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1 Introduction
The technique of model order reduction (MOR) has been successfully applied in many fields e.g. mechanical
engineering, fluid dynamics, control, circuit simulation, microelectromechanical systems (MEMS) simulation etc..
The robustness of MOR has been revealed in all the above applications areas.

The purpose of MOR is to reduce the number of degrees of freedom in the original large-scale systems described
by algebraic equations, ordinary differential equations (ODEs), or differential algebraic equations (DAEs) while
attaining good accuracy. These systems usually come from (time-)spatial discretization of partial differential
equations describing the underlying process, devices, structure or dynamics, etc.. Sometimes, the mathematical
models are described directly by ODEs/DAEs, for example, the many models obtained based on modified nodal
analysis (MNA) in circuit or MEMS simulation.

Parametric model order reduction (PMOR) is an advanced MOR technique for more complex mathematical
models, where some variables, called parameters, are entries of the system matrices that are allowed to vary, such
that the systems are parametrized. For a parametrized system, PMOR methods aim to preserve the parameters as
symbolic quantities in the reduced models, such that a single reduced model is sufficiently accurate for all possible
variations of the parameters.

Krylov subspace based moment-matching MOR and Gramian based MOR are popular MOR methods for non-
parametrized LTI systems. The very basic method of Gramian based MOR is balanced truncation, which is well-
known for its global error bound. Recent algorithmic progress has made this method applicable to truly large-scale
systems, see, e.g., [7]. As these advances include certain approximations, the global error bound is not computable
exactly, and therefore should be confirmed by an a posteriori error bound. Moment-matching MOR methods are
computationally efficient, and are widely used in large-scale problems arising from circuit or MEMS simulation.
However, they suffer from the lack of a global error bound, which leads to the fact that the reduced model cannot
be generated automatically and reliably.

Some attempts have been made for getting error estimation for moment-matching MOR methods applied to
non-parametrized LTI systems [8, 13, 20, 31, 27, 41]. While showing the efficiency of their error estimators, these
are more or less heuristics [8, 13, 20, 27, 31]. Based on system theory, an error bound is derived in [41], but faces
the high computational complexity. The residual of the state vector is simply used in [27] as the error estimator
of the reduced-order model. All these error estimators are limited to non-parametrized systems. An a posteriori
error bound for parametrized LTI systems is proposed in time domain in [28]. Although it is stated that it can be
seen as a posteriori error bound for the Krylov subspace based method (e.g. moment-matching MOR), it is hardly
computable

In recent years, numerous model order reduction methods for parametrized LTI systems have been developed, for
example, the Krylov subspace based (multi-moment matching) PMOR methods [16, 18, 19, 21], the interpolation
based PMOR methods [3, 5, 6, 35], the Loewner approach to parametric model reduction [32], and the reduced
basis methods [34, 15]. A survey of PMOR methods can be found in [10]. Among these methods, only for the
reduced basis method a posteriori error bounds are known. These enable automatic generation of a reliable reduced
parametrized model.

Error bounds/estimators have been intensively studied on the reduced basis method for parametrized systems.
Many error estimators developed for the reduced basis methods estimate the error in the state vectors (field vari-
ables) [38, 29, 24, 30], not for the outputs of the systems. In many applications, the output or the transfer function
(output in the frequency domain) of the system are of interest. The error estimations for the state vectors often
tends to overestimate the output errors. Nevertheless, output error estimators for reduced basis methods are pro-
posed in [37, 40], which are only applicable to steady state systems. In [25], output error bound for linear parabolic
equations is proposed, which estimates the output error of the reduced-order model in time domain. Output er-
ror bounds in time domain are also introduced in [45, 46, 47] based on space-time variational formulation of the
original system. However, direct application of those time-domain error bounds to the frequency-domain PMOR
methods, such as the Krylov subspace based multi-moment matching PMOR methods [16, 18, 19, 21], is unclear.
Typically, almost all the error bounds for the reduced basis methods necessitate the bilinear forms of the PDE
models [25, 24, 37, 40, 34, 38, 29, 30, 45, 46, 47].

The above observations motivate us to derive output error bounds for the dynamic systems in the discretized vec-
tor space. We propose several a posteriori output error bounds for the reduced models of both, non-parametrized
LTI systems and parametrized LTI systems. The error bounds are the bounds for the difference between the transfer
function of the original system and that of the reduced model, and are applicable to any MOR or PMOR meth-
ods based on approximation/interpolation of the transfer function, including the Krylov subspace based (multi-
)moment matching methods [16, 18, 19, 21].

The basic idea originates from the output error bounds proposed for the reduced basis methods [37, 15, 40]. The
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main theoretical contributions of the newly derived error bounds are firstly, the error bounds are independent of the
discretization method (finite difference, finite element, finite volume) applied to the original PDEs. Secondly, the
error bounds can be directly used in the discretized vector space, without going back to the PDEs, and especially to
the bilinear form (weak formulation) associated with the finite element discretization. This is typically useful when
only discretized systems are available in some situations. In particular, most of the dynamic models in circuit and
MEMS simulation are derived using commercial software, where the usable mathematical models appear directly
as ordinary differential equations (ODEs), or differential algebraic equations (DAEs). The bilinear form of the
PDE models are usually unknown.

Technically, the output error bounds provide a way of automatically generating reliable reduced models com-
puted by the Krylov subspace based (P)MOR methods, which is desired in design automation for circuits and
MEMS. Although Krylov subspace based (P)MOR methods have been integrated into some simulation tools [39],
the reduced model cannot be guaranteed to satisfy the required accuracy due to the lack of an robust error bound.
We are making the design automation reliable by proposing some a posteriori output error bounds for both non-
parametrized and parametrized linear systems.

The paper is organized as follows. In the next section, we review the general structure of projection based
MOR and the transfer functions of the LTI systems. In Section 3, we introduce an a posteriori error bound for non-
parametrized LTI systems with symmetric system matrices. A posteriori error bounds for general non-parametrized
LTI systems and parametrized LTI systems are proposed in Section 4 and Section 5. How to efficiently compute
the error bounds is discussed in Section 6. Section 7 relates the error bound analysis in Section 4 and Section 5
to a new reduction method. In the section that follows, the basic idea of Krylov subspace based MOR methods,
also called moment-matching MOR/multi-moment matching PMOR, are reviewed. One will see that automatic
generation of reduced models relies on adaptive selection of expansion points. Algorithms for automatic selection
of expansion points according to the a posteriori error bounds are proposed. Simulation results are presented in
Section 9. Conclusions and future work are given in the end.

2 Preliminaries

2.1 MOR for non-parametrized LTI systems
In general, a non-parametrized LTI system is described by

E d
dtx(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

(1)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm1 is the input signal and y(t) ∈ Rm2 is the output response.
E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m1 , C ∈ Rm2×n are the system matrices. We consider general multiple-input
and multiple-output (MIMO) systems, i.e. m1 ≥ 1 and m2 ≥ 1.

Almost all MOR methods are based on the idea of projection, i.e. a basis of a subspace V which approximates
the manifold in which the state vector x(t) (approximately) resides is first computed, then the reduced order model
is obtained by Petrov-Galerkin projection. If we use system (1) as an example, usually a matrix V ∈ Rn×r is
computed, whose columns span the subspace V . x(t) is approximated by its projection onto the subspace, i.e.,
x(t) ≈ V z(t),

EV d
dtz(t) ≈ AV z(t) +Bu(t),
y(t) ≈ CV z(t).

(2)

The reduced model is derived by forcing the residual re = EV d
dtz(t) − AV z(t) − Bu(t) to be zero in a test

subspaceW spanned by the columns of a matrix W ∈ Rn×r i.e.,

WTEV d
dtz(t) = WTAV z(t) +WTBu(t),
y(t) = CV z(t).

(3)

The above process in (3) is the so-called Petrov-Galerkin projection. The variable r � n indicates the size of the
system in (3), which is also called the order of the reduced model. Model reduction methods based on projection
differ in the computation of the matrices W and V , see [7]. Methods related to balanced truncation [33, 9]
compute W,V from the controllability Gramian and observability Gramian of the system, whereas methods based
on moment-matching [36, 23] compute W,V according to the series expansion of the transfer function H(s),

H(s) = C(sE −A)−1B. (4)

2



H(s) is derived from the input-output relation in the frequency domain, through the Laplace transform of (1) (with
zero initial condition x(0) = 0),

y(s) = H(s)u(s) = C(sE −A)−1Bu(s). (5)

Here s is the Laplace variable, and is related to the frequency f by s = 2πf , where  = −1 is the imaginary unit.
Similarly, the transfer function Ĥ(s) of the reduced model is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂,

where Ĉ = CV , Ê = WTEV , Â = WTAV , B̂ = WTB.

2.2 PMOR for parametrized LTI systems
The parametrized LTI systems are usually in the following forms,

E(µ̃)dxdt = A(µ̃)x+B(µ̃)ū(t),
y(t, µ̃) = C(µ̃)x,

(6)

or
M(µ̃)d

2x
dt2 +K(µ̃) xdt +A(µ̃)x = B(µ̃)ū(t),

y(t, µ̃) = C(µ̃)x.
(7)

Here µ̃ = (µ̃1, . . . , µ̃p̃) is a vector of the parameters µ̃1, . . . , µ̃p̃. After Laplace transform (with zero initial condi-
tion), both of the systems in (6) and (7) can be generally written as

G(µ)x(µ) = B(µ)u(µp),
y(µ) = C(µ)x,

(8)

where the entries in µ = (µ1, µ2, . . . , µp) could be certain functions of the parameters µ̃1, . . . , µ̃p̃ and the Laplace
variable s.

Similar to the definition in (5), the transfer function of the parametrized system in (6) or (7) is defined through
the input-output relation in (8) as below:

H(µ) = C(µ)G−1(µ)B(µ) (9)

The reduced model of the system in (6) or (7) can be derived by Petrov-Galerkin projection with a pair of
projection matrices W and V ,

WTE(µ̃)V dz
dt = WTAV (µ̃)z +WTB(µ̃)ū(t),

ŷ(t, µ̃) = C(µ̃)V z,
(10)

or
WTM(µ̃)V d2z

dt2 +WTK(µ̃)V z
dt +WTA(µ̃)V z = WTB(µ̃)ū(t),

ŷ(t, µ̃) = C(µ̃)V z.
(11)

While many interpolation based PMOR methods use Petrov-Galerkin projection [10], the Galerkin projection
W = V is often used by the Krylov subspace based PMOR methods. The transfer function Ĥ(µ) of the reduced
models can also be obtained by applying Laplace transform to the reduced models in (10) or in (11),

Ĥ(µ) = Ĉ(µ)Ĝ−1(µ)B̂(µ),

where Ĉ(µ) = C(µ)V , B̂(µ) = WTB(µ), and Ĝ(µ) = WTG(µ)V .

3 Output error bound for special non-parametrized LTI systems
The technique of deriving the output error bound in this section is motivated by the method in [37], where an output
error bound for the reduced model is derived based on the weak formulation of the PDEs. The error bound in [37]
is derived in functional space, and is only valid for parametrized systems with real parameters. Here, we consider
estimating the output error of the reduced model directly in the vector space. Further extensions have been made,
so that the derived error bound is applicable to systems with complex parameters, and finally, it can be used for
adaptive selection of the multiple expansion points discussed in subsection 8.1.1.

In this section, we assume that E and A are symmetric matrices. Although the assumption is not a request for
the derivation of the error bound, they are needed to make the error bound computable, see Section 6.
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3.1 Derivation of an error bound for SISO systems
We only consider single-input and single-output (SISO) system in this subsection. The results will be used to get
a posteriori output error bound for MIMO systems in the next subsection.

To derive the error bound, the norm ‖ · ‖Ã: Cn → R for a complex vector x is defined as

‖x‖Ã = (x∗Ãx)1/2,

Here, the matrix Ã is assumed to be symmetric, positive definite. It can be simply taken as the identity matrix, then
the norm reduces to the standard 2-norm. x∗ is the conjugate transpose of x. The norm ‖ · ‖Ã is actually associated
with the inner product: 〈·, ·〉: 〈x1, x2〉 = x∗2Ãx1, ∀x1, x2 ∈ Cn.

We also assume that the matrix-valued function G(s) := sE −A: C 7→ Cn×n satisfies

Re(x∗G(s)x) ≥ α(s)(x∗Ãx),∀x ∈ Cn, x 6= 0, (12)

and
Im(x∗G(s)x) ≥ γ(s)(x∗Ãx),∀x ∈ Cn, x 6= 0, (13)

where Re(·) means the real part of x∗G(s)x, and Im(·) is the imaginary part. α(s) > 0, γ(s) > 0 may depend on
the parameter s. Our goal is to derive an error bound for the error |H(s) − Ĥ(s)|, where | · | means the absolute
value or modulus of a complex number.

Notice that H(s) is actually the output y(s) in (5) corresponding to the impulse input u(t) = δ(t), where δ(t)
is the δ function, so that u(s) = L(δ(t)) = 1 (the Laplace transform of δ(t)). Therefore the error bound for the
reduced transfer function Ĥ(s) is also the output error bound for the reduced model in the frequency domain.

We first define the primal system in the frequency domain, which is the Laplace transform of the original
system (1) with u(t) = δ(t),

G(s)x(s) = B,
y(s) = Cx(s).

(14)

It is easy to see that the output y(s) in (14) equals to the transfer function H(s) of the original system (1). The
reduced model for the primal system is defined as,

WTG(s)V z(s) = WTB,
ŷ(s) = CV z(s),

(15)

where W , V are those used in (3). Here x̂(s) := V z(s) is the approximation of x(s) in (14). Analogously, ŷ(s)
equals to the transfer function Ĥ(s).

To assist the derivation of the error bound, we need a dual system in the frequency domain,

G∗(s)xdu(s) = −CT ,
ydu(s) = BTxdu(s).

(16)

The reduced model for the dual system is defined as,

V TG∗(s)Wzdu(s) = −V TCT ,
ŷdu(s) = BTWzdu(s),

(17)

where G∗(s) = s̄ET −AT is the conjugate transpose of G(s), and s̄ is the conjugate of s. x̂du(s) := Wzdu(s) is
the approximate solution to the dual system, xdu(s) ≈ x̂du(s).

Let rpr(s) = B − G(s)x̂(s) be the residual of the primal system in (14), and rdu(s) = −CT − G∗(s)x̂du(s)
be the residual of the dual system. In order to make the final description of the error bound as simple as possible,
we first show that by the Ritz representation theorem, rpr(s) can be represented through a vector ε̂pr ∈ Cn, and
rdu(s) can be represented through a vector ε̂du ∈ Cn.

Define a function fpr(ξ) = (rpr)∗ξ : Cn 7→ C. From the Ritz representation theorem, there exists a unique
vector ε̂pr ∈ Cn, such that

fpr(ξ) = 〈ξ, ε̂pr〉 = (ε̂pr)∗Ãξ. (18)

We also define a function fdu(ξ) = (rdu)∗ξ: Cn 7→ C. Similarly, there exists a unique vector ε̂du ∈ Cn, such that

fdu(ξ) = 〈ξ, ε̂du〉 = (ε̂du)∗Ãξ. (19)

In the following, we use x, xdu, x̂, x̂du, z, zdu to represent x(s), xdu(s), x̂(s), x̂du(s), z(s), zdu(s) in (14-17) for
the purpose of simplicity. We first propose a relation between H(s) − Ĥ(s) and the errors of the state vectors x̂
and x̂du of the reduced primal and dual systems. This relation will be repeatedly used to derive the error bound.
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Proposition 1 If the reduced model (15) of the primal system and that of the dual system (17) are obtained by the
same pair W and V , then

H(s)− Ĥ(s) = Cx− Cx̂ = −(εdu)∗G(s)εpr,

where εdu = xdu − x̂du and εpr = x− x̂.

Proof From (15), we have WTB −WTG(s)x̂ = 0, i.e.

WTG(s)x−WTG(s)x̂ = 0
⇔WTG(s)(x− x̂) = 0
⇒ (zdu)∗WTG(s)(x− x̂) = 0
⇔ (x̂du)∗G(s)(x− x̂) = 0
⇔ (x̂du)∗G(s)εpr = 0.

(20)

From (16) and (20), we get
Cx− Cx̂ = Cεpr

= −(xdu)∗(G∗(s))∗εpr

= −(xdu)∗G(s)εpr + (x̂du)∗G(s)εpr.
= −(εdu)∗G(s)εpr.

(21)

Since the computation of εdu and εpr involves computation of xdu and x, the solutions of the full dual and the
full primal systems, |(εdu)∗G(s)εpr| cannot act as a computable error bound for |H(s)− Ĥ(s)|. Next, we will use
Proposition 1 and the assumptions on G(s) to derive computable error bounds for the real part, and imaginary part
of H(s)− Ĥ(s) separately. The final error bound can be obtained from the error bounds for the real and imaginary
parts.

Proposition 2 If the reduced model (15) of the primal system and that of the dual system (17) are obtained by the
same pair W and V , and G(s) satisfies (12), then

−SR − βR ≤ Re(H(s)− Ĥ(s)) ≤ SR − βR.

Here,

βR =
1

4α(s)
(ε̂pr)∗Ãε̂du +

1

4α(s)
(ε̂du)∗Ãε̂pr, SR =

κ0

4α(s)
(ε̂pr)∗Ãε̂pr +

1

4κ0α(s)
(ε̂du)∗Ãε̂du,

and

κ0 =

(
(ε̂du)∗Ãε̂du

(ε̂pr)∗Ãε̂pr

)1/2

.

Proof We begin by defining a new vector ε̂− = 1
α(s) ε̂

pr − 1
κα(s) ε̂

du. Here and below κ > 0 is a variable to be

specified. We first derive an upper bound for Re(H(s)− Ĥ(s)). Since α(s) > 0,

κα(s)〈εpr − 1
2 ε̂
−, εpr − 1

2 ε̂
−〉

= κα(s)(εpr − 1
2 ε̂
−)∗Ã(εpr − 1

2 ε̂
−) ≥ 0

⇔ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂−)∗Ãε̂− − κα(s)

2 (ε̂−)∗Ãεpr − κα(s)
2 (εpr)∗Ãε̂− ≥ 0

⇔ κα(s)
2 (ε̂−)∗Ãεpr + κα(s)

2 (εpr)∗Ãε̂− ≤ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂−)∗Ãε̂−.

(22)

From the property of inner product
(ε̂−)∗Ãεpr = (εpr)∗Ãε̂−, (23)

we only have to estimate (εpr)∗Ãε̂− in the last inequality of (22). From the definition of ε̂−, and (18) (19) (21),
we get

(εpr)∗Ãε̂− = 1
α(s) (εpr)∗Ãε̂pr − 1

κα(s) (εpr)∗Ãε̂du

= 1
α(s) (εpr)∗rpr(s)− 1

κα(s) (rdu(s))∗εpr

= 1
α(s) (εpr)∗(B −G(s)x̂)− 1

κα(s) (−CT −G∗(s)x̂du)∗εpr

= 1
α(s) (εpr)∗(G(s)x−G(s)x̂)− 1

κα(s) (G∗(s)xdu −G∗(s)x̂du)∗εpr

= 1
α(s) (εpr)∗G(s)εpr − 1

κα(s) (G∗(s)εdu)∗εpr

= 1
α(s) (εpr)∗G(s)εpr − 1

κα(s) (εdu)∗G(s)εpr

= 1
α(s) (εpr)∗G(s)εpr + 1

κα(s) (Cx− Cx̂).

(24)
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Using the relation in (23), and substituting (24) into the last inequality of (22) yield

κα(s)
2 (ε̂−)∗Ãεpr + κα(s)

2 (εpr)∗Ãε̂− ≤ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂−)∗Ãε̂−

⇔ κ
2

[
2Re((εpr)∗G(s)εpr) + 2

κRe(Cx− Cx̂)
]
≤ κα(s)(εpr)∗Ãεpr + κα(s)

4 (ε̂−)∗Ãε̂−

⇔ κRe((εpr)∗G(s)εpr) +Re(Cx− Cx̂) ≤ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂−)∗Ãε̂−

⇔ Re(Cx− Cx̂) ≤ −κRe((εpr)∗G(s)εpr) + κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂−)∗Ãε̂−

⇔ Re(Cx− Cx̂) ≤ κα(s)
4 (ε̂−)∗Ãε̂−,

(25)

where the last inequality holds due to (12). Substituting ε̂− = 1
α(s) ε̂

pr − 1
κα(s) ε̂

du into the last inequality of (25)
gives

Re(Cx− Cx̂) ≤ κα(s)
4 (ε̂−)∗Ãε̂−

⇔ Re(Cx− Cx̂) ≤ κ
4α(s) (ε̂pr)∗Ãε̂pr + 1

4κα(s) (ε̂du)∗Ãε̂du − 1
4α(s) (ε̂pr)∗Ãε̂du − 1

4α(s) (ε̂du)∗Ãε̂pr

⇔ Re(Cx− Cx̂) ≤ fR(κ)− βR
⇔ Re(H(s)− Ĥ(s)) ≤ fR(κ)− βR,

(26)

where fR(κ) = κ
4α(s) (ε̂pr)∗Ãε̂pr + 1

4κα(s) (ε̂du)∗Ãε̂du, βR = 1
4α(s) (ε̂pr)∗Ãε̂du + 1

4α(s) (ε̂du)∗Ãε̂pr.

Next we derive a lower bound, Re(H(s) − Ĥ(s)) ≥ −fR(κ) − βR. We now define a second new vector
ε̂+ = 1

α(s) ε̂
pr + 1

κα(s) ε̂
du, and estimate

κα(s)〈εpr − 1
2 ε̂

+, εpr − 1
2 ε̂

+〉
= κα(s)(εpr − 1

2 ε̂
+)∗Ã(εpr − 1

2 ε̂
+) ≥ 0

⇔ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂+)∗Ãε̂+ − κα(s)

2 (ε̂+)∗Ãεpr − κα(s)
2 (εpr)∗Ãε̂+ ≥ 0

⇔ κα(s)
2 (ε̂+)∗Ãεpr + κα(s)

2 (εpr)∗Ãε̂+ ≤ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂+)∗Ãε̂+.

(27)

It is not difficult to see from (24) that

(εpr)∗Ãε̂+ = 1
α(s) (εpr)∗G(s)εpr − 1

κα(s) (Cx− Cx̂). (28)

Using the relation (ε̂+)∗Ãεpr = (εpr)∗Ãε̂+, and substituting (28) into the last inequality of (27) yield

κα(s)
2 (ε̂+)∗Ãεpr + κα(s)

2 (εpr)∗Ãε̂+ ≤ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂+)∗Ãε̂+

⇔ κ
2

[
2Re((εpr)∗G(s)εpr)− 2

κRe(Cx− Cx̂)
]
≤ κα(s)(εpr)∗Ãεpr + κα(s)

4 (ε̂+)∗Ãε̂+

⇔ κRe((εpr)∗G(s)εpr)−Re(Cx− Cx̂) ≤ κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂+)∗Ãε̂+

⇔ −Re(Cx− Cx̂) ≤ −κRe((εpr)∗G(s)εpr) + κα(s)(εpr)∗Ãεpr + κα(s)
4 (ε̂+)∗Ãε̂+

⇔ −Re(Cx− Cx̂) ≤ κα(s)
4 (ε̂+)∗Ãε̂+,

(29)

where the last inequality holds due to the relation in (12). Substituting ε̂+ = 1
α(s) ε̂

pr + 1
κα(s) ε̂

du into the last
inequality of (29), we can assert that

−Re(Cx− Cx̂) ≤ κα(s)
4 (ε̂+)∗Ãε̂+

⇔ −Re(Cx− Cx̂) ≤ κ
4α(s) (ε̂pr)∗Ãε̂pr + 1

4κα(s) (ε̂du)∗Ãε̂du + 1
4α(s) (ε̂pr)∗Ãε̂du + 1

4α(s) (ε̂du)∗Ãε̂pr

⇔ −Re(Cx− Cx̂) ≤ fR(κ) + βR
⇔ Re(Cx− Cx̂) ≥ −fR(κ)− βR
⇔ Re(H(s)− Ĥ(s)) ≥ −fR(κ)− βR.

(30)

Combining the last equality of (26) with that of (30), we have |Re(H(s)− Ĥ(s))+βR| ≤ fR(κ). It is not difficult
to check that when κ = κ0, fR(κ) reaches the minimum, and fR(κ0) = SR.

Proposition 3 If the reduced model (15) of the primal system and that of the dual system (17) are obtained by the
same pair W , V , and G(s) satisfies (13), then

−SI + βI ≤ Im(H(s)− Ĥ(s)) ≤ SI + βI .

Here,

βI =
1

4γ(s)
(ε̂pr)∗Ãε̂du +

1

4γ(s)
(ε̂du)∗Ãε̂pr, SI =

κ0

4γ(s)
(ε̂pr)∗Ãε̂pr +

1

4κ0γ(s)
(ε̂du)∗Ãε̂du,
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and

κ0 =

(
(ε̂du)∗Ãε̂du

(ε̂pr)∗Ãε̂pr

)1/2

.

Proof We first derive an upper bound for Im(H(s)−Ĥ(s)). Let us define a new vector ε̃− = 1
γ(s) ε̂

pr− 1
κγ(s) ε̂

du.
Since γ(s) > 0,

κγ(s)〈εpr + 
2 ε̃
−, εpr + 

2 ε̃
−〉

= κγ(s)(εpr + 
2 ε̃
−)∗Ã(εpr + 

2 ε̃
−) ≥ 0

⇔ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃−)∗Ãε̃− − κγ(s)

2 (ε̃−)∗Ãεpr + κγ(s)
2 (εpr)∗Ãε̃− ≥ 0

⇔ κγ(s)
2 (ε̃−)∗Ãεpr − κγ(s)

2 (εpr)∗Ãε̃− ≤ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃−)∗Ãε̃−.

(31)

Since the only difference between ε̂− and ε̃− is the denominator, from (24) we see

(εpr)∗Ãε̃− = 1
γ(s) (εpr)∗Ãε̂pr − 1

κγ(s) (εpr)∗Ãε̂du

= 1
γ(s) (εpr)∗G(s)εpr + 1

κγ(s) (Cx− Cx̂).
(32)

We proceed analogously to the proof of Proposition 2. Using the relation (ε̃−)∗Ãεpr = (εpr)∗Ãε̃−, and substitut-
ing (32) into the last inequality of (31) yield

κγ(s)
2 (ε̃−)∗Ãεpr − κγ(s)

2 (εpr)∗Ãε̃− ≤ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃−)∗Ãε̃−

⇔ 2κ
2

[
−2Im((εpr)∗G(s)εpr) + 2

κIm(Cx− Cx̂)
]
≤ κγ(s)(εpr)∗Ãεpr + κγ(s)

4 (ε̃−)∗Ãε̃−

⇔ κIm((εpr)∗G(s)εpr)− Im(Cx− Cx̂) ≤ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃−)∗Ãε̃−

⇔ −Im(Cx− Cx̂) ≤ −κIm(εpr)∗G(s)εpr) + κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃−)∗Ãε̃−

⇔ −Im(Cx− Cx̃) ≤ κγ(s)
4 (ε̃−)∗Ãε̃−,

(33)

where the last inequality holds because of (13). Substituting ε̃− = 1
γ(s) ε̂

pr − 1
κγ(s) ε̂

du into the last inequality
of (33) gives

−Im(Cx− Cx̂) ≤ κγ(s)
4 (ε̃−)∗Ãε̃−

⇔ −Im(Cx− Cx̂) ≤ κ
4γ(s) (ε̂pr)∗Ãε̂pr + 1

4κγ(s) (ε̂du)∗Ãε̂du − 1
4γ(s) (ε̂pr)∗Ãε̂du − 1

4γ(s) (ε̂du)∗Ãε̂pr

⇔ −Im(Cx− Cx̂) ≤ fI(κ)− βI
⇔ Im(Cx− Cx̂) ≥ −fI(κ) + βI
⇔ Im(H(s)− Ĥ(s)) ≥ −fI(κ) + βI ,

(34)

where fI(κ) = κ
4γ(s) (ε̂pr)∗Ãε̂pr + 1

4κγ(s) (ε̂du)∗Ãε̂du, βI = 1
4γ(s) (ε̂pr)∗Ãε̂du + 1

4γ(s) (ε̂du)∗Ãε̂pr.

We continue to prove the next claim Im(H(s) − Ĥ(s)) ≤ fI(κ) + βI . Defining a second new vector ε̃+ =
1

γ(s) ε̂
pr + 1

κγ(s) ε̂
du yields

κγ(s)〈εpr + 
2 ε̃

+, εpr + 
2 ε̃

+〉
= κγ(s)(εpr + 

2 ε̃
+)∗Ã(εpr + 

2 ε̃
+) ≥ 0

⇔ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃+)∗Ãε̃+ − κγ(s)

2 (ε̃+)∗Ãεpr + κγ(s)
2 (εpr)∗Ãε̃+ ≥ 0

⇔ κγ(s)
2 (ε̃+)∗Ãεpr − κγ(s)

2 (εpr)∗Ãε̃+ ≤ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃+)∗Ãε̃+.

(35)

From (32), we know
(εpr)∗Ãε̃+ = 1

γ(s) (εpr)∗Ãε̂pr + 1
κγ(s) (εpr)∗Ãε̂du

= 1
γ(s) (εpr)∗G(s)εpr − 1

κγ(s) (Cx− Cx̂).
(36)

Using the relation (ε̃+)∗Ãεpr = (εpr)∗Ãε̃+, and substituting (36) into (35), we obtain

κγ(s)
2 (ε̃+)∗Ãεpr − κγ(s)

2 (εpr)∗Ãε̃+ ≤ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃+)∗Ãε̃+

⇔ j2κ
2

[
−2Im((εpr)∗G(s)εpr)− 2

κIm(Cx− Cx̃)
]
≤ κγ(s)(εpr)∗Ãεpr + κγ(s)

4 (ε̃+)∗Ãε̃+

⇔ κIm((εpr)∗G(s)εpr) + Im(Cx− Cx̃) ≤ κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃+)∗Ãε̃+

⇔ Im(Cx− Cx̃) ≤ −κIm(εpr)∗G(s)εpr) + κγ(s)(εpr)∗Ãεpr + κγ(s)
4 (ε̃+)∗Ãε̃+

⇔ Im(Cx− Cx̃) ≤ κγ(s)
4 (ε̃+)∗Ãε̃+,

(37)
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where the last inequality holds because of (13). Substituting ε̃+ = 1
γ(s) ε̂

pr + 1
κγ(s) ε̂

du into the last inequality
of (37), it follows immediately

Im(Cx− Cx̂) ≤ κγ(s)
4 (ε̃+)∗Ãε̃+

⇔ Im(Cx− Cx̂) ≤ κ
4γ(s) (ε̂pr)∗Ãε̂pr + 1

4κγ(s) (ε̂du)∗Ãε̂du + 1
4γ(s) (ε̂pr)∗Ãε̂du + 1

4γ(s) (ε̂du)∗Ãε̂pr

⇔ Im(Cx− Cx̂) ≤ fI(κ) + βI
⇔ Im(H(s)− Ĥ(s)) ≤ fI(κ) + βI .

(38)

From (34) and (38), we have |Im(H(s)− Ĥ(s))− βI | ≤ fI(κ). When κ = κ0, min
κ
fI(κ) = f(κ0) = SI .

Based on Proposition 2 and 3, we can immediately get the error bound for |H(s)− Ĥ(s)| given in the following
theorem.

Theorem 1 The error of Ĥ(s) is bounded by ∆(s) defined as below:

|H(s)− Ĥ(s)| =
√
|Re(H(s)− Ĥ(s))|2 + |Im(H(s)− Ĥ(s))|2 ≤

√
B2
R +B2

I := ∆(s). (39)

Here BR = max{|SR − βR|, | − SR − βR|} and BI = max{| − SI + βI |, |SI + βI |}.

3.2 Error bound for MIMO systems
For MIMO systems, the transfer function H(s) is a matrix. The ik-th entry Hik(s) corresponds to a SISO system,
whose input is uk(t), the k-th entry of the input vector u(t), and whose output is yi(t) = C(i, :)x(t), the i-th entry
of the output response y(t). The transfer function Ĥ(s) of the reduced model in (3) is also a matrix. The ik-th
entry Ĥik(s) is an approximation of Hik(s) for the corresponding SISO system. Therefore, the error between
Ĥik(s) and Hik(s) can be measured by ∆ik(s), which can be computed from (39) as

|Hik(s)− Ĥik(s)| ≤
√
B2
R +B2

I =: ∆ik(s),

BR = max{|SR−βR|, |−SR−βR|} andBI = max{|−SI+βI |, |SI+βI |}. To computeBR,BI corresponding to
∆ik(s), the output matrix C should be replaced by C(i, :), the ith row in C. The input matrix B should be replace
by B(:, k), the kth column in B, ∀1 ≤ i ≤ m1, 1 ≤ k ≤ m2.

Once all ∆ik(s), 1 ≤ i ≤ m1, 1 ≤ k ≤ m2 are computed by (39), the final error bound can be take as the
maximum of them, i.e.

||H(s)− Ĥ(s)||max = max
ik
|Hik(s)− Ĥik(s)| ≤ max

ik
∆ik(s). (40)

In Section 6, it will be shown that the assumptions (12) and (13) on G(s) imply that the matrix E must be
symmetric positive definite, which is a strict limit on E. In the next section, we derive another error bound for
general non-parametrized LTI systems, where E and A are allowed to be nonsymmetric, and E can be singular.

4 Output error bound for general non-parametrized LTI systems
In this section, we derive an output error bound for more general LTI systems, where the matricesE,A do not have
to be symmetric, and E could be singular. In stead of (12) and (13), the matrix-valued function G(s) is assumed
to satisfy

inf
w∈Cn

w 6=0

sup
v∈Cn

v 6=0

w∗G(s)v
||w||2||v||2 = β(s) > 0.

(41)

We still rely on the the primal system in (14) and the dual system in (16).
The reduced model for the primal system is of the same form as the system in (15), where W , V are also used

to get the reduced model (3) for the original system. The reduced model for the dual system can be constructed
more flexibly as,

(W du)TG∗(s)V duzdu(s) = −(W du)TCT ,
ŷdu(s) = B∗V duzdu(s),

(42)

whereW du and V du can be different from V andW for the primal system, that means it is allowed thatW du 6= V
and V du 6= W . Here x̂du = V duzdu is the approximate solution to (16).

Define two new variables e(s) = (x̂du)∗rpr(s) and ỹ(s) = Cx̂− e(s).
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Theorem 2 For a SISO LTI system, ifG(s) satisfies (41), then |y(s)−ỹ(s)| ≤ ∆̃g(s), ∆̃g(s) := ||rdu(s)||2||rpr(s)||2
β(s) .

As a result, |H(s)− Ĥ(s)| = |Cx− Cx̂| ≤ ∆g(s), ∆g(s) := ∆̃g(s) + |e(s)|.

Proof The dual system G∗(s)xdu = −CT implies that

(x− x̂)∗G∗(s)xdu = −(x− x̂)∗CT . (43)

From the definition of the residual rpr = B −G(s)x̂ = G(s)(x− x̂) for the primal system, we get

(xdu)∗rpr = (xdu)∗G(s)(x− x̂). (44)

Combining (43) with (44), it is obvious

−C(x− x̂) = (xdu)∗rpr.

Then
|y(s)− ỹ(s)| = |Cx− Cx̂+ (x̂du)∗rpr(s)|

= | − (xdu)∗rpr + (x̂du)∗rpr(s)|
= | − (xdu − x̂du)∗rpr(s)|
≤ ||(xdu − x̂du)||2||rpr(s)||2.

(45)

Replacing w in (41) with xdu − x̂du yields

sup
∀v∈Cn

(xdu−x̂du)∗G(s)v
||xdu−x̂du||2||v||2 ≥ β(s),

i.e.
sup
∀v∈Cn

(xdu−x̂du)∗G(s)v
||v||2 ≥ β(s)||xdu − x̂du||2. (46)

Since
(xdu − x̂du)∗G(s)v

||v||2
≤ ||G

∗(s)(xdu − x̂du)||2||v||2
||v||2

= ||G∗(s)(xdu − x̂du)||2,

and when v = v0 = G∗(s)(xdu − x̂du),

(xdu − x̂du)∗G(s)v0

||v0||2
= ||G∗(s)(xdu − x̂du)||2,

it suffices to make the following observation

sup
∀v∈Cn

(xdu−x̂du)∗G∗(s)v
||v||2 = ||G∗(s)(xdu − x̂du)||2. (47)

Combining (46) with (47) shows that

||G∗(s)(xdu − x̂du)||2 ≥ β(s)||xdu − x̂du||2.

From the definition of rdu(s) = −CT −G∗(s)x̂du = G∗(s)xdu −G∗(s)x̂du, we get

||rdu(s)||2 ≥ β(s)||xdu − x̂du||2. (48)

Substituting (48) into (45) we obtain,

|y(s)− ỹ(s)| ≤ ||r
du(s)||2||rpr(s)||2

β(s)
.

Since ỹ(s) = Cx̂− e(s),

|Cx− Cx̂| − |e(s)| ≤ |y(s)− ỹ(s)| ≤ ||r
du(s)||2||rpr(s)||2

β(s) .

Finally,

|H(s)− Ĥ(s)| = |Cx− Cx̂| ≤ ||r
du(s)||2||rpr(s)||2

β(s)
+ |e(s)| =: ∆g(s).
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Remark For MIMO systems, we can use the similar technique in subsection 3.2 to get the final error bound for the
reduced transfer matrix.
Remark If W du = V , and V du = W , and WTG(s)V is invertible for any s, then e(s) = 0. Since

e(s) = (x̂du)∗rpr

= (V duzdu)∗(B −G(s)V z)
= (Wzdu)∗(B −G(s)V z)
= (zdu)∗WT [B −G(s)V (WTG(s)V )−1WTB]
= (zdu)∗[WTB −WTG(s)V (WTG(s)V )−1WTB]
= 0.

(49)

Although the matrix pair W du = V , V du = W make |e(s)| = 0, they are not always the optimal choice for
the dual system in the sense of making the residual rdu as small as possible. As a result, the error bound which is
also influenced by rdu decreases probably much slower than using an optimal W du, V du which are different from
W , V . In this situation, although no contribution of |e(s)| = 0 to the error bound, the contribution of rdu is much
bigger. Taking the dual system in (16) for a non-parametric LTI system as an example. If only Galerkin projection
is used to get the reduced model i.e. W = V , then based on the idea of model order reduction and moment-
matching MOR (see subsection 8.1.1), the subspace Vdu which includes the trajectory of xdu in the frequency
domain should be Vdu = Kq+1((Ẽc(s0)), C̃(s0)) defined in (61), so that range(V du) = Kq+1((Ẽc(s0)), C̃(s0))

is the proper choice for the projection matrix V du, rather than V du = W = V = Kq+1(Ẽb(s0), B̃(s0)) defined
in (60). Simulation results in Section 9 also support our analysis. However if Petrov-Gakerkin projection is used
to obtain the reduced model, the choice W du = V , and V du = W is already optimal for moment-matching MOR.

5 Output error bound for parametrized LTI systems

In order to derive the error bound for the transfer function Ĥ(µ) of the reduced model (10) or (11), we need the
parametrized primal system and the parametrized dual system defined in the frequency domain. Similar to the
definitions for the non-parametrized system, the primal system is defined as,

G(µ)x(µ) = B(µ),
y(µ) = C(µ)x(µ),

(50)

where the output y(µ) is exactly the transfer function H(µ) in (9).
The parametrized dual system is defined as,

G∗(µ)xdu(µ) = −C(µ)T ,
ydu(µ) = B(µ)Txdu(µ).

(51)

Recall the discussion in Section 4, we also need the residuals caused by the reduced models for the primal and the
dual systems. The reduced model of the primal system is obtained by the pair W , V used in (10) or (11).

WTG(µ)V z(µ) = WTB(µ),
ŷ(µ) = C(µ)V z(µ),

(52)

where x̂(µ) = V z(µ) approximates x(µ). It can be easily seen that Ĥ(µ) = ŷ(µ). The reduced model of the dual
system is

(W du)TG∗(µ)V duzdu(µ) = −(W du)TC(µ)T ,
ŷdu(µ) = B(µ)TV duzdu(µ),

(53)

where x̂du(µ) = V duzdu(µ) is the approximation of xdu(µ). The two residuals are rpr(µ) = B(µ) −G(µ)x̂(µ)
and rdu(µ) = −C(µ)T − G∗(µ)x̂du(µ). Here the matrix pairs W , V and W du, V du should be computed by
PMOR methods (see Section 8.1.2).

Comparing the systems in (50) and (51) with the systems in (14) and (16), we notice that they are in the same
form, and only s is changed into µ. It is also true for the corresponding reduced models in (52) and (53) versus the
reduced systems in (15) and (42). Therefore, we have a similar theorem for the error bound of Ĥ(µ).

Defining two new variables e(µ) = (x̂du(µ))∗rpr(µ) and ỹ(µ) = C(µ)x̂(µ) − e(µ) and assuming that G(µ)
satisfies

inf
w∈Cn

w 6=0

sup
v∈Cn

v 6=0

w∗G(µ)v
||w||2||v||2 = β(µ) > 0,

(54)

we have the following theorem.
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Theorem 3 For a SISO linear parametrized system in (6) or in (7), if G(µ) satisfies (54), then |y(µ) − ỹ(µ)| ≤
∆̃p(µ), ∆̃p(µ) := ||rdu(µ)||2||rpr(µ)||2

β(µ) . As a result, |H(µ) − Ĥ(µ)| = |C(µ)x(µ) − C(µ)x̂(µ)| ≤ ∆p(µ),

∆p(µ) := ∆̃p(µ) + |e(µ)|.

Remark The proof is straight forward by following the proof in Section 4. Similar to the analysis in (49), when
W du = V , V du = W , and WTG(µ)V is invertible for any µ, e(µ) = 0. However, analogous to the analysis in
Section 4, V,W are possibly not the optimal projection matrices for the dual system.

6 Computation of the error bounds

6.1 Computation of ∆(s)

In subsection 3.1, the error bound ∆(s) is derived for special LTI systems, where E, A are required to be symmet-
ric. ∆(s) is decided by the two Ritz representation vectors ε̂pr and ε̂du, and the two variables α(s) and γ(s).

computation of α(s) and γ(s)

From the two assumptions (12)(13) on G(s), we have for s = σ0 + ω,

Re(x∗G(s)x)

x∗Ãx
= Re(x∗(ωE+σ0E−A)x)

x∗Ãx

= Re(x∗(ωE+Ā)x)

x∗Ãx

= x∗Āx
x∗Ãx

= x̃∗(R−1)∗ĀR−1x̃
x̃∗x̃

≥ λmin((R−1)∗ĀR−1) := α(s),

where Ā = σ0E − A, R∗R = Ã is the Cholesky factorization of Ã, and x̃ = Rx. λmin((R−1)∗ĀR−1) is
the smallest eigenvalue of (R−1)∗ĀR−1. If E, A are symmetric, x∗Āx is the real part of x∗G(s)x. Therefore,
from the property of Rayleigh quotient, we can take α(s) as the smallest eigenvalue of the symmetric matrix
(R−1)∗ĀR−1.
Remark If σ0 = s0, then we have a simple case α(s) = 1. Usually, s = ω, and σ0 = 0. IfA is symmetric negative
definite, we can use Ã = −A to define the norm, then α = 1 when s = ω. If Ã = I , the identity matrix, then
α(s) simplifies to the minimal eigenvalue of the matrix Ā.
Remark For a system with symmetric negative definite matrix A, symmetric positive matrix E, and if C = BT ,
then the system is passive [22]. Passivity is an important property for linear systems arising from circuit design. An
essential reason is that the interconnection of stable subcircuits may not stable, but the interconnection of passive
subcircuits is passive. Moreover, passivity implies stability of the system, so that a passive interconnection of
subcircuits guarantees stability of the whole circuit.

For the estimation of γ(s), we have

Im(x∗G(s)x)

x∗Ãx
= ωx∗Ex

x∗Ãx

= ωx̃∗(R−1)∗ER−1x̃
x̃∗x̃

≥ ωλmin((R−1)∗ER−1) := γ(s),

λmin((R−1)∗ER−1) is the smallest eigenvalue of (R−1)∗ER−1. Since it is assumed that γ(s) > 0, E must be
symmetric positive definite.
Remark Once we have computed the smallest eigenvalue of (R−1)∗ĀR−1, we have obtained α(s). Furthermore,
λmin((R−1)∗ER−1) can be computed a prior, then for each value of s, γ(s) is λmin((R−1)∗ER−1) multiplied
by ω. That means, the two eigenvalue problems are solved only once, and can be computed independent of s.

computation of ε̂pr and ε̂du

Next, we show how to efficiently compute the two Ritz representation vectors ε̂pr and ε̂du. From (18), we see that

ξ∗rpr(s) = ξ∗Ãε̂pr, ∀ξ ∈ Cn.
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If we take ξ = ei, ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, 2, . . . , n, where 1 is at the i-th entry of ei, then

rpr1 (s) = ã11ε̂
pr
1 + . . .+ ã1nε̂

pr
n ,

rpr2 (s) = ã21ε̂
pr
1 + . . .+ ã2nε̂

pr
n ,

...
rprn (s) = ãn1ε̂

pr
1 + . . .+ ãnnε̂

pr
n .

Here rpr(s) = (rpr1 (s), . . . , rprn (s))T , (Ã)ik = ãik, 1 ≤ i, k ≤ n, and ε̂pr = (ε̂pr1 , . . . , ε̂
pr
n ). In matrix form, it is

Ãε̂pr = rpr(s).

Since Ã is assumed to be positive definite, ε̂pr is uniquely decided by (6.1): ε̂pr = Ã−1rpr(s). Similarly from (19),
ε̂dun can be uniquely determined by ε̂du = Ã−1rdu(s).

The two Ritz vectors ε̂pr and ε̂du are functions of s. For each value of s, two full-size linear systems must be
solved to get ε̂pr, and ε̂du, which looks expensive. However, from the formulation of rpr(s), we get

ε̂pr(s) = Ã−1rpr(s),

= Ã−1(B − sEV z +AV z),

= Ã−1[B − sEV (sWTEV −WTAV )−1WTB+
AV (sWTEV −WTAV )−1WTB],

= Ã−1B − sÃ−1EV (sWTEV −WTAV )−1WTB

+Ã−1AV (sWTEV −WTAV )−1WTB.

The terms WTEV,WTAV,WTB needs only one-time computation, and can be repeatedly used for any value
of s. Although the inverse of (sWTEV −WTAV ) needs to be computed for each possible value of s, they are
of the reduced size, and can be implemented very fast. The matrix V usually has few columns, therefore, the
terms Ã−1EV , Ã−1AV , Ã−1B can be computed by solving 2r +m1 linear systems. Here r is the number of the
columns in V , which is also the size of the reduced model. m1 is the number of the columns in B. As a result, the
estimation of ε̂pr at any fixed value of s can be done efficiently. Likewise, ε̂du(s) can be computed by following
the similar implementations. Furthermore, when the standard 2-norm is used, Ã reduces to the identity matrix.
There is no need to solve linear systems.

6.2 Computation of ∆g(s) and ∆p(µ)

The key for computing ∆g(s) or ∆p(µ) is how to compute β(s) or β(µ). The condition (41) is equivalent to

inf
∀w∈Cn

1

||w||2
sup
∀v∈Cn

w∗G(s)v

||v||2
= β(s). (55)

On the one hand,
w∗G(s)v

||v||2
≤ ||G

∗(s)w||2||v||2
||v||2

= ||G∗(s)w||2.

On the other hand, when v = G∗(s)w,
w∗G(s)v

||v||2
= ||G∗(s)w||2.

Therefore,

sup
∀v∈Cn

w∗G(s)v

||v||2
= ||G∗(s)w||2.

Substitute it into (55), we get

inf
∀w∈Cn

||G∗(s)w||2
||w||2

= β(s).

From Rayleigh quotient,

min
∀w∈Cn

w∗G(s)G∗(s)w

w∗w
= λmin(G(s)G∗(s)).
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Therefore β(s) =
√
λmin(G(s)G∗(s)). Analogously, β(µ) is the square root of the minimal eigenvalue of

G(µ)G∗(µ). The error bound ∆g(s) includes the two residuals rpr(s) and rdu(s). For the computation of rpr(µ)
and rdu(µ), we need the affine assumption on G(µ). That is

G(µ) = E0 + E1µ1 + . . .+ Epµp. (56)

With the affine form, it is not difficult to see that rpr(µ) and rdu(µ) can be efficiently computed [34].

Remark Clearly, for each value of s, the minimal eigenvalue of a large matrix G(s)G∗(s), or equivalently, the
minimal singular value of G(s), must be computed to get β(s). It is impractical if β(s) must be estimated at
many samples of s. The method proposed in [29] can be used to compute a lower bound βLB(s) of β(s), such
that βLB(s) could be computed efficiently through solving a sequence of small optimization problems. Without
solving any large-scale problems, βLB(s) is expected to be quickly available for each sample of s. However, since
it is a lower bound of β(s), ∆g(s) computed by βLB(s) would over estimate the real error of the reduced transfer
function Ĥ(s). It is observed that when the range of s is very large, βLB is not close to β(s) at all. Furthermore,
the accuracy of βLB(s) highly relies on the optimization solvers, which cannot guarantee to converge to an optimal
solution for each sample of s. For parametrized systems, the method in [29] will become more complicated, which
may easily lead to a meaningless lower bound βLB(µ). More efficient methods for computing or estimating β(s)
will be the future work.

7 Reformulated reduced system
It is discussed in Section 5 that except for some special cases, the value of |e(µ)| in the error bound is nonzero in
general. Motivated by the analysis in a new research [2], we show in this section that a different reduced model can
be constructed from ỹ(s) in Theorem 2 or ỹ(µ) in Theorem 3, so that e(s) or e(µ) in the error bound disappear.

The non-parametrized LTI systems discussed in Section 4 can be considered as a special case of the parametrized
LTI systems in Section 5, with µ = s. Therefore we generally consider parametrized LTI systems in the following.

From the definition of e(µ) = (x̂du)∗rpr(µ), and rpr = B(µ) − G(µ)V (WTG(µ)V )−1WTB(µ), x̂du =
V duzdu = −V du[(W du)TG∗(µ)V du]−1(W du)TC(µ)∗, we observe that,

ypr(µ)− ỹpr(µ)
= C(µ)x− C(µ)x̂+ (x̂du)∗rpr

= C(µ)x− C(µ)x̂− C(µ)(W du)[(V du)TG(µ)W du]−1(V du)T [B(µ)−G(µ)V (WTG(µ)V )−1WTB(µ)]
= C(µ)G−1(µ)B(µ)− C(µ)V (WTG(µ)V )−1WTB(µ)−
C(µ)W du[(V du)TG(µ)W du]−1(V du)T [B(µ)−G(µ)V (WTG(µ)V )−1WTB(µ)]
= C(µ)G−1(µ)B(µ)− C(µ)V (WTG(µ)V )−1WTB(µ)− C(µ)W du[(V du)TG(µ)W du]−1(V du)TB(µ)−
C(µ)W du[(V du)TG(µ)W du]−1(V du)TG(µ)V (WTG(µ)V )−1WTB(µ).

(57)
The right-hand side of the last equality in (57) can be written into the matrix form as below,

C(µ)G−1(µ)B(µ)︸ ︷︷ ︸
H(µ)

−
[
C(µ)V C(µ)W du

] [ WTG(µ)V 0
(V du)TG(µ)V (V du)TG(µ)W du

]−1 [
WTB(µ)

(V du)TB(µ)

]
︸ ︷︷ ︸

H̃(µ)

.

(58)
Clearly, ypr(µ) = H(µ) and ỹ(µ) = H̃(µ). If using H̃(µ) to approximate H(µ), the error bound for H̃(µ) is

∆̃p(µ), i.e. |H(µ)− H̃(µ)| ≤ ∆̃p(µ). There is no additional term |e(µ)| in the error bound.
Next we consider constructing a reduced system whose transfer function is H̃(µ). From H̃(µ), the correspond-

ing system with zero initial condition1, can be written as[
WTG(µ)V 0

(V du)TG(µ)V (V du)TG(µ)W du

] [
z1

z2

]
=

[
WTB(µ)

(V du)TB(µ)

]
,

y =
[
C(µ)V C(µ)W du

] [ z1

z2

]
1Here, we assume that the original system (e.g. (6) or (7)) has zero initial condition. For a system with nonzero initial condition, one can use

coordinate transformation x̃ = x − x(0) to get a transformed system with state vector x̃, and with zero initial condition x̃(0) = 0. A
reduced system with zero initial condition can be obtained by applying MOR to the transformed system [17].
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in Laplace domain.
If the parametrized LTI system in (6) or (7) is considered, then G(µ) can be written as G(µ) = sE(µ̃)− A(µ̃)

or G(µ) = s2M(µ̃) + sK(µ̃) +A(µ̃). Inserting, e.g. G(µ) = sE(µ̃)−A(µ̃) into (58), we get[
sÊ11(µ̃)− Â11(µ̃) 0

sÊ21(µ̃)− Â21(µ̃) sÊ22(µ̃)− Â22(µ̃)

] [
z1

z2

]
=

[
WTB(µ)

(V du)TB(µ)

]
,

y =
[
C(µ)V C(µ)W du

] [ z1

z2

]
,

where Ê11(µ̃) = WTE(µ̃)V , Â11(µ̃) = WTA(µ̃)V , Ê21 = (V du)TE(µ̃)V , Â21(µ̃) = (V du)TA(µ̃)V ,
Ê22(µ̃) = (V du)TE(µ̃)W du, Â22(µ̃) = (V du)TA(µ̃)W du.

Using inverse Laplace transform, the reduced system in time domain is[
Ê11(µ̃) 0

Ê21(µ̃) Ê22(µ̃)

] [
ż1(t)
ż2(t)

]
=

[
Â11(µ̃) 0

Â21(µ̃) Â22(µ̃)

] [
z1(t)
z2(t)

]
+

[
WTB(µ̃)

(V du)TB(µ̃)

]
u(t),

y =
[
C(µ̃)V C(µ̃)W du

] [ z1(t)
z2(t)

]
.

(59)

It shows that for the original system in (6), a reduced system in (59) can be derived, whose transfer function is
H̃(s), satisfying |H(µ) − H̃(µ)| ≤ ∆̃p(µ). For the second order parametrized system in (7), the corresponding
reduced system can also be obtained in a similar way. Notice also that the reduced system (59) cannot be obtained
by means of an explicit Petrov-Galerkin projection applied to the original system in (6). Instead the projection

W̃ =

[
W

V du

]
Ṽ =

[
V

W du

]
is applied to a non-minimal realization of the original system, namely[

E(µ̃) 0
E(µ̃) E(µ̃)

] [
ẋ1(t)
ẋ2(t)

]
=

[
A(µ̃) 0
A(µ̃) A(µ̃)

] [
x1(t)
x2(t)

]
+

[
B(µ̃)
B(µ̃)

]
u(t),

y =
[
C(µ̃) C(µ̃)

] [ x1(t)
x2(t)

]
.

In summary, there are two reduced systems available for the original system in (6), one is the reduced system
in (10) constructed directly from the original system; the other is the reformulated reduced system in (59). On the
one hand, if using the same stopping criteria εtol in Algorithm 2, the reduced system in (10) is usually less accurate
than the one in (59) (though both satisfy the error tolerance εtol), because the error bound ∆p(µ) for Ĥ(µ) is
rougher than ∆̃p(µ) for H̃(µ). On the other hand, the reduced system in (59) could be of much bigger size than
the one in (10). From this point of view, the reduced system in (10) is practically preferable, since it is of much
smaller size and also satisfies the acceptable error tolerance. The analysis is aided by an example in Section 9.

8 Automatic generation of the reduced models
We explore algorithms of automatic constructing reliable reduced-order models in this section. In particular, we
show that the Krylov subspace based MOR methods can be adaptively implemented using the proposed error
bounds. To this end, we first present a brief review of the MOR methods, and point out the necessity of adaptive
implementation of the methods.

8.1 Review of Krylov subspace based MOR methods
8.1.1 Moment-matching MOR for non-parametrized LTI systems

For moment-matching methods, the matricesW , V are constructed from the transfer function (matrix)H(s) in (4).
If we expand H(s) into series, around an expansion point s0 as

H(s) = C[(s− s0 + s0)E −A]−1B
= C[(s− s0)E + (s0E −A)]−1B
= C[I + (s0E −A)−1E(s− s0)]−1(s0E −A)−1B

=
∞∑
i=0

C[−(s0E −A)−1E]i(s0E −A)−1B︸ ︷︷ ︸
:=mi(s0)

(s− s0)i,
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then mi(s0), i = 0, 1, 2, . . . are called the ith order moments of the transfer function. The columns of V span the
Krylov subspace

range{V } = Kq+1(Ẽb(s0), B̃(s0)) := span{B̃(s0), . . . , (Ẽb(s0))qB̃(s0)}, (60)

where Ẽb(s0) = (s0E −A)−1E, B̃(s0) = (s0E −A)−1B. The columns of W span the Krylov subspace

range{W} = Kq+1(Ẽc(s0), C̃(s0)) := span{C̃(s0), . . . , (Ẽc(s0))qC̃(s0)}, (61)

where C̃(s0) = (s0E−A)−TCT , Ẽc(s0) = (s0E−A)−TET . Obviously, W and V span two Krylov subspaces.
It is proved in [23], that the transfer function of the reduced model Ĥ(s) matches the first 2q + 1 moments of the
original transfer function H(s). It is obvious that the accuracy of the reduced model depends on the expansion
point s0. In many cases, only a single expansion point is insufficient to attain the required accuracy. Multiple-
point expansion is preferred such that the large error caused at frequencies far away from the expansion point can
be reduced. A reduced model of better accuracy and smaller order can be obtained by multiple-point expansion.
Therefore proper selection of multiple expansion points is important. Previous studies on multiple-point expansion
are found in [1, 26, 20, 12, 14, 27]. In [26], the expansion points are chosen such that the reduced model is locally
optimal. Binary principle is used in [1, 20, 12] for adaptive, but heuristic selection of the expansion points. In
subsection 8.2, we readdress the problem of selecting multiple expansion points by using the global a posteriori
error bounds proposed in Section 3 and Section 4.

8.1.2 Review of multi-moment matching PMOR methods

Multi-moment matching PMOR methods can be found in [42, 16, 18, 43, 19]. In this section, a robust PMOR
method in [19] is reviewed. All these methods are based on Galerkin projection, i.e. W = V . Assume that G(µ)
has the affine form defined in (56). To compute the matrix V , the series expansion of the state x in (8) is needed.
Given an expansion point µ0 = [µ0

1, µ
0
2, · · · , µ0

p], x can be expanded as

x = [I − (σ1M1 + . . .+ σpMp)]
−1B̃Mu(µp)

=
∞∑
i=0

(σ1M1 + . . .+ σpMp)
iB̃Mu(µp),

where B̃M (µ) = [G(µ0)]−1B(µ), Mi = −[G(µ0)]−1Ei, i = 1, 2, . . . , p, and σi = µi − µ0
i , i = 1, 2, . . . , p.

We call the coefficients in the above series expansion the moment matrices of the parametrized system. The
corresponding multi-moments of the transfer function are those moment matrices multiplied by C from the left.

To get the projection matrix V , instead of directly computing the moment matrices [16], a numerically robust
method is proposed in [19] (the detailed algorithm is described in [11]). The method combines the recursions in
(62) below, with a repeated modified Gram-Schmidt process so that the moment matrices are computed implicitly.

R0 = BM , R1 = [M1R0, . . . ,MpR0],
R2 = [M1R1, . . . ,MpR1],
...,
Rq = [M1Rq−1, . . . ,MpRq−1],
...,

(62)

where BM = B̃M , if B(µ) dose not depend on µ. Otherwise, BM = [B̃M1, . . . , B̃Mp], if B(µ) can be affinely
approximated by B(µ) ≈ B1µ1 + . . .+Bpµp. Here B̃Mi = [G(µ0)]−1Bi, i = 1, . . . , p. The computed V = Vµ0

is an orthonormal basis of the subspace spanned by the moment matrices,

range{Vµ0} = span{R0, R1, . . . , Rq}µ0 , (63)

and depends on the expansion point µ0. It is proved in [11] that the multi-moments of the transfer function of
the original system can be matched by those of the transfer function of the reduced model. The accuracy of the
reduced model can be improved by increasing the number of the terms in (63), whereby more multi-moments can
be matched.

It is noticed that the dimension ofRj increases exponentially. If the number of the parameters p in a parametrized
system is larger than 2, it is advantageous to use multiple point expansion, such that only the low order moment
matrices, e.g. Rj , j ≤ 2 have to be computed for each expansion point. As a result, the order of the reduced model
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can be kept small. Given a group of expansion points µi, i = 0, . . . , exp, a matrix Vµi can be computed from (63)
for each µi as

range{Vµi} = span{R0, R1, . . . , Rq}µi .

The final projection matrix V is a combination (orthogonalization) of all the matrices Vµi ,

V = orth{Vµ0 , . . . , Vµexp}. (64)

Here, selecting the expansion points µi is unavoidable. Algorithm 2 is proposed in subsection 8.2 for adaptively
selecting the expansion points µi using the a posteriori error bound ∆p(µ) in Section 5.

8.2 Algorithms of automatic generation of reduced-order models
The algorithms in this section follow the idea of the greedy algorithm widely used in the reduced basis commu-
nity. A large sample space Ξtrain of the variable s or the vector of parameters µ, covering the whole interesting
frequency/parameter domain, must be initially given. During each step of the algorithm, a point ŝ or µ̂ in Ξtrain,
which causes the largest error (indicated by the error bound ∆(s), ∆g(s) or ∆p(µ)), is chosen as the next ex-
pansion point. The process continues until the largest error among all the samples in Ξtrain is smaller than an
acceptable error tolerance εtol(< 1) for the reduced model.

Algorithm 1 Automatic generation of the reduced model by adaptively selecting expansion points ŝ for non-
parametrized LTI systems

1: W = [];V = [];
2: ε = 1;
3: Initial expansion point: ŝ;
4: Ξtrain: a large set of samples of s, taken over the interesting range of the frequency.
5: while ε > εtol do
6: range(Vŝ) = Kq+1(Ẽb(ŝ), B̃(ŝ));
7: range(Wŝ) = Kq+1(Ẽc(ŝ), C̃(ŝ));
8: V = orth{V, Vŝ}; W du = V ;
9: W = orth{W,Wŝ}; V du = W ;

10: ŝ = arg max
s∈Ξtrain

∆(s) (or ∆g(s));

11: ε = ∆(ŝ) or (∆g(ŝ));
12: end while.

Remark Petrov-Galerkin projection with W 6= V is used in the algorithm. One can certainly use only V to get
the reduced model, which reduces to the Galerkin projection method in [36]. It is discussed in [36] that by using
the Galerkin projection, the reduced model preserves the passivity of the original system, which is an important
property in circuit simulation. To compute the error bound ∆g(s), W du, V du are needed. In the algorithm, we
use W du = V and V du = W , such that the second part |e(s)| in the error bound reduces to zero. However, as is
discussed at the end of Section 4, if for Galerkin projection where only one projection matrix V du is needed for
the dual system, it is preferred to use

range(V duŝ ) = Kq+1((Ẽc(ŝ)), C̃(ŝ)), (65)

for a chosen expansion point ŝ, rather than V du = V , i.e. V du should be computed based on the trajectory of the
state xdu of the dual system.

In the following, we consider an algorithm for parametrized LTI systems. Since the multi-moment matching
PMOR method in subsection 8.1.2 is a Galerkin projection method. We use also Galerkin projection in the al-
gorithm, though the algorithm can be straight forwardly extended to any other Petrov-Galerkin methods. From
(64), we see that the reduced model depends on the expansion points µi, i = 0, . . . , exp. Algorithm 2 adaptively
chooses the multiple expansion points, which cause the largest errors at the subsequent iteration steps. The next
expansion point µ̂ = (µ̂1, . . . , µ̂p) is chosen as the point at which the current reduced transfer function Ĥ(µ) has
the biggest error measured by the error bound ∆p(µ). The projection matrices for the dual system at a particular
expansion point µ̂ are chosen as W du

µ̂ = V duµ̂ = span{Rdu0 , . . . , Rduq }µ̂, where Rdu0 , . . . , Rduq are composed of
the moment matrices of the dual system, and are defined analogously as for R0, . . . , Rq in (62). In particular,

16



Rduj = [Mdu
1 Rj−1, . . . ,M

du
p Rj−1], j = 1, . . . , q, . . .. Rdu0 = [G∗(µ̂)]−1(−CT ), and Mdu

i = [G∗(µ̂)]−1ETi ,
i = 1, . . . , p.

Algorithm 2 Automatic generation of the reduced model by adaptively selecting expansion points µ̂ for
parametrized LTI systems

1: W = [];V = [];
2: ε = 1;
3: Initial expansion point: µ̂;
4: Ξtrain: a large set of the samples of µ, taken over the interesting range of all the parameters µ1, . . . , µp.
5: while ε > εtol do
6: Vµ̂ = span{R0, . . . , Rq}µ̂;
7: V = orth{V, Vµ̂}; W = V ;
8: V duµ̂ = span{Rdu0 , . . . , Rduq }µ̂;
9: V du = orth{V du, V duµ̂ }; W du = V du;

10: µ̂ = arg max
µ∈Ξtrain

∆p(µ);

11: ε = ∆p(µ̂);
12: end while.

9 Simulation results
In this section, we use some examples to show the performance of the error bounds. There are four examples.
Three of them are non-parametrized LTI systems, two of which have symmetric E and A. The last example is a
parametrized LTI system with four parameters. We use Galerkin projection W = V to get the reduced models for
all the examples. When computing ∆g(s), the projection matrix V du for the dual system is computed by (65).

When computing ∆(s), we take Ã = I , such that the norm || · ||Ã reduces to the standard 2-norm. In this case,
the two Ritz representation vectors ε̂pr, ε̂du equal to the two residuals, therefore, there is no need to solve the two
linear systems in subsection 6.1.

The error bounds derived in the above sections are designed for the absolute error, e.g. εab(µ) = |H(µ)−Ĥ(µ)|
for a SISO system. In the following results, we also show the performance of the error bound for the relative error
defined as εre(µ) = εab/|H(µ)|. Accordingly, ∆re(µ) = ∆(µ)/|Ĥ(µ)|, ∆re

g (µ) = ∆g(µ)/|Ĥ(µ)|, ∆re
p (µ) =

∆(µ)p/|Ĥ(µ)| are used as the error bounds for the relative errors, since H(µ) is never computed in practice.
For a MIMO system, the true error is firstly defined entry-wisely, then the maximum is taken, so that εab(µ) =

max
ij
|Hij(µ)− Ĥij(µ)| is the absolute true error, and εre(µ) = max

ij

|Hij(µ)−Ĥij(µ)|
|Hij(µ)| is the relative true error, i =

1, . . . ,m1, j = 1, . . . ,m2. The error bound for the absolute error is already defined in (40), ∆(µ) = max
ij

∆ij(µ).

The error bound for the relative error is defined as ∆re(µ) = max
ij

∆ij(µ)

|Ĥij(µ)| . The same definitions also apply to

∆g(µ) and ∆p(µ). For both SISO and MIMO systems, when there are no parameters, µ = s in the error bounds
as well as in the true errors.

At each iteration step of Algorithm 1 and Algorithm 2, the maximal error bound in Ξtrain, is computed, and
is used as the error bound for the reduced model. Therefore, the maximal true error εabmax = max

µi∈Ξ
εab(µi) or

εremax = max
µi∈Ξ

εre(µi) is used for a comparison. In the following, Ξ in the definitions of εabmax or εremax may refer to

Ξjtrain or Ξjver, j = 1, 2, 3, 4. When the error bound for H̃(µ) of the reformulated reduced system in Section 7 is
studied, the corresponding true errors are denoted by ε̃abmax and ε̃remax respectively.

9.1 Results for ∆(s)

The two examples of LTI systems involved in this subsection have symmetric positive definite matrix E and sym-
metric matrix A. One example is a SISO system, the model of a peek inductor. The other is a single-input,
multiple-output (SIMO) system, the model of a optical filter. They can be found in the Oberwolfach MOR bench-
mark Collection2. Both examples are in the form of (1). The model of the peek inductor is of size n = 1434, and

2URL: http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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the size of the optical filter model is n = 1668. There are 5 outputs for the filter model. The working frequency
range for the peek inductor is f ∈ [0, 10GHz], numerically f ∈ [0, 1010]. The optical filter is assumed to work in
the range of f ∈ [0, 1KHz], numerically f ∈ [0, 103]. For each example, the variable s is sampled in the above
frequency interval to form the sample space Ξtrain in Algorithm 1.

Example 1: the peek inductor

For this example, we take the sample space as:

Ξ1
train : {si = 2πfi, fi = 10(i/100), i = 1, . . . , 1000}

where si are the samples in Ξ1
train. The first 6 moments (q = 5 in Algorithm 1) are matched for each chosen

expansion point ŝ. The initial expansion point is taken as ŝ = 2πf̂ = 2π, with f̂ = 1. Three more expansion
points are adaptively selected by Algorithm 1. Finally, a reduced model of order r = 24, and with sufficient
accuracy is derived. The results are listed in Table 1. ∆re(ŝ) in the table is the relative error bound at the selected

Table 1: Peek inductor q = 5, εtol = 10−3, n = 1434, r = 24, Ξ1
train

iteration ŝ/(2π) εremax ∆re(ŝ)
1 1 0.23 1.86× 104

2 1× 1010 0.04 2.85× 103

3 4× 107 6.6× 10−5 0.3
4 3.89× 108 4× 10−8 3.5× 10−4

expansion point ŝ, which is also the maximal error of the reduced model in Ξ1
train estimated by ∆re(s). εremax

is the true maximal relative error of the reduced model in Ξ1
train, at the current iteration step. The final reduced

model is obtained at the last iteration step, and this is also the case for the results in all the Tables (Figures) below.
The data shows that ∆re(s) is a bound for the true error of the reduced model at all the samples in Ξ1

train. The
results for the absolute error is listed in Table 2, where ∆(ŝ) has been demonstrated to be a rigorous bound for
εabmax, the maximal absolute error of the reduced model in Ξ1

train.

Table 2: Peek inductor q = 5, εtol = 10−3, n = 1434, r = 24, Ξ1
train

iteration ŝ/(2π) εabmax ∆(ŝ)
1 1 0.02 252.8
2 1.4× 107 1.9× 10−4 2.42
3 1× 1010 3.6× 10−6 2.5× 10−2

4 1.2× 108 7.5× 10−9 1× 10−4

In Figure 1, we further show that ∆re(s) can actually bound the true error εre(s) of the final reduced model
in the whole frequency range. That means, if we use more densely distributed samples: e.g. 2000 exponentially
distributed samples,

Ξ1
ver : {si = 2πfi, i = 1, . . . , 2000, fi = 10(i/200)}

to represent the whole interesting frequency interval [0, 1010], the errors of the reduced model at those sample
points are still smaller than ∆re(ŝ) = 3.5× 10−4 at the last iteration step in Table 1, which is the error bound for
the final reduced model.

Similar results can be given by the absolute error bound ∆(s), and will not be repeated.
It is interesting to see that the training sample space Ξtrain doesn’t have to be too rich. If 2000 samples are

taken to form the training space (instead of the previously used 1000 samples in Ξ1
train):

Ξrich1
train : {fi = 10(i/200), si = 2πfi, i = 1, . . . , 2000},

the results in Table 3 and 4 are more or less the same as those in Table 1 and 2.
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Figure 1: Peek inductor, the true error of the reduced model over Ξ1
ver.

Table 3: Peek inductor q = 5, εtol = 10−3, n = 1434, r = 24, Ξrich1
train

iteration ŝ/(2π) εremax ∆re(ŝ)
1 1 0.23 1.86× 104

2 1× 1010 0.04 2.85× 103

3 4× 107 6.6× 10−5 0.3
4 3.89× 108 4× 10−8 3.5× 10−4

Example 2: the tunable optical filter3

The second example is a SIMO system, so the definitions for true errors and the error bounds of the MIMO systems
are used.

In this example, we choose 600 sample points in the interesting frequency interval f ∈ [0, 103] to form the
sample space,

Ξ2
train : {fi = 10(i/200), si = 2πfi, i = 1, . . . , 600}.

Finally, 42 samples are selected as the expansion points. The reduced model is of order r = 12. In Algorithm 1,
we take q = 1, i.e. the first 2 moments are matched for each expansion point.

The dashed line in Figure 2(a) shows the absolute error bound ∆(ŝ) at each of the selected expansion point ŝ,
which bounds the true maximal absolute error εabmax, plotted by the solid line.

In order to validate the error bound, the true errors εab(s) of the final reduced model at more dense sample points
are plotted in Figure 2(b). There are 2100 exponentially distributed sample points taken in [0, 103]:

Ξ2
ver : {fi = 10(i/700), si = 2π

√
−1fi, i = 1, . . . , 2100}.

The true error at each sample point is also below the error bound at the final iteration step in Figure 2(a).
The results of the relative error bound ∆re(s) is presented in Table 5. Here the final reduced model with good

accuracy is obtained within 5 iteration steps, and 5 expansion points ŝ are used.

9.2 Results for ∆g(s)

We use the model of an interconnect4 to demonstrate the behavior of ∆g(s). The model is of size n = 6134.
Since the matrix E is singular, the error bound ∆(s) is not valid anymore. The interesting frequency range is
f ∈ [0, 3GHz], i.e. f ∈ [0, 3× 109].

A training sample space containing 900 samples:

Ξ3
train : {fi = 3× 10(i/100), si = 2πfi, i = 1, . . . , 900}

3From the Oberwolfach model reduction benchmark collection http://simulation.uni-freiburg.de/downloads/benchmark
4The detailed description for the example can be found in [20]
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Table 4: Peek inductor q = 5, εtol = 10−3, n = 1434, r = 24, Ξrich1
train

iteration ŝ/(2π) εabmax ∆(ŝ)
1 1 0.02 252.8
2 1.4× 107 1.9× 10−4 2.42
3 1× 1010 3.6× 10−6 2.5× 10−2

4 1.2× 108 7.5× 10−9 9.2× 10−5
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Figure 2: Optical filter, q = 1, εtol = 10−3, n = 1668, r = 12.

is used to compute the expansion points. The simulation results of ∆g(s) and of ∆re
g (s) are listed in Table 6 and

Table 7. A reduced model is successfully found by using either ∆g(s) or ∆re
g (s) after 7 iteration steps.

To test the rigorousness of the error bound ∆g(s), we plot in Figure 3 the true absolute errors of the final reduced
model at 2700 exponentially distributed samples in f ∈ [0, 3× 109]:

Ξ3
ver : {fi = 3× 10(i/300), si = 2π

√
−1fi, i = 1, . . . , 2700}.

The errors are all below the error bound ∆g(ŝ) = 6.64 × 10−8 in Table 6, the error bound for the final reduced
model derived at the last iteration step.

It is analyzed at the end of Section 4 that for Galerkin projection, the error bound ∆g(s) using V du computed
from (65) should perform better than the error bound, say ∆0

g(s) using V du = V . Here we show the behavior of
∆0
g(s) in Figure 4. With the same inputs for Algorithm 1, we compare ∆0

g(s) in Figure 4 to ∆g(s) in Table 6. It
is obvious that ∆0

g(s) decreases much slower than ∆g(s). Using ∆g(s), the algorithm constructs the final reduced
model within 7 iteration steps; while using ∆0

g(s), it takes 84 iterations. It is observed that the residual of the dual
system ||rdu||2 decreases at least as fast as ||rpr||2 if V du 6= V . However, ||rdu||2 stagnates at around O(1) for the
case V du = V , while ||rpr||2 keeps decreasing.

9.3 Results for ∆p(µ) and ∆̃p(µ)

In this subsection, we show the behavior of the error bounds ∆p(µ) and ∆̃p(µ) in Theorem 3 by using the param-
eterized system for a MEMS model5 as an example. It is of the following formulation

M(d)ẍ+D(θ, α, β, d)ẋ+ T (d)x = Bu(t),
y = Cx.

Here,M(d) = (M1+dM2), T (d) = (T1+ 1
dT2+dT3),D(θ, α, β, d) = θ(D1+dD2)+αM(d)+βT (d) ∈ Rn×n,

n=17,913. The parameters are d, θ, α, β.
5Benchmark available at http://modlereduction.org.

20



Table 5: The tunable optical filter q = 1, εtol = 10−3, n = 1668, r = 12

iteration ŝ/(2π) εremax ∆re(ŝ)
1 1 2.5 3.2× 103

2 966 3.8× 10−3 21.1
3 462.4 3.4× 10−5 0.17
4 676 4.8× 10−6 7.9× 10−2

5 188.4 9.3× 10−8 8.7× 10−4

Table 6: RLC tree q = 5, εtol = 10−3, n = 6134, r = 24, Ξ3
train

iteration ŝ/(2π) εabmax ∆g(ŝ)
1 0 0.3916 2.93× 106

2 3.0000× 109 5.4495× 10−4 3.93× 105

3 1.7665× 109 4.1075× 10−8 31.54
4 1.1146× 109 4.1076× 10−8 3.11
5 2.1733× 109 4.1073× 10−8 0.23
6 2.4385× 109 4.1070× 10−8 3.3× 10−3

7 0.3525× 109 4.1077× 10−8 6.64× 10−8

After Laplace transform, the system in frequency domain is

s2M(d)x+ sD(θ, α, β, d)x+ T (d)x = Bu(s),
y = Cx.

The above system can be rewritten into the affine form,

G(µ)x = Bu(µ),
y = Cx,

where G(µ) = T1 +µ1M1 +µ2M2 +µ3D1 +µ4D2 +µ5M1 +µ6M2 +µ7T1 +µ8T2 +µ9T3 +µ10T2 +µ11T3.
Here µ = (µ1, . . . , µ11)T includes the newly generated parameters, µ1 = s2, µ2 = s2d, µ3 = sθ, µ4 = sθd,
µ5 = sα, µ6 = sαd, µ7 = sβ, µ8 = sβ/d, µ9 = sβd, µ10 = 1/d, µ11 = d.

The transfer function of this system is of very small magnitude, which is in the interval [10−7, 10−4] [21].
Therefore, the tolerance εtol for the absolute error of the reduced model is assigned a small value εtol = 10−7. The
tolerance εtol for the relative error is taken as εtol = 10−2.

For this example, the training sample space is taken as Ξ4
train:

{3 random θ ∈ [10−7, 10−5], 10 random s, 5 random d ∈ [1, 2], and α = 0, β = 0}.

The frequency range for s = 2πf is f ∈ [0.025, 0.25]KHz, numerically f ∈ [0.025, 0.25]. There are totally
150 samples of µ = (µ1, . . . , µ11). It is indicated in [44], that α = 0 and β = 0 do not affect the accuracy of the
reduced model, therefore they are taken as zeros in Ξ4

train.

Behavior of ∆p(µ)

Figure 5 shows the error bound ∆p(µ) and the true absolute error εabmax at each iteration step of Algorithm 2. The
plot on the right is the effectivity ∆p(µ)

εab
max

, which shows the sharpness of the error bound. It is already below 10 at
the final iterations in Algorithm 2, showing the error bound is close to the true error. Here R0, R1, R2 in (62) are
used for each expansion point µi to generate the projection matrix V , the resulting reduced model is of size 804,
where 33 expansion points have been selected.

To further reduce the size of the reduced model, one may use only R0, R1 for each µi. The case is shown in
Figure 6. The computed reduced model is of a much smaller size 210, and 36 expansion points have been selected.

To verify the reduced model obtained by the above two cases,
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Table 7: RLC tree q = 5, εtol = 10−3, n = 6134, r = 26, Ξ3
train

iteration ŝ/(2π) εremax ∆re
g (ŝ)

1 0 1.25 6.07× 107

2 2.67× 109 1.4660× 10−4 6.08× 104

3 1.77× 109 3.3174× 10−8 22.69
4 9.27× 108 3.3161× 10−8 8.23
5 3.00× 109 8.7115× 10−10 1.47
6 1.34× 109 8.7809× 10−10 1.32
7 3.44× 108 8.6021× 10−10 9.70× 10−6
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·109

10−15

10−13

10−11

10−9

10−7

Frequency (Hz)

εab(s)

Figure 3: The true error of the reduced model (with size r = 24) over Ξ3
ver.

• Case 1: Vµi = span{BM , R1, R2}µi ,

• Case 2: Vµi = span{BM , R1}µi ,

a much denser sample space is taken as

Ξ4
ver : {5 random θ, 50 random s, 10 random d, and α = 0, β = 0}.

There are totally 2500 samples of µ = (µ1, . . . , µ11). The data of the two reduced models are listed in Table 8. In
the table, ∆p(µ

final) is the value of the error bound ∆p(µ) at the expansion point µfinal selected by Algorithm 2
at the final iteration step, which is the error bound for the final reduced model. The true error of the reduced model
is very close to but below ∆(µfinal) in each case, showing that the error bound is both rigorous and sharp. The
number of the iterations indicates the total iteration steps implemented in the greedy algorithm. To evaluate the
transfer function over Ξ4

ver, one needs 1295 seconds if the reduced model of size 804 is used. In stead, only 29
seconds is needed, if the reduced model in the second case is used.

Table 8: Verification of the final ROMs over Ξ4
ver.

Cases ∆p(µ
final) εabmax iterations ROM size time

Case 1 7.4× 10−8 1.77× 10−9 33 804 1295s
Case 2 7.1× 10−8 1.4× 10−9 36 210 29s

The relative error bound ∆re
p (µ) behaves as well as the absolute error bound. The results in Figure 7 are

computed using BM , R1 for each expansion point. The reduced model is of order r = 216, and 39 expansion
points have been selected after 39 iterations. The figure again shows the robustness of the error bound.
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Figure 5: Vµi = span{R0, R1, R2}µi , i = 1, . . . , 33. εtol = 10−7, ROM size=804.

Behavior of ∆̃p(µ)

In Section 7, we propose a reformulated reduced system, whose transfer function is exactly ỹ(µ), so that the error
bound for the transfer function of the reformulated reduced system is ∆̃p(µ). Figure 8 shows the decay of ∆̃p(µ)
with the iterations in the greedy algorithm, Algorithm 2. When compared to the error bound ∆p(µ) for the reduced
system in (10), the error bound ∆̃p(µ) for the reformulated reduced system is sharper. When ∆̃p(µ) is used in the
greedy algorithm, there are 34 iterations used, instead of 36 iterations for ∆p(µ), shown in Figure 6. However, the
difference is not that much. The big difference is the size of the reduced models. The reformulated reduced system
is of size r = 429, while the reduced system obtained using ∆p(µ) is of size r = 216.

9.4 Sharpness of the error bounds
It can be seen that for the examples studied, the error bounds ∆(s) and ∆g(s) are not sharp at most iterations of the
greedy algorithm. One key reason might be the values α(s), γ(s) on the denominator of ∆(s), and the value β(s)
on the denominator of ∆g(s) are too small. In Subsection 9.1, α(s) is aroundO(10−9) and γ(s) is atO(10−13) for
the first example optical filter. For the second example peek inductor, γ(s) is at O(10−13), though α(s) is around
O(10−3).

In Subsection 9.2, β(s) in ∆g(s) is around 1 × 10−4. If we use another example to check ∆g(s), it behaves
much better. The example is a model of a CDplayer, of size n = 120. It is observed that the values of β(s) at all
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Figure 6: Vµi = span{BM , R1}µi , i = 1, . . . , 36, εtol = 10−7, ROM size=210.
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Figure 7: Vµi = span{BM , R1}µi , i = 1, . . . , 39, εtol = 10−2, ROM size=216.

the samples of s are between 0.2 and 700. The decay of the error bound ∆g(s) with the iterations in the greedy
algorithm is listed in Table 9. Compared to the results of ∆g(s) in Table 6, the error bound is much sharper.

Notice that in the beginning, either the error bound ∆p(µ) or ∆̃p(µ) is actually not sharp at all, this is also
because the smallest singular value β(µ) of the matrix G(µ), which appears in the denominator of the error bound,
is very small, around O(10−8). With the iterations in the greedy algorithm going on, the two residuals on the
numerator decrease very fast, so that the error bound quickly becomes much sharper.

It should be pointed out that the greedy algorithm is used to construct the reduced model, hence the final reduced
model is only available at the last iteration step of the algorithm. The reduced models at the intermediate iterations
are less important than the reduced model at the final iteration step. What does matter is that the error of the
finally derived reduced model is not only below the acceptable tolerance εtol, but also closely estimated by the
error bound. Therefore, the sharpness of the error bound at the last iteration step is of most importance.

10 Conclusions
In this work, we proposed some a posteriori error bounds for reduced order modelling of linear parametrized
systems. The error bound ∆(s) for linear systems with symmetric A and symmetric positive definite E can be
cheaply computed, so that the reduced model can be constructed efficiently. The computation of the error bound
∆g(s) or ∆p(µ) requires solving an eigenvalue problem for each sample in the training sample space. More
efficient and robust methods for computing or estimating ∆g(s) and ∆p(µ) will be studied in the future. The error
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Figure 8: Vµi = span{BM , R1}µi , i = 1, . . . , 34, εtol = 10−7, ROM size=429.

Table 9: RLC tree q = 5, εtol = 10−3, n = 120, r = 60, Ξ3
train

iteration ŝ/(2π) εremax ∆re
g (ŝ)

1 0 61.02 8.3× 103

2 3.61 28.43 2.10× 103

3 48.8 8.88 3.86× 103

4 11.8 0.74 513.7
5 94.4 0.73 199.6
6 615 0.0019 0.27
7 482 9× 10−4 0.02
8 1000 4.4× 10−5 1.27× 10−4

bounds are rigorous. The sharpness of the error bounds depends, nevertheless, on the properties of the system
matrices E, A or G(µ). It is demonstrated that with the guidance of any of the proposed error bounds, the reduced
models computed with Krylov subspace based MOR methods can be generated automatically and reliably. It is
possible that the error bound ∆g(s) or ∆p(µ) may realize automatic implementation of other MOR methods which
are based on approximation of the transfer function.
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