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Abstract

We discuss a Krylov subspace projection method for model order reduction of
a special class of quadratic-bilinear descriptor systems. The goal is to extend the
two-sided moment-matching method for quadratic-bilinear ODEs to descriptor
systems in an efficient and reliable way. Recent results have shown that the direct
application of interpolation based model reduction techniques to linear descrip-
tor systems, without any modifications, may lead to poor reduced-order systems.
Therefore, for the analysis, we transform the quadratic-bilinear descriptor sys-
tem into an equivalent quadratic-bilinear ODE system for which the moment-
matching is performed. In view of implementation, we provide algorithms that
identify the required Krylov subspaces without explicitly computing the projec-
tors used in the analysis. The benefits of our approach are illustrated for the
quadratic-bilinear descriptor system of semi-discretized Navier-Stokes equations.

Keywords: Model-order reduction, moment-matching, descriptor systems, tensor
matricization.

Corresponding author’s addresses:

Pawan Goyal
Computational Methods in Systems and Control Theory
Max Planck Institute for Dynamics of Complex Technical Systems
Sandtorstr. 1
39106 Magdeburg, Germany
email address: goyalp@mpi-magdeburg.mpg.de

1



1 Introduction

We discuss model order reduction for a single-input single-output (SISO) quadratic-
bilinear descriptor system of the form

E11v̇(t) = A11v(t) +A12p(t) +H1v(t)⊗ v(t) +N1v(t)u(t) + b1u(t), (1a)

v(0) = α, (1b)

0 = A21v(t) + b2u(t), (1c)

y(t) = c1v(t) + c2p(t) +Du(t), (1d)

for time t > 0 and an initial value α ∈ Rn1 , where E11, A11, N1 ∈ Rn1×n1 , A21, A
T
12 ∈

Rn2×n1 , H1 ∈ Rn1×n2
1 , b1, c

T
1 ∈ Rn1 , b2, c

T
2 ∈ Rn2 are the coefficients, v(t) ∈ Rn1 and

p(t) ∈ Rn2 are state vectors, where D is a scalar, and where u(t) is an input to the
system. It is assumed that E11 is invertible as is A21E

−1
11 A12. This means that the

system in (1) reduces to an index-2 linear system, cf. [17], if N1 = 0 and H1 = 0. The
somewhat particular structure of (2) arises in semi-discretizations of Navier-Stokes
equations and reflects the divergence free constraint and the quadratic nonlinearity in
the velocity.

It is an appealing task in the field of numerical analysis to identify efficient numeri-
cal methods that can be used to analyze and study engineering problems for complex
dynamical processes. These dynamical processes are often described by ordinary differ-
ential equations (ODEs) or partial differential equations (PDEs). Spatial discretization
of such governing equations leads to large scale systems of ODEs or the more general
differential algebraic equations (DAEs). Simulation or design of these large scale sys-
tems often is computationally cumbersome, and it is hardly possible to get fast and
accurate solutions. A remedy to this problem is model order reduction (MOR) which
can play an important role in improving the simulation time. For linear systems, well-
established model reduction techniques have been proposed in the literature [1, 8, 24].
Some of these techniques have already been extended to nonlinear systems, however,
there are many open questions that need further research.

Model reduction techniques for nonlinear systems with the quadratic-bilinear non-
linearities can be classified broadly into two classes, trajectory-based methods and
moment-matching methods. The proper orthogonal decomposition method [2, 9, 10,
11, 21] is a well-known trajectory-based method, where a set of snapshots of the state
trajectory are used to compute a Galerkin projection of the nonlinear system. Another
approach is the so-called trajectory piecewise linear (TPWL) method [22], in which
the nonlinear state equation is written as a weighted combination of the linear systems
which allows us to employ linear reduction techniques. We refer to [1, 15], for details
on these trajectory based methods, which can identify highly accurate reduced-order
systems with the main drawback of depending strongly on the training input. This
means that the reduced-order system obtained from these methods may not be suit-
able for applications in control or in optimization, where input variation is the main
goal.

On the other hand, moment-matching methods tend to approximate the input-
output behavior of the system well and therefore, unlike trajectory based methods,
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these methods are not bound to a specific input. Extending well-known results for lin-
ear ODEs, the moment-matching problem has been considered in [4, 14] for quadratic-
bilinear ODEs for one-sided moments. The latest extension was to two-sided moment-
matching for the SISO quadratic-bilinear ODEs [6].

In this paper, we study two-sided moment-matching technique for model reduction
of the Stokes-type quadratic-bilinear descriptor systems (1). This class of quadratic
bilinear descriptor systems is different from the one considered in [13]. Here, we
propose a structured approach is required, since the direct implementation of [4, 6, 14]
to the descriptor system might lead to an unbounded error in some norm, cf., in
particular, [16], where it was shown that the direct extension of moment-matching
techniques for linear ODEs to linear DAEs may lead to unbounded H2 or H∞ error.
An extension of the ideas presented in [16] to a special class of bilinear descriptor
systems is presented in [12].

The first contribution of this paper is to transform the system in (1) into an equiv-
alent quadratic-bilinear ODE system. This is done by introducing projectors similar
to those used in [16, 19] for linear systems. The second contribution is to reduce the
equivalent ODE system by constructing basis matrices for Krylov subspaces without
explicitly computing the projectors.

The paper is organized as follows: Section 2 contains the background theory on
the two-sided moment-matching technique for model reduction of quadratic-bilinear
ODEs; Section 3 presents the transformation of the system (1) to an equivalent
ODE system and shows how two-sided moment matching can be used to obtain
a reduced-order system and discusses the implementation issues of the two-sided
moment-matching technique for the equivalent system; Section 4 shows how the gen-
eral case with b2 ̸= 0 can be treated with the same technique. Finally, in Section 5,
we provide results of numerical tests for semi-discretized Navier-Stokes equations with
quadratic-bilinear nonlinearities.

2 Quadratic-Bilinear DAEs and Background Work

In this section, we briefly review some properties of the general quadratic-bilinear
differential algebraic equations (QBDAEs),

ΣQB :

{
Eẋ(t) = Ax(t) +Hx(t)⊗ x(t) +Nx(t)u(t) + bu(t),

y(t) = cx(t), x(0) = 0,
(2)

with E,A,N ∈ Rn×n, H ∈ Rn×n2

, b, cT ∈ Rn, and where x(t) ∈ Rn, u(t) ∈ R, and
y(t) ∈ R are the state, input, and output of the system, respectively. It is assumed
that E is nonsingular. Notice that the system (2) can be seen as combination of a
purely quadratic system and a bilinear control system and it is shown in [14] that
a large class of nonlinear systems can be transformed to this kind of representation
allowing it to be used for many applications.

In frequency domain, the system (2) can be represented by a nonlinear input-output
map that involves an infinite set of multivariate functions [23], often called the gener-
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alized transfer functions of the subsystems associated with ΣQB . These multivariate
transfer functions can be identified explicitly, for example, via the growing exponential
approach [6, 23]. In its symmetric form, the first two generalized transfer functions
are

G(1)(s1) = c (s1E −A)−1b︸ ︷︷ ︸
L(s1)

and

G(2)(s1, s2) =
1

2
c ((s1 + s2)E −A)

−1 [
N (L(s1) + L(s2))

+H (L(s1)⊗ L(s2) + L(s2)⊗ L(s1))
]
.

A goal of interpolation based model reduction for ΣQB is to find a reduced quadratic-
bilinear DAE of similar form whose leading k generalized transfer functions interpolate
the original one. That is

G(i)(σ1, . . . , σi) = G(i)
r (σ1, . . . , σi), i = 1, . . . , k,

where the σis are the interpolation points for the generalized transfer function corre-
sponding to si. In the literature, cf., e.g., [6, 14], often k is set to 2, so that the inter-
polation concept is analyzed for the first two transfer functions. We will also restrict
ourself to this setting. Notice that for i = 1, the problem reduces to the well known
interpolation concept for linear systems [1]. Thus, a series expansion of G(1)(s1) at an
interpolation point σ can identify the so-called moments of G(1) and if we construct a

reduced-order system G
(1)
r (s1) whose first q moments coincide with the original system

moments, then G
(1)
r (s1) should be locally equal to G(1)(s1). The issue is, however, to

identify a reduced-order system which in addition also achieves moment-matching for

G(2)(s1, s2) so that G
(2)
r (s1, s2) is also locally equal to G(2)(s1, s2). To achieve this, a

one-sided projection technique has been introduced in [14], which is then extended in
[6] to a two-sided projection framework.

Similar to the linear case, the projection scheme involves identifying suitable basis
matrices V ∈ Rn×r and W ∈ Rn×r, approximating the state vector as x(t) ≈ xr(t) =
Vx(t) and ensuring the Petrov-Galerkin condition:

WT (EVẋr(t)−AVxr(t)−HVxr(t)⊗ Vxr(t)−NVxr(t)u(t)− bu(t)) = 0,

yr(t) = cVxr(t), xr(0) = 0.

This means that the reduced-order system matrices are of the form

Er = WTEV, Ar = WTAV, Hr = WTHV ⊗ V,
Nr = WTNV, br = WT b, cr = cV.

(3)

Recall that, in case of one-sided projection, W = V and therefore moment-matching
is related only to the choice of V. However in case of two-sided projection, both V
and W play an important role for matching more moments of G1(s1) and G2(s1, s2).
Next, we outline a theorem, preceded by some definitions, which suggests a choice of
V and W that ensures the required moment-matching criteria.
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Definition 2.1 (Matricization, cf., e.g., [6, 20]). By X(k), we denote the matrix that
is obtained by unfolding the K-dimensional tensor X ∈ RI1×I2×···×IK along the kth
dimension, k ∈ 1, 2, . . . ,K. This k-matricization is formally obtained via the mapping
of the tensor indices (i1, i2, . . . , iK) onto the matrix indices (ik, j) via

j = 1 +

K∑
l=1,l ̸=k

(il − 1)Jl, where Jl :=

l−1∏
m=1,m̸=l

Im.

We observe that the matrixH ∈ Rn×n2

in (2) can be interpreted as a 1-matricization
of a 3-dimensional tensor H ∈ Rn×n×n and the remaining two matricizations H(2) and
H(3) are related to H as follows. Without loss of generality [6] we can assume that
H(u⊗ v) = H(v ⊗ u) which implies that

wTH(u⊗ v) = uTH(2)(v ⊗ w) = uTH(3)(v ⊗ w),

where u, v, w ∈ Rn are arbitrary vectors and H is such that it holds H(2) = H(3).
The above relation is used in Theorem 2.2 which explains the appearance of H(2) in
the provided algorithm. For later reference we state the main results and the basic
algorithm on two-sided moment-matching for general DAEs as developed in [6].

Theorem 2.2 ([6], Thm. 4.1). Let E,A,H,N, b, c be the coefficient matrices of a
quadratic-bilinear DAE as in (2). Suppose F (s) := sE −A and σi ∈ C be the interpo-
lation points such that F (σ̃i) is invertible for σ̃i = {σi, 2σi}, i = 1, . . . , r. Assume that
a reduced quadratic-bilinear DAE is constructed by using a Petrov-Galerkin projection
resulting in Er, Ar, Hr, Nr, br and cr as defined in (3). Then, if the basis matrices
V and W are such that

span{V} =
∪

i=1,...,r

span{V(i)} and span{W} =
∪

i=1,...,r

span{W(i)},

where Vi and W(i) are

span{V(i)} = span
{
F (σi)

−1b, F (2σi)
−1

[
H(F (σi)

−1b⊗ F (σi)
−1b) +NF (σi)

−1b
]}

,

span{W(i)} = span
{
F (2σi)

−T cT , F (σi)
−T

[
H(2)(F (σi)

−1b⊗ F (2σi)
−T cT )

+ 1
2N

TF (2σi)
−T cT

]}
.

Then, the following moments are matched:

G(1)(σi) = G(1)
r (σi), G(1)(2σi) = G(1)

r (2σi),

G(2)(σi, σi) = G(2)
r (σi, σi),

∂

∂s1s2
G(2)(σi, σi) =

∂

∂s1s2
G(2)

r (σi, σi), j = 1, 2,

for i = 1, . . . , r.
(4)
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This theoretical result gives rise to the following algorithm:

Algorithm 1 Model Reduction for general QBDAEs

1: Input: E,A,H,N, b, c, σ1, . . . , σr.
2: Construct the projection matrices V and W using Theorem 2.2.
3: Determine the reduced-order system as:

Er = WTEV, Ar = WTAV, Hr = WTHV ⊗ V,
Nr = WTNV, br = WT b, cr = cV.

Note that, in general, V is a dense matrix and the computation of V ⊗ V can be
numerically infeasible. However, one can rely on concepts used in tensor theory to
compute WTHV ⊗ V efficiently [6].

Remark 2.1. Theorem 2.2 does not differentiate between E singular and E non-
singular. As long as the inverse (sE − A)−1 evaluated at s = σi and s = 2σi exists,
the reduced quadratic-bilinear system will satisfy (4). However, if E is singular, the
application of Theorem 2.2 may lead to a reduced-order system with an unbounded

approximation error, i.e., ∥G(1) − G
(1)
r ∥H2 = ∞ or ∥G(2) − G

(2)
r ∥H2 = ∞, cf. the

discussion of model reduction for linear descriptor systems in [16]. Turning the ar-
guments around, in the ODE case, i.e., if E is not singular, we can expect a good
performance of Algorithm 1.

3 Model Reduction of Stokes-Type Quadratic-Bilinear
DAEs

In view of the issues raised in Remark 2.1, in this section, we discuss the transforma-
tion of the Stokes-type quadratic-bilinear descriptor system (1) to an equivalent ODE
system. In addition, we address some computation aspects related to the intended
model reduction procedure.

3.1 Transformation of the Stokes-type QBDAE

We consider the Stokes-type quadratic-bilinear descriptor systems (1) which can be
transformed into an equivalent quadratic-bilinear ODE system. We consider the sys-
tem equations (1) with B2 = 0 and α = 0:

E11v̇(t) = A11v(t) +A12p(t) +H1v(t)⊗ v(t) +N1v(t)u(t) + b1u(t), (5a)

v(0) = 0, (5b)

0 = A21v(t), (5c)

y(t) = c1v(t) + c2p(t) +Du(t). (5d)

For the analysis, we consider a decoupling, cf. [18, Thm. 8.6], of (5) into an algebraic
and a differential part as

p(t) = −(A21E
−1
11 A12)

−1A21E
−1
11

(
A11v(t) +H1v(t)⊗ v(t) +N1v(t)u(t) + b1u(t)

)
(6)
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and

E11v̇(t) = ΠA11v(t) + ΠH1v(t)⊗ v(t) + ΠN1v(t)u(t) + Πb1u(t), v(0) = 0,

y(t) = Cv(t) + CHv(t)⊗ v(t) + CNv(t)u(t) +Du(t),
(7)

where

C = c1 − c2(A21E
−1
11 A12)

−1A21E
−1
11 A11, CH = −c2(A21E

−1
11 A12)

−1A21E
−1
11 H1,

CN = −c2(A21E
−1
11 A12)

−1A21E
−1
11 N1, D = D − c2(A21E

−1
11 A12)

−1A21E
−1
11 b1,

and
Π = I −A12(A21E

−1
11 A12)

−1A21E
−1
11 . (8)

In what follows, we assume that A21 = AT
12. The arguments for the unsymmetrical

case are laid out in [16] and can be readily applied in the current nonlinear setting.
Note that Π is the discrete Helmholtz projector that is commonly used [16, 18, 19]

to transform Stokes type DAEs into ODEs and that has the following properties:

Π2 = Π, E11Π = ΠTE11, ker(Π) = range (A12) , and range (Π) = ker(AT
12E

−1
11 ).

Using these properties of Π, one can derive that

AT
12z = 0 if, and only if, ΠT z = z. (9)

By construction, a solution v(t) of (7) fulfills AT
12v(t) = 0, so that in (7), we can

replace v(t) by ΠT v(t) and, using Π = Π2 and E11Π = ΠTE11, we obtain the following
equivalent system

ΠE11Π
T v̇(t) = ΠA11Π

T v(t) + ΠH1

(
ΠT v(t)⊗ΠT v(t)

)
+ΠN1Π

T v(t)u(t) + Πb1u(t),
(10a)

y(t) = CΠT v(t) + CH
(
ΠT v(t)⊗ΠT v(t)

)
+ CNΠT v(t)u(t) +Du(t), (10b)

with v(0) = 0. The above dynamical system (10) lies in the n1 − n2 dimensional null
space of Π. Therefore, as in [19], we can decompose the projector Π as

Π = ϕ1ϕ
T
2 , (11)

with ϕ1, ϕ2 ∈ Rn1×n1−n2 satisfying

ϕT
1 ϕ2 = I.

This decomposition allows us to write (10) in the following form

ϕT
2 E11ϕ2

˙̃v(t) = ϕT
2 A11ϕ2ṽ(t) + ϕT

2 H1

(
ϕ2ṽ(t)⊗ ϕ2ṽ(t)

)
+ ϕT

2 N1ϕ2ṽ(t)u(t) + ϕT
2 b1u(t),

(12a)

y(t) = Cϕ2ṽ(t) + CH
(
ϕ2ṽ(t)⊗ ϕ2ṽ(t)

)
+ CNϕ2ṽ(t)u(t) +Du(t), (12b)
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with ṽ(t) = ϕT
1 v(t) and ṽ(0) = 0. Thus, model reduction of the original quadratic-

bilinear DAE is equivalent to the reduction of (10) and (12). However, the equivalent
system in (12) has the advantage that the matrix ϕT

2 E11ϕ2 is nonsingular (ϕ2 has full
column rank). Therefore, standard Krylov subspace technique for model reduction of
a quadratic-bilinear system, discussed in Section 2, can be employed to the system (12)
in order to obtain a reduced-order system.

Note that the output equation of the system (12) involves nonlinear terms in the state
and input. It is still an open problem to consider the nonlinear terms in the output
equations in order to compute the projection matrices and need further research in this
direction. In this paper we restrict ourself to the linear relation between the state and
the output by neglecting the nonlinear terms in the output as far as the computation of
the projection matrices V and W are concerned. Having neglected these terms in (12),
we consider the following equation

ϕT
2 E11ϕ2

˙̃v(t) = ϕT
2 A11ϕ2ṽ(t) + ϕT

2 H1

(
ϕ2ṽ(t)⊗ ϕ2ṽ(t)

)
+ ϕT

2 N1ϕ2ṽ(t)u(t) + ϕT
2 b1u(t),

ỹ(t) = Cϕ2ṽ(t),
(13)

for the definition of the projection matrices by applying Theorem 2.2 in order to
identify the reduced quadratic-bilinear system.

Remark 3.1. Algorithm 1 may safely be applied (cf. Remark 2.1) to the system (7),
which is an equivalent quadratic-bilinear ODE system too. To avoid the projector Π and
to stay in line with [16, 19], we rather consider the condensed projected formulation
(13).

The following subsection shows how the computation of ϕ2 or Π can be avoided in
an implementation.

3.2 Computational Issues

We will use the ODE system (13) to compute the projection matrices V and W which
we will apply to reduce the original coefficients E11, A11, H1, N1, b1, C, CH , and CN
to give

Er = WTE11V, Ar = WTA11V, H1r = WTH1V ⊗ V, N1r = WTN1V,
br = WT b1, Cr = CV, CHr = CHV ⊗ V, CNr = CNV.

Thus the reduced system will be independent of ϕ2. However, the definition of V and
W will involve ϕ2 as defined in (9) which might not be easily accessible.

Theorem 3.1. Let F(s) be defined as

F(s) := ϕ2(sϕ
T
2 E11ϕ2 − ϕT

2 A11ϕ2)
−1ϕT

2 .

Also, let V and W be such that

span{V} =
∪

i=1,...,r

span{V(i)} and span{W} =
∪

i=1,...,r

span{W(i)}, (14)
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in which for i = 1 : r

span{V(i)} = span {F(σi)b1,F(2σi) [H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]} , (15)

span{W(i)} = span
{
F(2σi)CT ,F(σi)

[
H(2)

1 (F(σi)b1 ⊗F(2σi)
T CT )

+ 1
2N

T
1 F(2σi)

TCT
]}

, (16)

Then, the following moments are matched:

G(1)(σi) = G(1)
r (σi), G(1)(2σi) = G(1)

r (2σi),

G(2)(σi, σi) = G(2)
r (σi, σi),

∂

∂s1s2
G(2)(σi, σi) =

∂

∂s1s2
G(2)
r (σi, σi), j = 1, 2.

(17)

Here G(1)(s1) and G(2)(s1, s2) are the first two generalized transfer functions of the

equivalent system (13). Similarly, G(1)
r (s1) and G(2)

r (s1, s2) are the first two generalized
transfer functions of the reduced-order system.

Proof. We first define the state matrices in (13) as

Ē11 = ϕT
2 E11ϕ2, Ā11 = ϕT

2 A11ϕ2, H̄1 = ϕT
2 H1(ϕ2 ⊗ ϕ2)

N̄1 = ϕT
2 H1ϕ2, b̄1 = ϕT

2 b1, C̄ = Cϕ2

(18)

For these matrices, if the projection matrices V̄ and W̄ are computed according to
Theorem 2.2, then we can relate them to V and W as

V = ϕ2V̄ , and W = ϕ2W̄ , (19)

respectively. Together with the results required for the proof of Theorem 2.2, we can
easily prove (17) by using the above relations. In the following, we only prove the first
equation in (17) and the remaining equations follow analogously. Since

V̄ (σiW̄
T Ē11V̄ − W̄T Ā11V̄ )−1W̄T b̄1 = (σiĒ11 − Ā11)

−1b̄1, (20)

we use (18) and (19) to have

V̄ (σiWTE11V −WTA11V)−1WT b1 = (σiϕ
T
2 E11ϕ2 − ϕT

2 A11ϕ2)
−1ϕT

2 b1, (21)

Pre-multiplying Cϕ2 on both sides of the above equation one can find that G(1)(σi) =

G(1)
r (σi) holds. Similarly, we can prove the other three equalities in (17).

Theorem 3.1 is based on a moment matching framework that matches the generalized
transfer functions and their first partial derivatives. However, it is also possible to use
an interpolation scheme, as suggested in [5], that also matches higher derivatives of
the first two generalized transfer functions. The following corollary shows the results
for (13) with higher moments matched.
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Corollary 3.1. Let F(s) be as defined in Theorem 3.1 and let V and W be such that

span{V} =
∪

i=1,...,r

span{V(i)
1 , . . . ,V(i)

q }, span{W} =
∪

i=1,...,r

span{W(i)
1 , . . . ,W(i)

q },

in which V(i)
1 and W(i)

1 are the same as V(i) and W(i) in Theorem 3.1 and V(i)
2 , . . . ,V(i)

q

are of the form

span{V(i)
2 } =span

{
F(σi)E11F(σi)b1,F(2σi)E11F(2σi)

[H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]
}
, (22)

span{V(i)
q } =span

{
(F(σi)E11)

q−1F(σi)b1, (F(2σi)E11)
q−1F(2σi)

[H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]
}

(23)

Similarly we can define W(i)
2 , . . . ,W(i)

q . With such projection matrices, the reduced
system does not only ensure (17) but also the matching of higher moments, i.e., the
following equations also hold:

∂p

∂sp1
G(1)(σi) =

∂p

∂sp1
G(1)
r (σi),

∂p

∂sp1
G(1)(2σi) =

∂p

∂sp1
G(1)
r (2σi),

∂i+j

∂si1s
j
2

G(2)(σi, σi) =
∂i+j

∂si1s
j
2

G(2)
r (σi, σi)

for p = 1, . . . , q − 1 and i+ j < 2q − 1.

Note that the projection matrices V and W in Theorem 3.1 (and also V and W in
Corollary 3.1) are projections for the original subsystems G(1)(s1) = C(sE11−A11)

−1b1
and G(2)(s1, s2), that are independent of ϕ2. Now, as a second step, we need to show
that the matrices V(i)and W(i) can also be constructed such that they do not require
the computation of ϕ2.

We start with the subspace associated with V(i). As shown in (15), the column
vectors of V(i), for i = 1, . . . , r can be written as

V(i) = {F(σi)b1,F(2σi) [H1(F(σi)b1 ⊗F(σi)b1) +N1F(σi)b1]} . (24)

The first column of V(i), which is F(σi)b1, can be identified by solving a linear system
that does not resort to ϕ2 [16, 19].

Lemma 3.1 ([16], Lem. 6.3). Let (σ̃ϕT
2 E11ϕ2−ϕT

2 A11ϕ2)
−1 exist for σ̃ = σ or σ̃ = 2σ.

Then v = F(σ̃)f solves [
σ̃E11 −A11 A12

AT
12 0

] [
v
z

]
=

[
f
0

]
, (25)

and w = F(σ̃)T g solves [
σ̃ET

11 −AT
11 A12

AT
12 0

] [
w
q

]
=

[
g
0

]
, (26)
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where f and g are arbitrary vectors or matrices of appropriate sizes.

This means that for Ẽ :=

[
E11 0
0 0

]
and Ã :=

[
A11 A12

A21 0

]
, relation (25) implies

that the first column of V(i) can be given by
[
In1 0

]
(σẼ − Ã)−1b̃1, where In1 is the

identity matrix of size n1 × n1 and b̃T1 =
[
bT1 0

]
.

Lemma 3.1 can also be used to construct the second column of V(i) as well via
setting f = H1(Vi

1(:, 1)⊗ Vi(:, 1)) +N1V(i)(:, 1), where V(i)(:, 1) is the first column of
V(i). Thus we can identify V without explicitly computing ϕ2. Similarly, W can also
be identified from such settings. The framework can also be extended to V and W,
such that they are also independent of ϕ2. The following algorithm summarizes all the
steps for the reduction of the system in (13).

Algorithm 2 Model Reduction for Stokes-type QBDAEs

1: Input: E11, A11,H1, N1, b1, C, CH , CN , σ1, . . . , σr.
2: Output: Er, Ar,H1r, N1r, br, Cr, CHr, CNr.
3: Construct V(i) and W(i)

span{V(i)} = span
{
I0F̃ (σi)

−1B̃, I0F̃ (2σi)
−1P

}
,

where B̃ =

[
b1
0

]
, P =

[
H1

(
V(i)(:, 1)⊗ V(i)(:, 1)

)
+N1V(i)(:, 1)

0

]
,

F̃ (s) = sẼ − Ã and I0 = [In1 , 0].

span{W(i)} = span
{
I0F̃ (2σi)

−T C̃T , I0F̃ (σi)
−1Q

}
,

where C̃T =

[
CT

0

]
, Q =

[
H2

1

(
V(i)(:, 1)⊗W(i)(:, 1)

)
+ (1/2)NT

1 W(i)(:, 1)
0

]
.

4: span{V} = ∪
i=1,...,r

span{V(i)}, and span{W} = ∪
i=1,...,r

span{W(i)}.
5: Construct the reduced-order system:

Er = WTE11V, Ar = WTA11V, H1r = WTH1V ⊗ V, N1r = WTN1V,
br = WT b1, Cr = CV, CHr = CHV ⊗ V, CNr = CNV.

4 The General Case b2 ̸= 0

In the preceding section, we have derived the equivalent representations of the de-
scriptor system (1) under the assumption that b2 = 0. Now, we consider the general
case with b2 ̸= 0 and show how this can be brought back to the b2 = 0 case. The
approach is similar to the approach for linear DAEs with b2 ̸= 0 taken in [16, 19]. In
the nonlinear setting, some extra terms need to be considered. Analogously to the
linear case, we decompose v(t) as

v(t) = v0(t) + vg(t),

with
vg(t) = −E−1

11 A12(A
T
12E

−1
11 A12)

−1b2︸ ︷︷ ︸
Υ

u(t) (27)
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so that and v0(t) satisfies 0 = AT
12v0(t). In the state equations (1), we substitute v(t)

by its decomposition which leads to the following system

E11v̇0(t) = A11v0(t) +A12p(t) +H1v0(t)⊗ v0(t) +N1v0(t)u(t) + B1u(t) + Buu
2(t)

+A12(A
T
12E

−1
11 A12)

−1b2u̇(t), (28a)

v0(0) = α− vg(0) (28b)

0 = AT
12v0(t), (28c)

y(t) = c1v0(t) + c2p(t) + (D − c1E
−1
11 A12(A

T
12E

−1
11 A12)

−1b2)u(t), (28d)

where

N1 = N1 −H1(Υ⊗ I + I ⊗Υ), B1 = b1 −A11Υ, Bu = H1 (Υ⊗Υ)−N1Υ.

Using (28c) and (28a), we can explicitly compute p(t) as

p(t) = −(AT
12E

−1
11 A12)

−1AT
12E

−1
11

(
A11v(t) +H1v0(t)⊗ v0(t) +N1v0(t)u(t)

+ B1u(t) + Buu
2(t) +A12(A

T
12E

−1
11 A12)

−1b2u̇(t)
)
.

(29)

Remark 4.1. With p given through (29), the system (28) is of the form (5) but with
terms containing u(t), u2(t) and u̇(t). Although these terms are functions of u(t), in
a forward simulation, we can consider them as three different inputs. Accordingly, we
can use the transformation steps discussed in Section 3 to obtain an associated ODE
system in v0(t).

In fact, substituting p(t) into (28a), using that AT
12v0(t) = 0 implies ΠT v0(t) = v0(t),

and premultiplying the resulting system by Π, we arrive at an ODE for v0:

ΠE11v̇0(t) = ΠA11v(t) + ΠH1(v0(t)⊗ v0(t)) + ΠN1v0(t)u(t) + ΠBũ(t), (30a)

v0(0) = ΠT (α− vg(0)), (30b)

y(t) = CΠT v0(t) + CH(Π⊗Π)T (v0(t)⊗ v0(t)) + CNΠT v0(t)

+Dũ(t)− c2(A
T
12E

−1
11 A12)

T b2u̇(t), (30c)

where B = [B1,Bu], with the new input ũ(t) := [u(t), u2(t)]T , and where

C = c1 − c2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 A11,

CH = −c2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 H1,

CN = −c2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 N1,

and D = [D1,D2], with

D1 = D − c1E
−1
11 A12A

T
12E

−1
11 A12)

−1b2 − c2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 B1, and

D2 = c2(A
T
12E

−1
11 A12)

−1AT
12E

−1
11 Bu.

12



Note that, because of ΠA12(A
T
12E

−1
11 A12)

−1b2 = 0, the term associated with u̇(t)
in (28a) vanishes.

In Section 3, we have referred to equivalent systems as systems that have the same
solution set. In the current setting, where v(0) ̸= 0 and b2 ̸= 0, this equivalence
is bound to the consistency of the initial value. Bluntly put, if the initial value is
consistent then the decoupled and the original system have the same solution set.
If the initial value is not consistent, then the decoupled system can have a solution
although the original system is not solvable, cf. the following Theorem 4.1.

Theorem 4.1. Consider the state equations (2) and a given input function u ∈
C([0, T ]). A solution (v, p) ∈ C1((0, T ];Rn1)×C([0, T ];Rn2) can only exist if the initial
value α ∈ Rn1 fulfills

α = α0 + E−1
11 A12(A

T
12E

−1
11 A12)

−1b2u(0) (31)

for a α0 ∈ kerAT
12. If this is the case, then (v, p) is defined through v = v0 + vg and p,

where v0, vg, and p solve the decoupled system (30a-c), (27), and (29).

Proof. The claim is a direct consequence of [18, Thm. 8.6] considering also [18, Rem.
8.7].

Remark 4.2. In general, the consistency condition (31) can never hold for all inputs
u ∈ C([0, T ]), which is not seen by the ODE (30a) for v0. In our numerical exper-
iments, for the time being, we will ensure consistency and, thus, equivalence of the
reformulation, by fixing the initial value of the inputs and adjusting the initial value
v(0) accordingly.

Considering the issues raised in Remark 4.1 and Remark 4.2, we can employ Sys-
tem (30) to determine a reduced-order system. With u(t) and u2(t) being considered
as two different inputs, the equivalent system (30) is a multi-input system and the
algorithms for the SISO case of Section 3 do not readily apply. In our numerical
examples, for the case with b2 ̸= 0, we will consider constant inputs for which the
SISO case approach still works. The discussion of moment matching for multi-input
multi-output (MIMO) Stokes-type quadratic-bilinear system we leave to a forthcoming
paper.

5 Numerical Results

In this section, we examine the performance of the proposed approach for Stokes-type
quadratic-bilinear descriptor systems by comparing it to the general version of the
algorithm. To the newly proposed specification of the moment matching algorithm
for Stokes-type systems, we refer as ind2QBmm and to the general moment matching
implementation on the basis of Algorithm 1, we refer as genQBmm.
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5.1 Lid Driven Cavity

As a first test case, we consider a lid driven cavity on the unit square Ω = [0, 1]2, with
the boundary Γ, for time t ∈ (0, 2], modelled by the Navier-Stokes equations for the
velocity v and the pressure p

v̇+ (v · ∇)v− 1

Re
∆v+∇p = 0, (32a)

∇ · v = 0, (32b)

v
∣∣
Γ
= g, (32c)

v
∣∣
t=0

= v0, (32d)

where the Reynolds number Re is a parameter depending on the geometry, a charac-
teristic velocity, and the kinematic viscosity, where g is the Dirichlet condition that
models the driven lid, i.e. v =

[
1 0

]
at the upper boundary and v = 0 elsewhere

at the boundary, and where v0 is an initial condition. We apply a finite element dis-
cretization to (32) using the Taylor-Hood scheme on a uniform mesh which leads to a
system for the discretized velocity v and pressure p of the form

E11v̇ = A11v +Hv ⊗ v +A12p+ f, v(0) = vs (33a)

0 = AT
12v, (33b)

where E11 is the mass matrix and, thus, positive definite, A11 models the discrete
diffusion, H models the discretized convection, and A12 is the discrete gradient op-
erator with its transpose modelling the divergence. The source term f contains the
Dirichlet boundary conditions. For the initial value we choose associated steady-state
solution. The chosen a spatial discretization resulted in a state space dimension of
n1 + n2 = 1681 + 255 = 1936.

The system (33) is extended to a descriptor system as follows. To model the input,
we add b1u := fu to (33a). As the output, we take the average pressure in the
subdomain Ωo = [0.45, 0.55]× [0.7, 0.8], i.e.

y(t) = c2p(t) :=
1

|Ωo|

∫
Ωo

p(t, x)dx (34)

evaluated in the corresponding finite element space. See, Figure 1 for an illustration
of the problem and its discretization. We consider the input to output behavior for
an actuation b1u(t). A model-order reduction for lid driven cavity was also considered
in [13] where the quadratic-bilinear DAE was approximated as a bilinear DAE via Car-
leman bilinearization to determine a reduced-order system employing an H2 optimal
model reduction strategy. However, unlike in this paper, in [13], the driven cavity was
modelled using the Navier-Stokes equations in vorticity-stream function formulations.

As it is common practice in optimal control and model reduction, we consider the
deviation from a reference state instead of the actual state. Therefore, we decompose
v = vs + vδ and p = ps + pδ, where (vs, ps) is the associated steady state solution of
(33), and obtain the system for the deviations (vδ, pδ) as

14



Ωo
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0

0.7
0.8

1

x0
x
1

0

1
|v|

Figure 1: Illustration of the driven cavity for Re = 10, the grid used for the Taylor-
Hood discretization, and the domain of observation Ωo.

E11v̇δ = (A11 + L)vδ +Hvδ ⊗ vδ +A12pδ + b1u(t), vδ(0) = 0, (35a)

0 = AT
12vδ, (35b)

y(t) = c2pδ, (35c)

where L := H(vδ⊗I+I⊗vδ). Note that no parts of the equations have been discarded
as it is typically done in stabilization setups [3, 7]. We use ind2QBmm to approximate
the system described through (35) and compare the results to the results obtained via
genQBmm for two Reynolds numbers Re = 10 and Re = 75.

Reynolds number Re= 10

We first consider the low Reynolds number problem and seek to determine the reduced-
order systems via both approaches. The interpolation points σ are identified by using
IRKA on the linear part of the quadratic bilinear DAE, cf. [16]. The number of
interpolation points is set to 10, which leads to a reduced-order system of order 20.
The time domain simulations for the original and the reduced systems via one-sided
projection (by setting W = V) for u(t) = e−t(2 + sin(2πt)) and the absolute error are
shown in Figure 2. In order to match more moments, we set W ̸= V and identify them
by using Algorithm 2. In case of two-sided moment-matching, we compare results for
the full state vectors which are shown in Figure 3 for the same u(t) and absolute error
in the velocity on the full grid are shown in 4 . These figures clearly show that the
specific approach ind2QBmm captures the dynamics of the original system way much
better than the general approach.

Reynolds number Re= 75

As for the previous example, also for the higher Reynolds number Re = 75 setup,
we determine the interpolation points by applying the IRKA on the linear part. We
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Figure 2: Comparison of the reduced-order systems obtained from the genQBmm and
ind2QBmm implementation for one-sided moment-matching for the input
u(t) = e−t(2 + sin(2πt)).

determined reduced-order systems of order 20 using the newly developed approach
ind2QBmm and the generally valid approach genQBmm using one-sided projection.
The results of the time domain simulations for the original and the reduced systems
for u(t) = 0.5e−t(2+sin(2πt)) as well as the absolute error between the approximations
are shown in Figure 5. We observe that unlike the general implementation genQBmm,
the specific approach ind2QBmm well captures the input-output behavior of the orig-
inal system, see the plot of the relative error in Figure 5. In the case of two-sided
projections, we were unable to determine a stable reduced-order system using either
approach.

5.2 Cylinder Wake

As a second test case, we consider the cylinder wake. The continuous model equations
are the same as (32) but with a spatial domain Ω as illustrated in Figure 6 and
different boundary conditions. Namely, we prescribe a parabolic inflow profile at the
left boundary, do nothing boundary conditions for the outflow at the right boundary,
and no-slip conditions, i.e., v = 0, elsewhere. An application of the Taylor-Hood
finite element scheme gave a system of type (33) of state space dimensions n1 + n2 =
5812 + 805 = 6617.

Again, as the actuation, we add another instance of the source terms, accounting
for the Dirichlet boundary conditions, scaled by the constant scalar value β to the
system. The output was defined as in (34) with the domain of observation Ωo =
[0.6, 0.64]× [0.18, 0.22].
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(a) Full-order system. (b) ind2QBmm (c) genQBmm
.........

0.5

.

1

. 0.

1.74

.

|v|

Figure 3: Comparison of |v| obtained from full and reduced-order for two-sided
moment-matching at t = 2s for the input u(t) = e−t(2 + sin(2πt)).

(a) ind2QBmm

......... 0.

0.8

.

1.9

.

·10−3

.

|v − vr|

(b) genQBmm

......... 0.

0.2

.

0.36

.

|v − vr|

Figure 4: Absolute error of velocity |v − vr| obtained from full and reduced-order sys-
tems for two-sided moment-matching at t = 2s.

Here b2 ̸= 0, because of the normal component of the parabolic inflow profile at the
left boundary. So, the discretized system looks as follows:

E11v̇(t) = A11v(t) +A12p(t) +H1v(t)⊗ v(t) + f1 + b1β, v0 = vs −X , (36a)

0 = A21v(t) + f2 + b2β, (36b)

y(t) = C1v(t), (36c)

where vs is the steady-state solution and X accounts for b2β as defined below. Anal-
ogously to the previous example, here we also consider the system for the deviation
(vδ, pδ) from the steady-state solution (vs, ps) with β = 0 which is given as follows:

E11v̇δ(t) = A11vδ(t) +A12pδ(t) +H1vδ(t)⊗ vδ(t) + b1β, vδ(0) = −X , (37a)

0 = A21vδ(t) + b2β, (37b)

y(t) = c2pδ(t), (37c)
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Figure 5: Comparison of reduced-order systems obtained from the two implemen-
tations for one-sided moment-matching for the input u(t) = 0.5e−t(2 +
sin(2πt)).

where A11 = A11 + H(vs ⊗ I + I ⊗ vs). As discussed in Section 4, the b2 ̸= 0 case
can be appropriately transformed into b2 = 0 by substituting vδ(t) = v0(t)−X where
X = (E−1

11 A12)(A
T
12E

T
11A12)

−1b2β. This results in the following equivalent system

E11v̇0(t) = Ã11v0(t) +A12p(t) +H1v0(t)⊗ v0(t) + B̃, v0(0) = 0, (38a)

0 = A21v0(t), (38b)

y(t) = c2pδ(t), (38c)

where Ã11 = A11 −H(I ⊗ X + X ⊗ I) and B̃ = b1β +H(X ⊗ X )− Â11X . Note that
v0(0) = vδ(0) + X = 0. We set the number of interpolation points to 15 and identify
their location by employing IRKA on the linear part of the quadratic-bilinear DAE,
cf. [16]. This gives us a reduced-order systems of order r = 30 using both methods.
For these settings, we compare the time-domain simulations for two different Reynolds
numbers.

Reynolds number Re=10

For small Reynolds number (Re = 10), we determine the reduced-order systems using
both approaches for one-sided projection (by setting W = V). We plot the time-
domain simulations obtained with both reduced-order systems in Figure 7 for β = 0.5.
We observe that the reduced-order system, determined by the Stokes-type specific
approach ind2QBmmwith one-sided projections, replicates the input-output dynamics
of the original system very well, whereas the general implementation genQBmm fails
to do so. For this example, we were not able to get stable reduced-order systems in
case of two-sided projections for any of both approaches.
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Figure 6: Illustration of the cylinder wake for ν = 10−1, the grid used for the Taylor-
Hood discretization, and the domain of observation Ωo.

For Reynolds number Re= 100

Analogously, we determine reduced-order systems for higher Reynolds number (Re=
100) and compare the time-domain simulations of the reduced-order system obtained
via both approaches in Figure 8 for β = 0.1. Again, we observe that ind2QBmm outper-
forms the general approach genQBmm. However, we also observed that as β increases,
for one-sided moment-matching, also the specific approach ind2QBmm fails to replicate
the input-output behavior of the original system. A visual comparison is performed
through plotting the velocity approximations computed via the original system and the
reduced-order system obtained by the specific approach ind2QBmm (Figure 9) as well
as the absolute error (Figure 10) on the full grid. One can see, that the reduced-order
system also captures the dynamics on the full grid quite accurately.

.........

0.5

.

1

. 0.

1.45

.

|v|

Figure 9: Comparison of |v| obtained from full-order (top) and reduced-order (below)
models on the full grid.
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Figure 7: Comparison of the reduced-order systems obtained through the general ap-
proach genQBmm and through the specific ind2QBmm implementation for
one-sided moment-matching.

6 Conclusions

We have proposed a two-sided moment-matching method for a special class of SISO
quadratic-bilinear descriptor systems. We have applied two-sided moment-matching
to an equivalent quadratic-bilinear ODE, so that a growing unbounded error due to the
systems differential-algebraic nature will not occur. In view of efficient implementation,
we have provided an algorithm that avoids the explicit computation of the projectors
used for decoupling the DAEs into ODEs and purely algebraic equations. For the
example of semi-discretized Navier-Stokes equation, we have shown the efficiency of the
proposed method by comparing it to the approach to reduce quadratic-bilinear systems
that was taken in [6]. For both two-sided and one-sided moment-matching, we could
report significant improvements in the approximations by our proposed approach.

As we have observed in the numerical results, the two-sided moment-matching does
not guarantee the stability of the reduced-order systems. Therefore, as a future av-
enue it is very important to address the stability of reduced-order systems obtained
via moment-matching. Moreover, in our tests, we have chosen the interpolation points
as they are obtained by applying IRKA [16] to the linear part that fulfill the opti-
mality properties for linear systems. It is still an open question how to choose the
optimal interpolation points which minimize the error system in some measure for
quadratic-bilinear systems. Also, an interesting follow-up is the extension of the two-
sided moment-matching to the MIMO case.
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Figure 8: Comparison of reduced-order systems obtained from both implementations
for one-sided moment-matching.

.........

1

. 0.

2

.

×10−3

Figure 10: Absolute error in |v| obtained from the full-order and reduced-order systems
on the full grid.
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