uh), p(Uh) ∈ H1(0,T;L2(Ω))∩W, are defined as follows:

(
∂
∂t

y(Uh),w

)
+a(y(Uh),w) = ( f +BUh,w), ∀w∈V, (24a)

y(Uh)(x, t)|∂Ω = 0, y(Uh)(x,0) = y0(x), x∈ Ω,

−
(

∂
∂t

p(Uh),q

)
+a(q, p(Uh)) = (y(Uh)− yd,q), ∀q∈V, (24b)

p(Uh)(x, t)|∂Ω = 0, p(Uh)(x,T) = 0, x∈ Ω.

Proof. The inequality (6c) gives us

α‖u−Uh‖2
L2(0,T;L2(ΩU )) =

∫ T

0
(αu,u−Uh)U dt−

∫ T

0
(αUh,u−Uh)U dt

≤
∫ T

0
(αud −B∗p,u−Uh)U dt−

∫ T

0
(αUh,u−Uh)U dt

=
∫ T

0

(
α(Uh− ûd)+B∗P̃h,Uh−u

)
U dt

︸ ︷︷ ︸
M1

+
∫ T

0

(
α(ud − ûd),u−Uh

)
U dt

︸ ︷︷ ︸
M2

+

∫ T

0

(
B∗(P̃h− p(Uh)),u−Uh

)
U dt

︸ ︷︷ ︸
M3

+

∫ T

0

(
B∗(p(Uh)− p),u−Uh

)
U dt

︸ ︷︷ ︸
M4

.

(25)

We first derive an estimate ofM1 for anyt ∈ (ti−1, ti ],

(
α(Uh− ûd)+B∗P̃h,Uh−u

)
U =

∫
Ωn,∗

U

(
α(Uh− ûd)+B∗P̃h

)(
Uh−u

)
dx

+

∫
Ωn,a

U ∪Ωn,b
U

(
α(Uh− ûd)+B∗P̃h

)(
Uh−u

)
dx. (26)

By the definitions ofΩn,a
U andΩn,b

U in (21), we have

∫
Ωn,a

U ∪Ωn,b
U

(
α(Uh− ûd)+B∗P̃h

)
)
(
Uh−u

)
dx

=

∫
Ωn,a

U

(
α(ua− ûd)+B∗P̃h

)
︸ ︷︷ ︸

>0

(
ua−u

)
︸ ︷︷ ︸

≤0

dx+
∫

Ωn,b
U

(
α(ub− ûd)+B∗P̃h

)
︸ ︷︷ ︸

<0

(
ub−u

)
︸ ︷︷ ︸

≥0

dx

≤ 0.
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Then, with the help of Young’s inequality, we

M1 =

∫ T

0

(
α(Uh− ûd)+B∗P̃h,Uh−u

)
Ωn,∗

U
dt

>

NT

∑
n=1

tn∫

tn−1

‖
(
α(Uh− ûd)+B∗P̃h

)
‖2

L2(Ωn,∗
U )

dt+
NT

∑
n=1

tn∫

tn−1

‖u−Uh‖2
L2(Ωn,∗

U )
dt

> η2
u+ ‖u−Uh‖2

L2(0,T;L2(ΩU )). (27)

Next, we estimateM2 andM3 by invoking again Young’s inequality

M2 =

∫ T

0

(
α(ud − ûd),u−Uh

)
U dt

> ‖α(ud − ûd)‖2
L2(0,T;L2(ΩU ))+ ‖u−Uh‖2

L2(0,T;L2(ΩU )), (28)

M3 =
∫ T

0
(B∗(P̃h− p(Uh)),u−Uh)U dt

>

∫ T

0
‖B∗(P̃h− p(Uh))‖2

L2(ΩU ) dt+
∫ T

0
‖u−Uh‖2

L2(ΩU ) dt

> ‖P̃h− p(Uh)‖2
L2(0,T;L2(Ω))+ ‖u−Uh‖2

L2(0,T;L2(ΩU )). (29)

Finally, the auxiliary equations in (24) yield

M4 =

∫ T

0

(
p(Uh)− p,B(u−Uh)

)
U dt

=

∫ T

0

(
∂t(y− y(Uh)), p(Uh)− p

)
dt+

∫ T

0

(
a(y− y(Uh), p(Uh)− p)

)
dt

=
∫ T

0

(
∂t(y− y(Uh)), p(Uh)− p

)
dt+

∫ T

0

(
∂t(p(Uh)− p),y− y(Uh)

)
dt

+

∫ T

0

(
y(Uh)− y,y− y(Uh)

)
dt.

Application of integration by parts on time derivatives by using the fact
(
y− y(Uh)

)
|t=0 = 0

and
(
p(Uh)− p

)
|t=T = 0 yields

M4 =
∫ T

0

(
y(Uh)− y,y− y(Uh)

)
dt ≤ 0. (30)

By inserting the estimates (27-30) ofM1−M4 into (25), we obtain the desired result. �
Before deriving error estimates for the state and adjoint equations, we need the following

result for the Lagrange interpolation operatorΠh, and the trace inequality.

Lemma 3.2 ([6]) LetΠh be the standard Lagrange interpolation operator. For m= 0,1, q> 1
and v∈W2,q(Ω), there exists a positive constant C such that

|v−Πhv|Wm,q(Ω) ≤Ch2−m|v|W2,q(Ω).
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Lemma 3.3 ([21]) For all v ∈W1,q(Ω), 1≤ q< ∞,

‖v‖W0,q(∂K) ≤C
(

h−1/q
K ‖v‖W0,q(K)+h1−1/q

K |v|W1,q(K)

)
.

We have the following inequalities, derived in [2],

‖v‖2
L2(E) ≤Ch−1

E ‖v‖2
L2(K), ‖nE ·∇v‖2

L2(E) ≤Ch−1
E ‖∇v‖2

L2(K), (31)

where the constantC depends on the shape regularity of the mesh. Then, the above inequalities
yield the following estimation

∑
E∈Eh

|hE|‖{{∇v}}‖2
L2(E) ≤C ∑

K∈Th

‖∇v‖2
L2(K), ∀v∈Vh. (32)

We finally define the following stability results derived in [19] for convection diffusion equa-
tions.

Lemma 3.4 ([19]) Assume thatΩ is a convex domain. Letφ and ψ be the solutions of the
dual problems (33) and (34), respectively. Then, for given F∈ L2(0,T;L2(Ω))

‖v‖L∞(0,T;L2(Ω)) > ‖F‖L2(0,T;L2(Ω)),

‖∇v‖L2(0,T;L2(Ω)) > ‖F‖L2(0,T;L2(Ω)),

‖∆v‖L2(0,T;L2(Ω)) > ‖F‖L2(0,T;L2(Ω)),

‖vt‖L2(0,T;L2(Ω)) > ‖F‖L2(0,T;L2(Ω)),

where v∈ {φ,ψ} satifies

φt − ε∆φ+β ·∇φ= F, (x, t) ∈ Ω× (0,T],

φ(x, t) = 0, (x, t) ∈ ∂Ω× [0,T], (33)

φ(x,0) = 0, x∈ Ω.

or
−ψt − ε∆ψ−β ·∇ψ= F, (x, t) ∈ Ω× (0,T],

ψ(x, t) = 0, (x, t) ∈ ∂Ω× [0,T], (34)

ψ(x,0) = 0, x∈ Ω.

Now, we turn to estimate the error‖Ph− p(Uh)‖2
L2(0,T;L2(Ω))

.

Lemma 3.5 Let (y,u, p) and (Yh,Uh,Ph) be the solutions of (6) and (17), respectively. The
auxiliary solutions y(Uh) and p(Uh) are defined by the system (24). Assume thatΩ is a convex
domain, then,

‖Ph− p(Uh)‖2
L2(0,T;L2(Ω)) > ‖Yh− y(Uh)‖2

L2(0,T;L2(Ω))+
7

∑
i=1

η2
i ,

where

11



η2
1 =

∫ T

0
∑

K∈Th

h4
K

∫
K

(
Ŷh− ŷd+

∂Ph

∂t
+ ε∆P̃h+βh ·∇P̃h

)2

dx dt,

η2
2 =

∫ T

0
∑

E∈Eh

h3
E

∫
E

[[
ε∇P̃h

]]2
ds dt,

η2
3 = ‖Yh− Ŷh‖2

L2(0,T;L2(Ω))+ ‖ŷd− yd‖2
L2(0,T;L2(Ω)),

η2
4 =

∫ T

0
∑

E∈Eh

hE

∫
E

[[
P̃h

]]2
ds dt,

η2
5 =

∫ T

0

∫
Ω

(
|ε∇(Ph− P̃h)|2+ |β ·∇(Ph− P̃h)|2

)
dx dt,

η2
6 =

∫ T

0
∑

K∈Th

∫

∂K+\Γ

h3
E

(
β ·nE

[[
P̃h

]])2
ds dt+

∫ T

0
∑

K∈Th

∫

∂K+∩Γ+

h3
E

(
β ·nEP̃h

)2
ds dt,

η2
7 =

∫ T

0
∑

E∈Eh

h3
E

∫
E

[[
β(Ph− P̃h)

]]2
ds dt.

Proof. Let φ be solution of (33) withF = Ph− p(Uh). Let φI = Πhφ be the Lagrange interpo-
lation of φ defined as in Lemma 3.2. Then, by using the adjoint equation (19b), the auxiliary
equation (24), and the dual problem (33), we obtain

‖Ph− p(Uh)‖2
L2(0,T;L2(Ω)) =

∫ T

0
(Ph− p(Uh),F) dt

=

∫ T

0
(Ph− p(Uh),φt − ε∆φ+β ·∇φ) dt

=
∫ T

0

(
−
( ∂

∂t
(Ph− p(Uh)),φ

)
+a(φ,Ph− p(Uh))

)
dt

=

∫ T

0

(
−
( ∂

∂t
(Ph− p(Uh)),φ−φI

)
+a(φ−φI , P̃h− p(Uh))

)
dt

+

∫ T

0

(
−
( ∂

∂t
(Ph− p(Uh)),φI

)
+a(φI , P̃h− p(Uh))+a(φ,Ph− P̃h)

)
dt

=
∫ T

0

((
− ∂Ph

∂t
− y(Uh)+ yd,φ−φI

)
+a(φ, P̃h)

)
dt

+
∫ T

0

(
−ah(φI , P̃h)+ (Ŷh− ŷd,φI )− (y(Uh)− yd,φI )+a(φ,Ph− P̃h)

)
dt.

Integrating by parts, we obtain

‖Ph− p(Uh)‖2
L2(0,T;L2(Ω)) =

∫ T

0

(
−∂Ph

∂t
− ε∆P̃h−β ·∇P̃h− Ŷh+ ŷd,φ−φI

)
dt

︸ ︷︷ ︸
I1
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+

∫ T

0
∑

K∈Th

∫
∂K
(ε∇P̃h ·n)(φ−φI ) ds dt

︸ ︷︷ ︸
I2

+

∫ T

0

(
Ŷh− y(Uh)+ yd − ŷd,φ

)
dt

︸ ︷︷ ︸
I3

+
∫ T

0
∑

E∈Eh

∫

E

({{
ε∇P̃h

}}
· [[φI ]]+ {{ε∇φI}} ·

[[
P̃h

]])
ds dt

︸ ︷︷ ︸
I4

−
∫ T

0
∑

E∈Eh

εσ
hE

∫

E

[[
P̃h

]]
[[φI ]] ds dt

︸ ︷︷ ︸
I5

+

∫ T

0

∫
Ω

(
ε∇(Ph− P̃h)∇φ−β ·∇(Ph− P̃h)φ

)
dx dt

︸ ︷︷ ︸
I6

+

∫ T

0

(
∑

K∈Th

∫

∂K+\Γ

β ·n(P̃h− P̃e
h)φI ds+ ∑

K∈Th

∫

∂K+∩Γ+

β ·nP̃hφI ds
)

dt

︸ ︷︷ ︸
I7

+

∫ T

0
∑

K∈Th

∫
∂K
(β ·n)(Ph− P̃h)φ ds dt

︸ ︷︷ ︸
I8

. (35)

We now estimate the terms on the right-hand side of (35) term by term. To estimate the first
term in the right-hand side of (35), we use Lemma 3.2 and Lemma3.4 such that

I1 >

∫ T

0
∑

K∈Th

h4
K

∫
K

(
Ŷh− ŷd +

∂Ph

∂t
+ ε∆P̃h+β ·∇P̃h

)2

dx dt+
∫ T

0
|φ|2H2(Ω) dt

> η2
1+ ‖Ph− p(Uh)‖2

L2(0,T;L2(Ω)). (36)

Next, if we rewrite the termI2 in terms of the jump of∇P̃h and use the Lemmas 3.2-3.4, we
obtain

I2 =

∫ T

0
∑

E∈Eh

∫
E

[[
ε∇P̃h

]]
(Φ−ΦI ) ds dt

>

∫ T

0
∑

E∈Eh

h3
E

∫
E

[[
ε∇P̃h

]]2
ds dt+

∫ T

0
|φ|2H2(Ω) dt

> η2
2+ ‖Ph− p(Uh)‖2

L2(0,T;L2(Ω)). (37)

Then, Lemma 3.4, Young’s and the triangle inequalities giveus

I3 > ‖Ŷh− y(Uh)‖2
L2(0,T;L2(Ω))+ ‖ŷd− yd‖2

L2(0,T;L2(Ω))+ ‖φ‖2
L2(0,T;L2(Ω))

> η2
3+ ‖Yh− y(Uh)‖2

L2(0,T;L2(Ω))+ ‖Ph− p(Uh)‖2
L2(0,T;L2(Ω)). (38)

Similarly, using Young’s inequality, Lemma 3.3, Lemma 3.4 and the inequality in (32), we
obtain
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I4 > η2
2+η2

4+ ‖Ph− p(Uh)‖2
L2(0,T;L2(Ω)), (39)

I5 > η2
4+ ‖Ph− p(Uh)‖2

L2(0,T;L2(Ω)), (40)

I6 >

∫ T

0

∫
Ω

(
|ε∇(Ph− P̃h)|2+ |β ·∇(Ph− P̃h)|2

)
dx dt+

∫ T

0

(
‖∇φ‖2

L2(Ω)+ ‖φ‖2
L2(Ω)

)
dt

> η2
5+ ‖Ph− p(Uh)‖2

L2(0,T;L2(Ω)), (41)

I7 > η2
6+ ‖Ph− p(Uh)‖2

L2(0,T;L2(Ω)). (42)

Finally, rewriting the termI8 in terms of the jump operator and using Lemma 3.3 and Lemma 3.4,
we have

I8 > η2
7+ ‖Ph− p(Uh)‖2

L2(0,T;L2(Ω))
. (43)

Inserting (36-43) into (35), the desired result is obtained. �

Now, we need to estimate‖Yh− y(Uh)‖L2(0,T;L2(Ω)).

Lemma 3.6 Let (y,u, p) and (Yh,Uh,Ph) be the solutions of (6) and (17), respectively. The
auxiliary solutions y(Uh) and p(Uh) are defined by the system (24). Assume thatΩ is a convex
domain, then,

‖Yh− y(Uh)‖2
L2(0,T;L2(Ω)) >

14

∑
i=8

η2
i ,

where

η2
8 =

∫ T

0
∑

K∈Th

h4
K

∫
K

(
f̂h−BUh−

∂Yh

∂t
+ ε∆Ŷh−βh ·∇Ŷh

)2

dx dt,

η2
9 =

∫ T

0
∑

E∈Eh

h3
E

∫
E

[[
ε∇Ŷh

]]2
ds dt,

η2
10 =

∫ T

0
∑

E∈Eh

hE

∫
E

[[
Ŷh

]]2
ds dt,

η2
11 =

∫ T

0
∑

K∈Th

∫

∂K−\Γ

h3
E

(
β ·nE

[[
Ŷh

]])2
ds dt+

∫ T

0
∑

K∈Th

∫

∂K−∩Γ−

h3
E

(
β ·nEŶh

)2
ds dt,

η2
12 = ‖ f̂ − f‖2

L2(0,T;L2(Ω))+ ‖P̃h−Ph‖2
L2(0,T;L2(Ω)),

η2
13 =

∫ T

0

∫
Ω

(
|ε∇(Yh− Ŷh)|2+ |β ·∇(Yh− Ŷh)|2

)
dx dt,

η2
14 = ‖Yh(x,0)− y0(x)‖2

L2(Ω)
.

Proof. Similar as before, letψ be the solution of (34) withF = Yh− y(Uh). Let ψI = Πhψ
be the Lagrange interpolation ofψ defined as in Lemma 3.2. Then, we conclude from (19a),
(24), and (34), that

‖Yh− y(Uh)‖2
L2(0,T;L2(Ω)) =

∫ T

0
(Yh− y(Uh),F) dt

=
∫ T

0
(Yh− y(Uh),−ψt − ε∆ψ−β ·∇ψ) dt
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=
∫ T

0

(
∂Yh

∂t
− ε∆Ŷh+β ·∇Ŷh− f̂h−BUh,ψ−ψI

)
dt+

∫ T

0
∑

K∈Th

∫
K

(
ε∇Ŷh ·n

)
(ψ−ψI ) ds dt

−
∫ T

0
∑

E∈Eh

εσ
hE

∫

E

[[
Ŷh

]]
[[ψI ]] ds dt+

∫ T

0
∑

E∈Eh

∫

E

(
{{ε∇ψI}} ·

[[
Ŷh

]]
+
{{

ε∇Ŷh

}}
· [[ψI ]]

)
ds dt

−
∫ T

0
∑

K∈Th

∫

∂K−\Γ

(β ·n)(Ŷe
h − Ŷh)ψI ds dt+

∫ T

0
∑

K∈Th

∫

∂K−∩Γ−

(β ·n)ŶhψI ds dt

+
∫ T

0
( f̂h− f ,ψ) dt+

∫ T

0
a(Yh− Ŷh,ψ) dt+

(
(Yh− y(Uh))(x,0),ψ(x,0)

)
. (44)

Applying the same arguments as in (36-43), the desired result is obtained. �

From Lemma 3.1, 3.5 and 3.6, we have the following a posteriori error estimate.

Theorem 3.7 Let (y,u, p) and(Yh,Uh,Ph) be the solutions of (6) and (17), respectively. The
auxiliary solutions y(Uh) and p(Uh) are defined by the system (24). Assume thatΩ is a convex
domain, then,

‖u−Uh‖2
L2(0,T;L2(ΩU ))+ ‖y−Yh‖2

L2(0,T;L2(Ω))+ ‖p−Ph‖2
L2(0,T;L2(Ω)) > η2

u+
14

∑
i=1

η2
i .

Proof. It follows from (6) and (24) that

‖y(Uh)− y‖2
L2(0,T;L2(Ω)) > ‖u−Uh‖2

L2(0,T;L2(ΩU )), (45a)

‖p(Uh)− p‖2
L2(0,T;L2(Ω)) > ‖y(Uh)− y‖2

L2(0,T;L2(Ω)). (45b)

Lemma 3.1, 3.5 and 3.6 yield

‖u−Uh‖2
L2(0,T;L2(ΩU )) > η2

u+ ‖P̃h− p(Uh)‖2
L2(0,T;L2(Ω))

> η2
u+ ‖P̃h−Ph‖2

L2(0,T;L2(Ω))+ ‖Ph− p(Uh)‖2
L2(0,T;L2(Ω))

> η2
u+

14

∑
i=1

η2
i . (46)

Then, the desired result is obtained by applying the triangle inequality and using the inequali-
ties (45)-(46) with Lemmas 3.1, 3.5 and 3.6. �

4 Moreau-Yosida regularization

The Moreau-Yosida regularization is a popular technique for the optimal control problems
with state constraints. Some recent progress in this area has been summarised in [15, 16,
20, 36], and the references cited therein. However, it also provides challenges for the control
constrained case, see, e.g., [28, 32].
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We penalize the control constraint, i.e.ua ≤ u≤ ub, with a Moreau-Yosida-based regular-
ization by modifying the objective functionalJ(y,u) in (1). Now, we wish to minimize

J(y,u)+
1
2δ

∫ T

0

(
‖max{0,u−ub}‖2

L2(Ω)+ ‖min{0,u−ua}‖2
L2(Ω)

)
dt (47)

subject to the state system (2). Here,δ is the Moreau-Yosida regularization parameter. The
min- and max-expressions in the regularized objective functional arises from regularizing the
indicator function corresponding to the set of admissible controls.

The unconstrained optimal control problem (47) has a uniquesolution(y,u) ∈W×X if and
only if there is an adjointp∈W such that(y,u, p) satisfies the following system fort ∈ (0,T]

(∂ty,v)+a(y,v) = ( f +Bu,v) ∀v∈V, (48a)

y(x,0) = y0,

−(∂ty,ψ)+a(ψ, p) = (y− yd,ψ) ∀ψ ∈V, (48b)

p(x,T) = 0,∫ T

0
(α(u−ud)+B∗p+σ,w−u)U dt = 0 ∀w∈U, (48c)

where the multiplier corresponding to the control constraint is

σ =
1
δ

(
max{0,u−ub}+min{0,u−ua}

)
.

Then, the fully discretized optimality system of the regularized optimal control problem
(47) is written as(

Yh,n−Yh,n−1

kn
,v

)
+ah(Yh,n,v) = ( fn+BUh,n,v) ∀v∈Vh, (49a)

Yh,0 = y0
h n= 1,2, . . . ,NT ,(

Ph,n−1−Ph,n

kn
,q

)
+ah(q,Ph,n−1) = (Yh,n− yd

n,q) ∀q∈Vh, (49b)

Ph,T = 0 n= NT , . . . ,2,1,(
α(Uh,n−ud

n)+B∗Ph,n−1+σh,n,w−Uh,n

)
U
= 0 ∀w∈ Xh, n= 1,2, . . . ,NT . (49c)

where

σh,n =
1
δ

(
max{0,Uh,n−ub}+min{0,Uh,n−ua}

)
.

As in the previous section, we restate the optimality system(49) as follows:
(

∂Yh

∂t
,v

)
+ah(Ŷh,v) = ( f̂h+BUh,v) ∀v∈Vh, (50a)

Yh(x,0) = y0
h(x) n= 1,2, . . . ,NT ,(

∂Ph

∂t
,q

)
+ah(q, P̃h) = (Ŷh− ŷd,q) ∀q∈Vh, (50b)

Ph(x,T) = 0 n= NT , . . . ,2,1,(
α(Uh− ûd)+B∗P̃h+ σ̂h,w−Uh

)
U
= 0 ∀w∈ Xh, n= 1,2, . . . ,NT , (50c)
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whereσ̂h =
1
δ

(
max{0,Uh−ub}+min{0,Uh−ua}

)
.

The optimality system (49) of the Moreau-Yosida approach leads to the following linear
system forn= 1, . . . ,NT

(M + knK )Yn−M Yn−1 = ℓ( fn)+M Un,(
knK T +M

)
Pn−1−M Pn = M Yn− ℓ(yd

n), (51a)
(

αM +
1
δ

χAnM χAn

)
Un−αℓ(ud

n)+M Pn−1 =
1
δ

(
χAa

n
M χAa

n
ua+χAb

n
M χAb

n
ua

)
,

where

Aa
n = {x∈ Ω : u−ua < 0}, Ab

n = {x∈ Ω : u−ub > 0}, and An = Aa
n ∪Ab

n.

Similarly, we now derive an a posteriori error estimate for the Moreau-Yosida regularized
optimization problem (47).

Lemma 4.1 Let (y,u, p) and(Yh,Uh,Ph) be the solutions of (48) and (49), respectively. Then,
we have the following estimate

‖u−Uh‖2
L2(0,T;L2(ΩU )) ≤C

(
(ηM

u )2+ ‖P̃h− p(Uh)‖2
L2(0,T;L2(Ω))

)
, (52)

where

ηM
u =

NT

∑
n=1

tn∫

tn−1

∫
ΩU

(
α(Uh− ûd)+B∗P̃h+

1
δ
(
χAa

n
(Uh−ua)+χAb

n
(Uh−ub)

))
dt

+‖α(ud − ûd)‖2
L2(0,T;L2(ΩU )) (53)

and the auxiliary functions, i.e., y(Uh) and p(Uh), are defined as in (24).

Proof. By using the inequalities (48c), (49c) and (50c), we obtain

α‖u−Uh‖2
L2(0,T;L2(ΩU )) =

∫ T

0

(
αud −B∗p−σ,u−Uh

)
U dt−

∫ T

0
(αUh,u−Uh)U dt

=

∫ T

0

(
α(Uh− ûd)+B∗P̃h+ σ̂h,Uh−u

)
U dt

︸ ︷︷ ︸
M1

+

∫ T

0
(σ̂h−σ,u−Uh)U dt

︸ ︷︷ ︸
M2

+

∫ T

0

(
B∗(P̃h− p(Uh)),u−Uh

)
U dt

︸ ︷︷ ︸
M3

+

∫ T

0

(
B∗(p(Uh)− p),u−Uh

)
U dt

︸ ︷︷ ︸
M4

+

∫ T

0

(
α(ud − ûd),u−Uh

)
U dt

︸ ︷︷ ︸
M5

. (54)
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We only derive a bound forM2 in detail, since the estimation of the other terms is similarto
the procedure in Lemma 3.1. Recall that the following inequalities

‖min{0,a}−min{0,b}||L2(Ω) ≤ ‖a−b‖L2(Ω),

‖max{0,a}−max{0,b}||L2(Ω) ≤ ‖a−b‖L2(Ω)

hold. We here assume that the regularization parameterδ is fixed as done in [15, 36], then we
obtain

M2 =

∫ T

0

1
δ
(

max{0,Uh−ub}−max{0,u−ub},u−Uh
)

dt

+
∫ T

0

1
δ
(

min{0,Uh−ua}−min{0,u−ua},u−Uh
)

dt

>
1
δ
‖u−Uh‖2

L2(0,T;L2(ΩU )). (55)

�

Similarly, we have the following a posteriori error estimate for the regularized optimization
problem (47) from Lemma 4.1, 3.5 and 3.6.

Theorem 4.2 Let (y,u, p) and(Yh,Uh,Ph) be the solutions of (6) and (17), respectively. The
auxiliary solutions y(Uh) and p(Uh) are defined in the system (24). Assume thatΩ is a convex
domain, then,

‖u−Uh‖2
L2(0,T;L2(ΩU ))+ ‖y−Yh‖2

L2(0,T;L2(Ω))+ ‖p−Ph‖2
L2(0,T;L2(Ω)) > (ηM

u )2+
14

∑
i=1

η2
i .

5 Numerical Implementation

In this section, we present numerical results to demonstrate the performance of the estimators
proposed in Sections 3 and 4. The state, the adjoint, and the control variables are discretized
by using piecewise linear polynomials, i.e.,(x,y,1− x− y). The initial guess for the control
variable is equal to zero for all discretization levels in Algorithm 1. The penalty parameter
within SIPG is chosen asσ = 6 on the interior edges and 12 on the boundary edges as in [30].
The Moreau-Yosida regularization parameterδ is equal to 10−6. We use uniform time steps
and time-step size isk= 1/50. Further, we takeΩ = ΩU andB= I . Our adaptive strategy can
be briefly described as follows:

Adaptive Algorithm

(Input) Given an initial mesh partitionTh, refinement parameterθ, a tolerance parameterTol.

Step 1. (Solve) Solve the optimality system (20) obtained by the primal-dual active set (PDAS)
algorithm on the current mesh or the optimality system (51) obtained by applying the
Moreau-Yosida regularization.

Step 2. (Estimate) Calculate the local error indicators on each elementK and then sum them
over the whole space-time domain.
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Step 3. (Mark) The edges and elements for the refinement are specified by using the a pos-
teriori error indicator and by choosing subsetsMK ⊂ Th such that the following bulk
criterion is satisfied for the given marking parameterθ:

θ ∑
K∈Th

(ηK)
2 ≤ ∑

K∈MK

(ηK)
2.

Step 4. (Refine) The marked elements are refined by longest edge bisection, where the ele-
ments of the marked edges are refined by bisection.

Step 5. Return to Step 1 on the new mesh to update the solutions, untilthe error estimators
are less than the given tolerance valueTol.

5.1 Example 1

We first consider the following transport of a rotating Gaussian pulse example given in [13]
with only lower bound, i.e.,ua = 0. Fu et al. use this example in their analysis of the norm-
residual based estimator in combination with a characteristic finite element approximation.
The problem data are given by

Ω = [−0.5,0.5]2, T = 1, ε = 10−4, β = (−x2,x1)
T , and ω = 1.

The corresponding analytical solutions are given by

y(x, t) =
2σ2

0

2σ2
0+4tε

exp

(
− (x̄1− x0)

2+(x̄2− y0)
2

2σ2
0+4tε

)
,

p(x, t) = 0,

z(x, t) =

{
1/2, x1+ x2 > 0,
0, x1+ x2 ≤ 0,

ud(x, t) = sin(πt/2)sin(pix1)sin(pix2)+ z,

u(x, t) = max
(

0,ud −
p
α

)
,

where the center(x0,y0), the standard deviationσ2
0 = 0.0447, and ¯x1 = x1cos(t)+ x2 sin(t),

x̄2 = x2cos(t)− x1sin(t). The sourcef and the desired state functions are taken asf = −u
andyd = y, respectively.

The optimal control problem exhibits a strong jump (discontinuity) introduced by the de-
sired controlud(x, t). Figure 1 shows that a high density of vertices are distributed along
x1+ x2 = 0. By using the a posteriori error indicatorsηu (23) orηM

u (53) of the control vari-
able, we pick out the discontinuity caused by the desired control ud(x, t) and construct an
optimal adaptive mesh to obtain a better accuracy for the control as shown in Figure 2 with
adaptive parameterθ = 0.35.
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Figure 1: Example 5.1: Adaptively refined meshes for different values of(x0,y0), i.e., left (-
0.25, 0) , middle (0, 0), right (0.25,0.25), att = 1 using the primal-dual active set
strategy. The number of refinement steps and vertices are (9,4224), (10,3615), and
(9,4728) (from left to right) with adaptive parameterθ = 0.35 .
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Figure 2: Example 5.1: Global errors of the state, adjoint and control in theL2(0,T;L2(Ω))
norm with(x0,y0) = (0,0).

As the statey exhibits different regularity, we make experiments for different values of
the center point such as(x0,y0) ∈ {(−0.25,0),(0,0),(0.25,0.25)}. For all cases, we obtain
a higher density of vertices in the neighborhood of(x̄1, x̄2) = (x0,y0) as shown in Figure 1.
Therefore, the adaptive meshes in Figure 1 show that the a posteriori error estimators provided
in Section 3 pick out the regions well, where more refinementsare needed.

Figure 2 displays the summation of theL2(0,T;L2(Ω)) errors for each time step for the
state, adjoint and control variables at(x0,y0) = (0,0), obtained using the primal-dual active set
strategy and the Moreau-Yosida regularization. For both approaches, the errors on adaptively
refined meshes are decreasing faster than the errors on uniformly refined meshes. Especially,
we obtain a better convergence result for the adaptive implementation of the Moreau-Yosida
approach as shown in Figure 2.
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Figure 3: Example 5.1: The computed state (left) and control(right) on an adaptively refined
mesh with 3,618 vertices by using the Moreau-Yosida regularization for (x0,y0) =
(0,0) at t = 1 after 10 refinement steps.

Figure 4: Example 5.1: GMRES iterations for three differentrefinement levels. A block-
triangular preconditioner was used and the stopping criterion is set to 10−4 for the
relative preconditioned residual.
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Figure 3 shows the computed solutions on an adaptively refined mesh with 3,618 vertices by
using the Moreau-Yosida regularization for(x0,y0) = (0,0) at t = 1 after 10 refinement steps.
We conclude that substantial computing work can be saved by using efficient adaptive meshes
for both approaches and the Moreau-Yosida technique captures the errors of the control better
than the primal-dual active set strategy.

Additionally, our approach is also amendable by efficient preconditioning strategies such
as the ones given in [28, 29] where an iterative method of Krylov subspace type is combined
with efficient and robust Schur complement approaches. Figure 4 shows the iteration numbers
of GMRES with a block-triangular preconditioner for three consecutive stages of refinement
and the associated systems within the Newton method.

5.2 Example 2

We set up our second example according to

Ω = [−1,1]2, T = 0.5, ε = 10−5, and β = (2,3)T , and ω = 0.1.

The source functionf and the desired stateyd are computed by using the following analytical
solutions:

y(x, t) =16sin(πt)x1(1− x1)x2(1− x2)

×
(

1
2
+

1
π

arctan

[
2√
ε

(
1
16

−
(

x1−
1
2

)2

−
(

x2−
1
2

)2
)])

,

p(x, t) =0,

ud(x, t) =sin(πt)sin(
π
2

x1)sin(
π
2

x2),

u(x, t) =max
(

0,min
(

0.5,ud−
p
α

))
,

Figure 5: Example 5.2: Adaptively refined mesh with 4.417 vertices att = 0.5 after 6 refine-
ment steps withθ = 0.55 by using the primal-dual active set strategy.
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Figure 6: Example 5.2: Global errors of the state, adjoint and control in theL2(0,T;L2(Ω))
norm.

Figure 7: Example 5.2: The computed state (left) and control(right) on an adaptively refined
mesh with 3.340 vertices by using the Moreau-Yosida regularization att = 0.5 after
6 refinement steps withθ = 0.55.

The optimal state exhibits an interior layer depending on the diffusion parameterε. Also,
it is a hump changing its height in the course of the time. Figure 5 shows a high density of
vertices being distributed along the interior layer and contact set. It again demonstrates that
the error indicators proposed in Section 3 work well.

The globalL2(0,T;L2(Ω)) errors of the state, adjoint, and the control variables, obtained
using both approaches, are given in Figure 6. We here only present the results of the primal-
dual active set strategy on the uniform meshes for the state and adjoint, since the results for
both approaches are quite similar. The Moreau-Yosida approach especially produces better
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convergence results for the control variable.
Finally, Figure 7 exhibits the computed solutions of the state and control, obtained by using

the Moreau-Yosida approach, on an adaptive mesh with 3.340 vertices after 6 refinement steps
with the adaptive parameterθ = 0.55.

6 Conclusions

We discuss the optimal control problem governed by transient convection diffusion equations,
discretized by the symmetric interior penalty Galerkin (SIPG) method in space and the stan-
dard backward Euler in time. In order to handle control constraints, we apply the primal-dual
active set strategy and the Moreau-Yosida-based regularization. For both approaches, we pro-
pose error estimators to guide the mesh refinement. Numerical results show that substantial
computing work can be saved by using efficient adaptive meshes for both approaches and the
Moreau-Yosida technique captures the errors of the controlbetter than the PDAS strategy.
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[1] T. Akman, H. Yücel, and B. Karasözen. A priori error analysis of the upwind symmetric
interior penalty Galerkin (SIPG) method for the optimal control problems governed by
unsteady convection diffusion equations.Comput. Optim. Appl., 57:703–729, 2014.

[2] D. N. Arnold. An interior penalty finite element method with discontinuous elements.
SIAM J. Numer. Anal., 19(4):742–760, 1982.

[3] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontin-
uous Galerkin methods for elliptic problems.SIAM J. Numer. Anal., 39(5):1749–1779,
2002.

[4] R. Becker and B. Vexler. Optimal control of the convection-diffusion equation using
stabilized finite element methods.Numer. Math., 106(3):349–367, 2007.

[5] M. Bergounioux, K. Ito, and K. Kunisch. Primal-dual strategy for constrained optimal
control problems.SIAM J. Control Optim., 37(4):1176–1194, 1999.

[6] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North–Holland, Ams-
terdam, New York, 1978.

[7] D. Clever, J. Lang, S. Ulbrich, and J. C. Ziems. Combination of an adaptive multi-
level SQP method and a space-time adaptive PDAE solver for optimal control problems.
Procedia Computer Science, 1(1):1435–1443, 2010.

24



[8] S. S. Collis and M. Heinkenschloss. Analysis of the streamline upwind/Petrov Galerkin
method applied to the solution of optimal control problems.Technical Report TR02–01,
Department of Computational and Applied Mathematics, RiceUniversity, Houston, TX
77005–1892, 2002.
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