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Abstract

In this paper, we discuss the model order reduction problem for descriptor systems, that
is, systems with dynamics described by differential-algebraic equations. We focus on linear
descriptor systems as a broad variety of methods for these exist, while model order reduction
for nonlinear descriptor systems has not received sufficient attention up to now. Model order
reduction for linear state-space systems has been a topic of research for about 50 years at this
writing, and by now can be considered as a mature field. The extension to linear descriptor
systems usually requires extra treatment of the constraints imposed by the algebraic part of
the system. For almost all methods, this causes some technical difficulties, and these have
only been thoroughly addressed in the last decade. We will focus on these developments in
particular for the popular methods related to balanced truncation and rational interpolation.
We will review efforts in extending these approaches to descriptor systems, and also add
the extension of the so-called stochastic balanced truncation method to descriptor systems
which so far cannot be found in the literature.

Keywords. Differential-algebraic equations, matrix pencils, model order reduction, balan-
ced truncation, interpolation-based approximation, matrix equations.
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1 Introduction
Consider a linear time-invariant descriptor system

Eẋ(t) = Ax(t)+Bu(t), (1a)
y(t) = Cx(t)+Du(t), (1b)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D ∈ Rq×m, x(t) ∈ Rn is the generalized state
space vector, u(t) ∈ Rm is the input, and y(t) ∈ Rq is the output. Here, (1a) represents a
system of linear differential-algebraic equations (DAEs), while (1b) is an output equation,
modeling observations or measurements of the system. Sometimes, the elements of y(t)
are also referred as the quantities-of-interest if the system is used in a (design) optimization
context, and the output quantities in y(t) are the subject of optimization.

Modeling by DAEs has become an ubiquitous tool in many engineering disciplines, in
particular in structural dynamics and multi-body systems as well as in micro- and nanoelec-
tronics, computational electromagnetics, and fluid mechanics, see, e.g., [22, 86, 93, 118],
the DAE examples in [28, Part II], and the benchmarks provided at the Model Order Reduc-
tion Wiki [97]. In mechanics, algebraic constraints arise from holonomic or nonholonomic
constraints, in circuit simulation and other network problems, among others, from Kirch-
hoff’s laws, and in electromagnetics or fluid mechanics by the discretization of conservation
laws like the preservation of mass in the incompressible Navier-Stokes equations. In these
applications, the shear amount of equations like in the modeling of semiconductor devices
or the fine-grain spatial discretization of partial differential equations like the already men-
tioned Navier-Stokes or Maxwell’s equations in electromagnetics, leads to descriptor sys-
tems with n in the thousands to millions or even larger than this. A single forward simulation
of such a system is certainly feasible on modern computer architectures, but simulating a
couple of hundreds of times in the context of design optimization, varying input signals, and
control design, is often out of scope. In these situations, replacing the descriptor system (1)
by a system of the same structure, but of much smaller size r� n by approximating the
input-output relation to a desired accuracy, is beneficial.

A model order reduction problem consists in approximating (1) by a reduced-order model

Ẽ ˙̃x(t) = Ã x̃(t)+ B̃u(t),
ỹ(t) = C̃ x̃(t)+ D̃u(t),

(2)

where Ẽ, Ã ∈ Rr×r, B̃ ∈ Rr×m, C̃ ∈ Rq×r, D̃ ∈ Rq×m and r� n. Assume that the matrix
pencil λE −A is regular, i.e., det(λE −A) 6= 0 for some λ ∈ C. Applying the Laplace
transform to system (1), it can be written in the frequency domain as

ŷ(s) = HHH(s)û(s)+C(sE−A)−1x(0),

where û(s) and ŷ(s) are the Laplace transforms of the input and output, respectively, and
HHH(s) =C(sE−A)−1B+D is a transfer function of (1). Then the model reduction problem
can be formulated in the frequency domain as follows: given the transfer function HHH(s), find
H̃HH(s) = C̃(sẼ− Ã)−1B̃+ D̃ of lower dimension that approximates HHH(s). The approximation
quality can, for instance, be measured by the absolute error H̃HH−HHH or by the relative error
HHH−1(H̃HH−HHH) (provided HHH−1 exists).

The structure of this survey is as follows: in the following section, we provide the relevant
systems and control theoretic basics for linear descriptor systems. In Section 3, we review
the most common methods for model order reduction of linear descriptor systems: balanced
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truncation and related methods in Subsection 3.1, and moment matching as well as other
rational interpolation methods in Subsection 3.2. The computational bottleneck of many
model reduction methods, in particular those related to balanced truncation, is the numerical
solution of matrix equations (e.g., algebraic Lyapunov and Riccati equations). Therefore,
we review the usually used methods and their adaptation to the DAE case in Section 4.
Usually, descriptor systems have a certain block structure, often related to the differential
and algebraic parts of the system. Exploiting these structures is mandatory for efficient
methods for model order reduction and the associated matrix equations. This is discussed
in Section 5, using some relevant example classes. In Section 6, we provide a brief outlook
on topics not covered in depth in this survey and/or of current research interest.

Throughout the paper, Rn×m and Cn×m denote the spaces of n×m real and complex
matrices, respectively. Furthermore, C−= {s∈C : Re(s)< 0} and C+ = {s∈C : Re(s)>
0} denote the open left and right half-planes, respectively, and i =

√
−1. The matrices AT

and A∗ denote, respectively, the transpose and the conjugate transpose of A ∈ Cn,m, and
A−T = (A−1)T . We use rank(A), im(A) and ker(A) for the rank, the image and the kernel
of A, respectively. A matrix A ∈ Cn,n is said to be positive semidefinite, if v∗Av ≥ 0 for all
v ∈ Cn. Note that positive semidefiniteness of A does not require A to be Hermitian. For
A,B ∈ Cn,n, we write A≥ B if A−B is positive semidefinite.

2 DAE control systems
In this section, we provide necessary notation and fundamental matrix and control theoretic
concepts for DAE systems.

Any regular matrix pencil λE−A can be transformed into the Weierstrass canonical form

E = Tl

[
Inf 0
0 E∞

]
Tr, A = Tl

[
A f 0
0 In∞

]
Tr, (3)

where Tl and Tr are the left and right nonsingular transformation matrices, E∞ is nilpotent
with index of nilpotency ν , and nf +n∞ = n, e.g., [58]. The number ν is called the index of
λE−A and also of the DAE system (1). The eigenvalues of A f are the finite eigenvalues of
λE−A, and λE∞−I has only eigenvalues at infinity. Thus, if E is singular, then λE−A has
n f finite and n∞ infinite eigenvalues which together form a set of generalized eigenvalues.

The pencil λE−A is called stable if all its finite eigenvalues belong to the open left half-
plane C−. In this case, the solution of system (1) with u(t)≡ 0 tends to zero as t→ ∞, and,
hence, the DAE system (1) is asymptotically stable .

We introduce now the spectral projectors onto the left and right deflating subspaces of
the pencil λE−A corresponding to the finite eigenvalues along the left and right deflating
subspaces corresponding to the eigenvalue at infinity as

Pl = Tl

[
Inf 0
0 0

]
T−1

l , Pr = T−1
r

[
Inf 0
0 0

]
Tr. (4)

Furthermore, the matrices

Ql = I−Pl = Tl

[
0 0
0 In∞

]
T−1

l , Qr = I−Pr = T−1
r

[
0 0
0 In∞

]
Tr (5)

define the complementary projectors. All these projectors play an important role in model
reduction of DAE systems.
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Using the Weierstrass canonical form (3) and introducing

Tr x(t) =
[

x1(t)
x2(t)

]
, T−1

l B =

[
B1
B2

]
, CT−1

r = [C1, C2 ], (6)

we can decouple the DAE system (1) into a slow subsystem

ẋ1(t) = A f x1(t)+B1u(t),
y1(t) = C1x1(t),

(7)

and a fast subsystem
E∞ẋ2(t) = x2(t)+B2u(t),

y2(t) = C2x2(t)+Du(t). (8)

The output of (1) is then determined as y(t) = y1(t)+ y2(t).
Next, we introduce some algebraic properties of matrix triplets related to the DAE system

(1). The equivalent definitions in terms of controllability and observability concepts relating
to the dynamic behavior of the DAE system can be found in [36, 40]. We restrict here to the
definition of the algebraic properties as these are used in the rest of this paper.

Definition 1. Let the matrices Zl and Zr be of full rank such that im(Zl) = im(ET ) and
im(Zr) = im(E). Then the matrix triplet (E,A,B) ∈ Rn×n×Rn×n×Rn×m is called

1) controllable in the behavioral sense (R-controllable), if rank[λE−A, B ] = n for all
λ ∈ C;

2) stabilizable in the behavioral sense (R-stabilizable), if rank[λE −A, B ] = n for all
λ ∈ C\C−;

3) impulse controllable (I-controllable), if rank[E, AZr, B ] = n;

4) controllable at infinity (Inf-controllable), if rank[E, B ] = n;

5) strongly controllable (S-controllable), if it is R-controllable and I-controllable;

6) strongly stabilizable (S-stabilizable), if it is R-stabilizable and I-controllable;

7) completely controllable (C-controllable), if it is R-controllable and Inf-controllable.

The matrix triplet (E,A,C) ∈ Rn×n×Rn×n×Rq×n is called
8) observable in the behavioral sense (R-observable), if rank[λET −AT , CT ] = n for all

λ ∈ C;

9) detectable in the behavioral sense (R-detectable), if rank[λET −AT , CT ] = n for all
λ ∈ C\C−;

10) impulse observable (I-observable), if rank[ET , AT Zl , CT ] = n;

11) observable at infinity (Inf-observable), if rank[ET , CT ] = n;

12) strongly observable (S-observable), if it is R-observable and I-observable;

13) strongly detectable (S-detectable), if it is R-detectable and I-observable;

14) completely observable (C-observable), if it is R-observable and Inf-observable.

In the following, we will not distinguish the algebraic and system-theoretic properties
of the matrix triplets (E,A,B), (E,A,C) and the corresponding DAE system (1) and speak
equivalently, e.g., of R-controllability of (E,A,B) and the DAE system (1).

In the frequency domain, the input-output behavior of the DAE system (1) is described by
a transfer function HHH(s) = C(sE −A)−1B+D which is a rational matrix-valued function.
On the other side, for any rational matrix-valued function HHH(s), one can always find the
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matrices E, A, B, C and D such that HHH(s) =C(sE−A)−1B+D, e.g., [40]. Such a quintuple
HHH = (E,A,B,C,D) is called a realization of HHH(s). If (E,A,B,C,D) is a realization of HHH(s),
then for any nonsingular matrices W and T , (WET,WAT,WB,CT,D) is also a realization
of HHH(s). This implies that HHH(s) has many different realizations. Moreover, there exist
realizations of arbitrarily high order which is defined by the dimension of the matrices E
and A. A realization HHH = (E,A,B,C,D) is called minimal if E and A have the smallest
possible dimension. One can show that HHH = (E,A,B,C,D) is minimal if and only if system
(1) is C-controllable, C-observable and Aker(E) ⊆ im(E), see [147]. The latter condition
means that the nilpotent matrix E∞ in the Weierstrass canonical form (3) does not have any
1×1 Jordan blocks.

The transfer function HHH(s) is called proper if H∞ = lim
s→∞

HHH(s) exists, and improper, other-

wise. If H∞ = 0, then HHH(s) is called strictly proper. Using (3) and (6), the transfer function
HHH(s) can additively be decomposed as HHH(s) = HHHsp(s)+PPP(s), where

HHHsp(s) =C1(sI−Af )
−1B1

is the strictly proper partof HHH(s), and

PPP(s) =C2(sE∞− I)−1B2 +D =
ν−1

∑
j=0

M js j

with
M j =−C2E j

∞B2 +δ0, jD (9)

is the polynomial partof HHH(s). Here, δ0, j denotes the Kronecker delta. Note that HHHsp(s) and
PPP(s) are the transfer functions of the slow and fast subsystems (7) and (8), respectively. If
the realization HHH = (E,A,B,C,D) is not minimal, then the degree of the polynomial PPP(s),
denoted by deg(PPP), may be smaller than ν−1.

The transfer function HHH(s) can also be written as

HHH(s) =
NNN(s)
ddd(s)

,

where NNN(s) is a q×m matrix polynomial and ddd(s) is a scalar polynomial which is the least
common denominator of the qm entries of HHH(s). The roots of the denominator ddd(s) are
called the finite poles of HHH(s), and the roots of the numerator NNN(s) are called the finite zeros
of HHH(s). The transfer function HHH(s) has a pole (zero) at infinity if s = 0 is a pole (zero) of
HHH(1/s). If deg(NNN) > deg(ddd) or, equivalently, if HHH(s) is improper, then HHH(s) has a pole at
infinity. If deg(NNN)< deg(ddd) or, equivalently, if HHH(s) is strictly proper, then HHH(s) has a zero
at infinity. The poles of HHH(s) are generalized eigenvalues of the pencil λE −A. The set
of poles of HHH(s) coincides with the set of generalized eigenvalues of λE−A if and only if
HHH = (E,A,B,C,D) is minimal. For the square transfer function HHH(s), the zeros of HHH(s) are
generalized eigenvalues of the system pencil

λ

[
E 0
0 0

]
−
[

A B
C D

]
,

see [121]. If this pencil is regular, then HHH(s) is invertible and its inverse is given by

HHH−1(s) = [0, −I ]
[

sE−A −B
−C −D

]−1 [ 0
I

]
.
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This representation immediately follows from the relation[
sE−A 0

0 HHH(s)

]
=

[
I 0

C(sE−A)−1 I

][
sE−A −B
−C −D

][
I −(sE−A)−1B
0 −I

]
.

Note that if D is nonsingular, then HHH−1(s) can also be realized as

HHH−1(s) =−D−1C(sE−A+BD−1C)BD−1 +D−1.

An invertible transfer function HHH(s) is called (strictly) minimum phase if all its finite zeros
have (negative) non-positive real part.

Let s1, . . . ,sk be the pairwise different finite poles of HHH(s) of order ` j, j = 1, . . . ,k, then
HHH(s) can be represented using a partial fraction expansion as

HHH(s) =
k

∑
j=1

` j

∑
i=1

R(i)
j

(s− s j)i +
ν−1

∑
j=0

M j s j, (10)

where R j ≡ R(1)
j is the residue of HHH at s j.

Another useful representation of the transfer function HHH(s) is given by its power series
expansion at s0 ∈ C being not a pole of HHH:

HHH(s) =
∞

∑
j=0

M j(s0)(s− s0)
j, (11)

where the coefficients M j(s0), also called (shifted) moments1, have the form

M0(s0) = −C(A− s0E)−1B+D,

M j(s0) = −C
(
(A− s0E)−1E

) j
(A− s0E)−1B, j > 0.

For singular E, the Laurent expansion of HHH turns out to be beneficial as well:

HHH(s) =
ν−1

∑
j=−∞

M js j, (12)

where the coefficients M j are the Markov parameters given by

M j = CT−1
r

[
A− j−1

f 0
0 0

]
T−1

r B =C1 A− j−1
f B1, j < 0,

M j = CT−1
r

[
0 0
0 −E j

∞

]
T−1

r B+δ0, jD =−C2 E j
∞ B2 +δ0, jD, j ≥ 0.

Thus, the Markov parameters corresponding to the nonnegative powers are the same as
the coefficients M j in the partial fraction expansion (10) and in (9), and, therefore, they
determine the polynomial part of HHH(s).

In order to measure the approximation error of reduced-order models, we will employ
classical system norms. Let H∞ denote the space of matrix-valued functions that are ana-
lytic and bounded in the open right half-plane. TheH∞-norm of HHH ∈H∞ is defined as

‖HHH‖H∞
= sup

ω∈R
‖HHH(iω)‖2,

1Usually, the term moments is used to denote the coefficients of the Taylor series at s0 = 0.
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where ‖ · ‖2 denotes the spectral matrix norm. Furthermore, we consider the space H2 of
matrix-valued functions that are analytic in the open right half-plane. The H2-norm of
HHH ∈H2 is defined as

‖HHH‖H2 =

(
1

2π

∫
∞

−∞

‖HHH(iω)‖2
F dω

)1/2

,

where ‖ · ‖F denotes the Frobenius matrix norm. We note that the rational matrix-valued
functions given by the transfer functions corresponding to (1) are in H∞ if the system is
stable and proper, and inH2 if, in addition, it is strictly proper.

3 Model order reduction techniques
Before describing different model reduction techniques, we would like to point out that
most techniques are based on (Petrov-)Galerkin projection. The basic idea can simply be
described as follows, where we use (1) as a model problem. Assuming the dynamics of
the system evolves in a low dimensional subspace T ⊂ Rn with basis matrix T ∈ Rn×r, we
use the ansatz x(t) ≈ T x̃(t). Hence, T is considered as trial space. Replacing x(t) in the
generalized state equation (the first equation in (1)), we obtain a residual

r̃(t) := ET ˙̃x(t)−AT x̃(t)−Bu(t).

In general, the residual is not zero. Therefore, we demand it to at least vanish on an r-
dimensional test space W ⊂ Rn with basis matrix W ∈ Rn×r, so that T and W are bi-
orthogonal, i.e., W T T = Ir. The requirement W T r̃(t)≡ 0 then leads to the reduced (gener-
alized) state equation

W T ET ˙̃x(t) =W T AT x̃(t)+W T Bu(t).

Applying the projection onto T also to the second equation in (1) leads to the reduced-order
system (

Ẽ, Ã, B̃,C̃, D̃
)

:=
(
W T ET,W T AT,W T B,CT,D

)
.

This process is called Petrov-Galerkin projection, and TW T defines an oblique projector
onto T . If one takes W ≡ T , necessitating to choose an orthogonal basis matrix T , i.e.,
T T T = Ir, we speak of a Galerkin projection and T T T defines an orthogonal projector onto
T .

Note that the method ”balanced truncation” described in Subsection 3.1 is, in general,
a Petrov-Galerkin projection (turning into a Galerkin projection for symmetric systems with
E = ET , A = AT and C = BT ), while the interpolatory approaches in Subsection 3.2 can
either be Galerkin or Petrov-Galerkin projection methods.

3.1 Balanced truncation
Balanced truncation was initially introduced in the systems and control theory in the early
eighties of the last century [47, 62, 96] and has been continuously developed ever since. Due
to new developments in Numerical Linear Algebra, it becomes to be applicable to large-
scale problems [12, 13, 14], and has already been used in many application areas including
biochemical engineering [91], electrical circuit simulation [114, 116], mechanical systems
[26, 113], computational fluid dynamics [21, 33, 71, 135] and power systems [52, 120].
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A main idea of balanced truncation and its relatives is to transform a dynamical system
to a balanced form defined in such a way that appropriately chosen controllability and ob-
servability Gramians are equal and diagonal. Then a reduced-order model is computed by
truncating the states corresponding to the small diagonal elements of the Gramians. De-
pending on the choice of the Gramians, different balanced truncation techniques can be
developed, see [14, 67] for surveys of balancing-related model reduction methods for stan-
dard state-space systems. In this section, we collect the extensions of these methods to DAE
systems.

3.1.1 Lyapunov balanced truncation

The most commonly used balanced truncation method is based on balancing the controlla-
bility and observability Gramians Gc and Go which are defined for system (1) with E = I as
unique symmetric, positive semidefinite solutions of the continuous-time Lyapunov equa-
tions

AGc +Gc AT =−BBT , AT Go +Go A =−CTC,

provided all eigenvalues of the matrix A have negative real part. These Gramians charac-
terize the controllability and observability properties of the control system and quantify the
input and output energy [96]. The square roots of the eigenvalues of the product GcGo
define the Hankel singular values, σ j =

√
λ j(GcGo), which can be used to measure the

importance of the state variables. We assume that σ j are ordered decreasingly. Finding
a balancing transformation Tb such that

TbGcT T
b = T−T

b GoT−1
b = diag(σ1, . . . ,σn)

and truncating n− r components of the transformed state vector Tbx(t), which correspond
to small σ j < σr, yields an asymptotically stable reduced-order model [104]. Another im-
portant property of this method is the presence of the computable error estimates

‖H̃HH−HHH‖H∞
≤ 2(σr+1 + . . .+σn),

‖ ỹ − y ‖L2 ≤ ‖H̃HH−HHH‖H∞
‖u‖L2 ≤ 2(σr+1 + . . .+σn)‖u‖L2 ,

see [47, 62].
The Lyapunov-based balanced truncation approach was extended to DAEs in [15, 92,

103, 134]. A basic idea behind this extension is to decouple the DAE system (1) into
the slow and fast subsystems (7) and (8), respectively, and reduce them separately. In the
frequency domain, this corresponds to the separate approximation of the strictly proper part
HHHsp(s) and the polynomial part PPP(s) of the transfer function HHH(s) =HHHsp(s)+PPP(s) resulting
in an approximate system H̃HH(s) = H̃HHsp(s) + P̃PP(s). It should, however, be noticed that if
P̃PP(s) 6= PPP(s) and deg(PPP(s))≥ 1, then the error HHH(s)− H̃HH(s) is unbounded. Also in the time
domain, a naive reduction of the order of the fast subsystem (8) which, actually, describes
the constraints in the model, may lead to an inaccurate approximation, see [92, 138]. These
difficulties have been resolved in [134] by determining a minimal realization of PPP(s). This
guarantees that PPP(s) = P̃PP(s) and, hence, the error HHH(s)− H̃HH(s) will be small if the error in
the slow subsystem HHHsp(s)− H̃HHsp(s) is small.

In practice, we do not need to compute the slow and fast subsystems explicitly. This is
computationally expensive, especially for large-scale problems, and may be numerically ill-
conditioned. Instead, we can define two pairs of controllability and observability Gramians
in terms of the original data using the spectral projectors Pl , Pr and Ql , Qr given in (4) and
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(5), respectively. Assume that the DAE system (1) is asymptotically stable. Then the proper
controllability and observability Gramians Gpc and Gpo of (1) are defined as unique sym-
metric, positive semidefinite solutions of the projected continuous-time Lyapunov equations

E Gpc AT +AGpc ET = −PlBBTPT
l , Gpc = PrGpc PT

r , (13)

ET Gpo A+AT Gpo E = −PT
r CTCPr, Gpo = PT

l Gpo Pl , (14)

respectively, whereas the improper controllability and observability Gramians Gic and Gio
of (1) are defined as unique symmetric, positive semidefinite solutions of the projected
discrete-time Lyapunov equations

AGicAT −E GicET = QlBBT QT
l , Gic = QrGicQT

r , (15)

AT GioA−ET GioE = QT
r CTCQr, Gio = QT

l GioQl , (16)

respectively. The square roots of the largest nf eigenvalues of GpcET GpoE, denoted by σ j,
are called the proper Hankel singular values of (1), and the square roots of the largest n∞

eigenvalues of GicAT GioA, denoted by θ j, are called the improper Hankel singular values.
System (1) is balanced if the Gramians satisfy

Gpc +Gic = Gpo +Gio = diag(σ1, . . .σnf ,θ1, . . . ,θn∞
).

Thus, a reduced-order model (2) can be determined by truncating the states of the balanced
system corresponding to the small proper Hankel singular values. In [134], it is shown that
the states corresponding to the small eigenvalues of the proper controllability Gramian Gpc
need the most energy to be reached. Also, the states corresponding to the small eigenvalues
of the proper observability Gramian Gpo contribute the least to the output energy

E(y) =
∫

∞

0
y(t)T y(t)dt.

In balanced coordinates, the eigenvalues of Gpc, Gpo, and the proper Hankel singular values
coincide. Thus, the difficult-to-reach states coincide with those least involved in the output
energy. Based on this energy interpretation of the proper Gramians, one can assert that these
states are difficult to control and difficult to observe at the same time and can therefore be
ignored in the system approximation. Furthermore, we can remove states which are not Inf-
controllable and Inf-observable. Such states correspond to zero improper Hankel singular
values.

Considering the Cholesky factorizations2 of the Gramians

Gpc = ZpcZT
pc, Gpo = ZpoZT

po, Gic = ZicZT
ic, Gio = ZioZT

io,

and taking into account that the proper and improper Hankel singular values can be deter-
mined from the singular value decomposition of the matrices ZT

poEZpc and ZT
ioAZic, respec-

tively, we obtain the generalization of the square-root balanced truncation method [88, 143]
for DAE systems shown in Algorithm 1. As in the standard state space case [47, 62], we
have the error estimates

‖H̃HH−HHH‖H∞
≤ 2(σrf +1 + . . .+σnf ),

‖ ỹ − y ‖L2 ≤ ‖H̃HH−HHH‖H∞
‖u‖L2 ≤ 2(σrf +1 + . . .+σnf )‖u‖L2 .

2It should be noted that by abuse of notation, these factors are neither necessarily upper triangular nor square, but
we assume them to be of full rank. In particular, for non-minimal systems, these factors will in general be rectangular
as then, the Gramians will be rank deficient.
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Moreover, for PPP(s) 6= D, one can show that the index of the reduced-order model is equal to
deg(PPP)+1 and does not exceed the index of the original system (1). If PPP(s) = D, then the
reduced-order model is an ODE system.

Algorithm 1 Lyapunov balanced truncation for DAE systems.
Input: an asymptotically stable system HHH = (E,A,B,C,D).
Output: a reduced-order asymptotically stable system H̃HH = (Ẽ, Ã, B̃,C̃, D̃).

1: Compute the full rank Cholesky factors Zpc and Zpo of the proper Gramians Gpc = ZpcZT
pc

and Gpo = ZpoZT
po satisfying the projected Lyapunov equations (13) and (14), respectively.

2: Compute the full rank Cholesky factors Zic and Zio of the improper Gramians Gic = ZicZT
ic

and Gio = ZioZT
io satisfying the projected Lyapunov equations (15) and (16), respectively.

3: Compute the singular value decomposition ZT
poEZpc = [U1,U2 ]diag(Σ1,Σ2)[V1,V2 ]

T , where
the matrices [U1,U2 ] and [V1,V2 ] have orthonormal columns, Σ1 = diag(σ1, . . . ,σrf ) and
Σ2 = diag(σrf +1, . . . ,σnf ).

4: Compute the singular value decomposition ZT
ioAZic = U3ΘV T

3 , where U3 and V3 have or-
thonormal columns and Θ is nonsingular.

5: Compute the reduced-order system (Ẽ, Ã, B̃,C̃, D̃) = (W TET,W TAT,W TB,CT,D) with
W = [ZpoU1Σ

−1/2
1 , ZioU3Θ−1/2 ] and T = [ZpcV1Σ

−1/2
1 , ZicV3Θ−1/2 ].

Using the Weierstrass canonical form (3), one notices that the improper Gramians Gic
and Gio have usually low rank which can be estimated as

rc = rank(Gic)≤min(νm,n∞), ro = rank(Gio)≤min(νq,n∞),

where ν is the index of (1). Furthermore, if the eigenvalues of the proper Gramians Gpc and
Gpo decay fast, then Gpc and Gpo have low numerical rank. In this case, they can be well
approximated by low-rank matrices Gpc ≈ Z̃pcZ̃T

pc and Gpo ≈ Z̃poZ̃T
po, where Z̃pc ∈ Rn×nc

and Z̃po ∈Rn×no with nc,no� n. Replacing the full rank factors Zpc and Zpo in Algorithm 1
by the low-rank matrices Z̃pc and Z̃po, respectively, reduces significantly the computational
complexity and storage requirements for the balanced truncation method, making it appli-
cable to large-scale problems. In fact, apart from solving the projected Lyapunov equa-
tions, only the singular value decomposition of the small matrices Z̃T

poEZ̃pc ∈ Rno×nc and
ZT

ioAZic ∈Rro×rc needs to be computed. The computation of the (low-rank) Cholesky factors
of the Gramians will be discussed in Section 4.1.

Remark 1. Unfortunately, in the literature [106, 142], one can often find the statement
that the extension of balanced truncation from standard state-space systems to DAEs is as
simple as to replace the identity matrix by E. In this case, the Lyapunov equations take the
form

AGcET +EGcAT =−BBT , AT GoE +ET GoA =−CTC.

It should, however, be noted that for singular E, these equations may not be solvable even
if the pencil λE−A is stable. Moreover, if the solutions exist, they are always non-unique.
Hence, their use does not lead to a well-defined model reduction method.

In the Poor Man’s truncated balanced reduction (PMTBR) method presented in [106], it
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was proposed to define the Gramians of system (1) as

X =
1

2π

∫
∞

−∞

(iωE−A)−1BBT (−iωE−A)−T dω,

Y =
1

2π

∫
∞

−∞

(−iωE−A)−TCTC(iωE−A)−1dω.

However, if E is singular, these integrals do not converge unless B = PlB and C =CPr.
Therefore, the correct definition should be

X =
1

2π

∫
∞

−∞

(iωE−A)−1PlBBT PT
l (−iωE−A)−T dω, (17)

Y =
1

2π

∫
∞

−∞

(−iωE−A)−T PT
r CTCPr(iωE−A)−1dω.

It is worth noting that these matrices solve the projected Lyapunov equations (13) and (14),
respectively, that again justifies the above considerations.

3.1.2 Positive real balanced truncation

Positive real balanced truncation was first developed for standard state-space systems in
[70, 98] as a model reduction method preserving passivity. It was then extended to DAEs
in [115].

The DAE system (1) is called passive if m = q and∫ t

0
u(τ)T y(τ)dτ ≥ 0

for all t > 0 and all u ∈ L2([0, t],Rm) consistent with x(0) = 0. Physically, this property
means that the system does not generate energy. It is of great importance especially for
circuit equations. One can show that system (1) is passive if and only if its transfer function
HHH(s) is positive real, i.e., HHH(s) is analytic in the open right half-plane C+ and HHH(s) +
HHH∗(s)≥ 0 for all s ∈C+, see [6]. Passivity of the DAE system (1) can also be characterized
via the projected positive real Lur’e equations

AXET +EXAT = −KcKT
c , X = PrXPT

r ≥ 0,
EXCT −Pl B = −KcJT

c , M0 +MT
0 = JcJT

c ,
(18)

and
ATY E +ETYA = −KT

o Ko, Y = PT
l Y Pl ≥ 0,

ETY B−PT
r CT = −KT

o Jo, M0 +MT
0 = JT

o Jo,
(19)

with M0 as in (9) and unknowns Kc,KT
o ∈ Rn×m, Jc,Jo ∈ Rm×m and X ,Y ∈ Rn×n. If system

(1) is R-controllable, R-observable and passive, then the projected Lur’e equations (18) are
solvable. Conversely, the solvability of (18) together with the conditions M1 = MT

1 ≥ 0
and M j = 0 for j > 1 implies that (1) is passive. A similar result holds also for the dual
Lur’e equations (19). Note that for some structured systems as they arise, for example, in
modified nodal analysis (MNA) of electrical circuits, the existence of the solutions of the
projected Lur’e equations can also be proved without R-controllability and R-observability
conditions [114]. It should be emphasized that the solutions of (18) and (19) are not unique.
There exist, however, unique extremal solutions satisfying

Xmax ≥ X ≥ Xmin ≥ 0, Ymax ≥ Y ≥ Ymin ≥ 0

11



for all symmetric solutions X and Y of (18) and (19), respectively. The minimal solutions
GPR

c = Xmin and GPR
o = Ymin are called, respectively, the positive real controllability and

observability Gramians of system (1). Replacing the proper Gramians in the Lyapunov-
based balanced truncation method by the positive real Gramians, we obtain the passivity-
preserving model reduction method for DAE systems. In order to determine the posi-
tive real Gramians from the Lur’e equations (18) and (19), we need first to calculate M0.
This matrix can be obtained from the polynomial part PPP(s) whose realization is given by
PPP = (W T

∞ ET∞,W
T
∞ AT∞,W

T
∞ B,CT∞,D) with W∞ = ZioU3Θ−1/2 and T∞ = ZicV3Θ−1/2. Since

W T
∞ AT∞ = I, we have

M0 = D−CT∞W T
∞ B = D−CZicV3Θ

−1UT
3 ZT

ioB.

The resulting positive real balanced truncation method is presented in Algorithm 2.

Algorithm 2 Positive real balanced truncation for DAE systems.
Input: a passive system HHH = (E,A,B,C,D).
Output: a reduced-order passive system H̃HH = (Ẽ, Ã, B̃,C̃, D̃).

1: Compute the full rank Cholesky factors Zic and Zio of the improper Gramians Gic = ZicZT
ic

and Gio = ZioZT
io satisfying the projected Lyapunov equations (15) and (16), respectively.

2: Compute the singular value decomposition ZT
ioAZic =U3ΘV T

3 with nonsingular Θ.
3: Compute the matrix M0 = D−CZicV3Θ−1UT

3 ZT
ioB.

4: Compute the Cholesky factors ZPR
c and ZPR

o of the positive real Gramians GPR
c = ZPR

c (ZPR
c )T

and GPR
o = ZPR

o (ZPR
o )T that are the minimal solutions of the positive real projected Lur’e

equations (18) and (19), respectively.
5: Compute the singular value decomposition

(ZPR
o )T EZPR

c = [U1,U2 ]diag(ΣPR
1 ,ΣPR

2 )[V1,V2 ]
T ,

where ΣPR
1 = diag(σPR

1 , . . . ,σPR
rf

) and ΣPR
2 = diag(σPR

rf +1, . . . ,σ
PR
nf

).

6: Compute the reduced-order system (Ẽ, Ã, B̃, C̃, D̃) = (W TET,W TAT,W TB,CT, D) with
W = [ZPR

o U1(Σ
PR
1 )−1/2, ZioU3Θ−1/2 ] and T = [ZPR

c V1(Σ
PR
1 )−1/2, ZicV3Θ−1/2 ].

The values σPR
1 ≥ . . .≥ σPR

rf
> σPR

rf +1 ≥ . . .≥ σPR
nf

are called the positive real characteris-
tic values of (1). Similar to the proper Hankel singular values, they can be used to estimate
the approximation error. If M0 +MT

0 is nonsingular, we have the error bound

‖H̃HH−HHH‖H∞
≤ 2‖(M0 +MT

0 )
−1‖2‖HHH +MT

0 ‖H∞
‖H̃HH +MT

0 ‖H∞

nf

∑
j=rf +1

σ
PR
j

that can be derived for DAE systems similarly to the standard state-space case [67].
The positive real balanced truncation method requires solving the projected Lur’e equa-

tions. The numerical solution of standard Lur’e equations based on deflating subspaces
of a certain even pencil has been considered in [107, 108]. However, so far no numerical
method has been developed for projected Lur’e equations. In the case where R0 = M0+MT

0
is nonsingular, the projected Lur’e equations (18) and (19) can be written as the projected
positive real Riccati equations

AXET +EXAT +(EXCT−PlB)R−1
0 (EXCT−PlB)T = 0, X = PrXPT

r

12



and

ATY E +ETYA+(BTY E−CPr)
T R−1

0 (BTY E−CPr) = 0, Y = PT
l Y Pl ,

respectively. Such equations can be solved using Newton’s method [32] briefly described
in Section 4.2.

An alternative approach for passivity-preserving model reduction has been proposed in
[145]. It relies on a combination of Lyapunov balancing and positive real balancing and
involves solving only one Lyapunov equation and one Lur’e equation. However, there exists
no error bound for this approach.

3.1.3 Bounded real balanced truncation

If, instead of passivity, we aim to preserve contractivity, an important property in L2-gain
constraint controller design, then bounded real balanced truncation [98, 100, 115] has to be
used. The DAE system (1) is called contractive if∫ t

0
‖u(τ)‖2−‖y(τ)‖2 dτ ≥ 0

for all t > 0 and all u ∈ L2([0, t],Rm) consistent with x(0) = 0. This condition implies that
the L2-norm of the output is bounded by the L2-norm of the input. In the frequency domain,
contractivity is equivalent to bounded realness of the transfer function HHH(s) meaning that
HHH(s) is analytic in C+ and I−HHH(s)∗HHH(s)− I ≥ 0 for all s ∈C+. The latter condition yields
that the bounded real transfer function HHH(s) is necessarily proper.

To verify contractivity, we use the projected bounded real Lur’e equations

AXET +EXAT +PlBBT PT
l = −KcKT

c , X = PrXPT
r ≥ 0,

EXCT +PlBMT
0 = −KcJT

c , I−M0MT
0 = JcJT

c ,
(20)

and
ATY E +ETYA+PT

r CTCPr = −KT
o Ko, Y = PT

l Y Pl ≥ 0,
ETY B+PT

r CT M0 = −KT
o Jo, I−MT

0 M0 = JT
o Jo.

(21)

Similarly to the positive real case, one can show that these equations have the minimal
solutions GBR

c = Xmin and GBR
o = Ymin that are called the bounded real controllability and

observability Gramians, respectively. They can be used to characterize the required supply
energy and the available storage energy for contractive systems [115]. This immediately
leads to the bounded real balanced truncation method presented in Algorithm 3.

One can show that the reduced-order system computed by Algorithm 3 is contractive and
has the error bound

‖H̃HH−HHH‖H∞
≤ 2

nf

∑
j=rf +1

σ
BR
j

with the bounded real characteristic values σBR
j .

If Rc = I−M0MT
0 is nonsingular, then Ro = I−MT

0 M0 is also nonsingular and the pro-
jected Lur’e equations (20) and (21) are equivalent to the projected bounded real Riccati
equations

AXET +EXAT +PlBBT PT
l +(EXCT +PlBMT

0 )R
−1
c (EXCT +PlBMT

0 )
T = 0,

X−PrXPT
r = 0,
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Algorithm 3 Bounded real balanced truncation for DAE systems.
Input: a contractive system HHH = (E,A,B,C,D).
Output: a reduced-order contractive system H̃HH = (Ẽ, Ã, B̃,C̃, D̃).

1: Compute the full rank Cholesky factors Zic and Zio of the improper Gramians Gic = ZicZT
ic

and Gio = ZioZT
io satisfying the projected Lyapunov equations (15) and (16), respectively.

2: Compute the singular value decomposition ZT
ioAZic =U3ΘV T

3 with nonsingular Θ.
3: Compute the matrix M0 = D−CZicV3Θ−1UT

3 ZT
ioB.

4: Compute the Cholesky factors ZBR
c and ZBR

o of the bounded real Gramians GBR
c = ZBR

c (ZBR
c )T

and GBR
o = ZBR

o (ZBR
o )T that are the minimal solutions of the bounded real projected Lur’e

equations (20) and (21), respectively.
5: Compute the singular value decomposition

(ZBR
o )T EZBR

c = [U1,U2 ]diag(ΣBR
1 ,ΣBR

2 )[V1,V2 ]
T ,

where ΣBR
1 = diag(σBR

1 , . . . ,σBR
rf

) and ΣBR
2 = diag(σBR

rf +1, . . . ,σ
BR
nf

).

6: Compute the reduced-order system (Ẽ, Ã, B̃, C̃, D̃) = (W TET,W TAT,W TB,CT, M0) with
the projection matrices W = ZBR

o U1(Σ
BR
1 )−1/2 and T = ZBR

c V1(Σ
BR
1 )−1/2.

and

ATY E +ETYA+PT
r CTCPr +(BTY E +MT

0 CPr)
T R−1

o (BTY E +MT
0 CPr) = 0,

Y −PT
l Y Pl = 0,

respectively. These equations can be solved using Newton’s method described in Section 4.
Note that the bounded real systems are related to the positive real systems via a Moebius

transformation defined as

HHHM(s) =
(
I−HHH(s)

)(
I +HHH(s)

)−1
.

The transfer function HHH(s) is positive real if and only if the Moebius-transformed function
HHHM(s) is bounded real. For HHH = (E,A,B,C,D), a realization of HHHM(s) is given by

HHHM =
(
E,A−B(I +D)−1C,−

√
2B(I +D)−1,

√
2(I +D)−1C,(I−D)(I +D)−1),

provided I +D is invertible. This suggests another passivity-preserving balancing-related
model reduction approach which consists of applying the bounded real balanced trunca-
tion method to HHHM and computing the Moebius transformation H̃HH(s) =

(
I− H̃HHM(s)

)(
I +

H̃HHM(s)
)−1 of the obtained reduced-order model H̃HHM . This approach might be useful if the

spectral projectors for the Moebius-transformed system are easier to compute than that for
the original systems. Circuit equations belong, for example, to this class of problems [114].

3.1.4 Stochastic balanced truncation

Stochastic balanced truncation belongs to relative error model reduction methods attempt-
ing to minimize the relative error HHH−1(HHH− H̃HH) in an appropriate norm. It was first intro-
duced for discrete-time and continuous-time standard state space systems in [44, 70] and
studied further in [30, 65, 66, 146]. The stochastic balanced truncation method relies on
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an approximation of spectral factors of the power spectrum ΦΦΦ(s) = HHH(s)HHHT (−s) and is
known to preserve the right half-plane zeros of HHH(s). In this section, we present an exten-
sion of this method to DAEs.

Assume that system (1) is asymptotically stable and has a square proper and invertible
transfer function HHH(s). Using the spectral projectors Pl and Pr, HHH(s) can then be written as
HHH(s) =CPr(sE−A)−1PlB+M0. Then the power spectrum can be written as

ΦΦΦ(s) = HHH(s)HHHT (−s)

=
[
CPr, M0BT PT

l

][sE−A −PlBBT PT
l

0 −sET −AT

]−1 [PlBMT
0

PT
r CT

]
+M0MT

0 .

Taking into account that the proper controllability Gramian Gpc solves the Lyapunov equa-
tion (13), we obtain[

sE−A −PlBBT PT
l

0 −sET −AT

]
=

[
I −EGpc
0 I

][
sE−A 0

0 −sET −AT

][
I −GpcET

0 I

]
.

Therefore, introducing B0 = PlBMT
0 +EGpcCT = PlB0, we have

ΦΦΦ(s) =
[
CPr, BT

0
][sE−A 0

0 −sET −AT

]−1 [ B0
PT

r CT

]
+M0MT

0

= CPr(sE−A)−1B0 +BT
0 (−sE−A)−T PT

r CT +M0MT
0

= ZZZ(s)+ZZZT (−s)

with ZZZ(s) =CPr(sE−A)−1B0 +M0MT
0 /2. Since λE−A is stable and

ZZZ(iω)+ZZZ∗(iω) = HHH(iω)HHH∗(iω)≥ 0

for all ω ∈ R, it follows from [6, Theorem 2.7.2] that ZZZ(s) is positive real. If ZZZ is R-controllable
and R-observable, then using the results from Section 3.1.2 we obtain that the corresponding
positive real Lur’e equations

AXET +EXAT =−Kc KT
c , X = PrXPT

r ≥ 0,
EXCT −B0 =−Kc JT

c , M0MT
0 = Jc JT

c ,
(22)

and
ATY E +ETYA =−KT

o Ko, Y = PT
l Y Pl ≥ 0,

ETY B0−PT
r CT =−KT

o Jo, M0MT
0 = JT

o Jo
(23)

are solvable. They have two extremal solutions satisfying

Xmax ≥ X ≥ Xmin ≥ 0, Ymax ≥ Y ≥ Ymin ≥ 0

for all symmetric solutions X and Y of (22) and (23), respectively. Moreover, one can also
show that Xmax = (ETYminE)−r , where (M)−r denotes a reflexive inverse of M with respect
to PT

r and Pr which is defined as the unique solution of the matrix equations

(M)−r M(M)−r = (M)−r , M(M)−r = PT
r , (M)−r M = Pr.

Consider now WWW (s) being a square right spectral factor of the power spectrum ΦΦΦ(s) =
HHH(s)HHHT (−s) =WWW T (−s)WWW (s). Its realization can be determined using the matrix equations
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(13) and (23). We have

ΦΦΦ(s) = ZZZ(s)+ZZZT (−s)

= (CPr−BT
0 Y E)(sE−A)−1B0 +BT

0 (−sE−A)−T (CPr−BT
0 Y E)T +M0MT

0

+BT
0 Y E(sE−A)−1B0 +BT

0 (−sE−A)−T ETY B0

= JT
o Ko(sE−A)−1B0 +BT

0 (−sE−A)−T KT
o Jo + JoJT

o

+BT
0 (−sE−A)−T KT

o Ko(sE−A)−1B0

=
(
Ko(−sE−A)−1B0 + Jo

)T (Ko(sE−A)−1B0 + Jo
)
,

and, hence, WWW (s) = Ko(sE−A)−1B0 + Jo. Similarly to the standard state space case [110],
we can show that for the minimal solution Ymin of (23), all finite eigenvalues of the pencil

λ

[
E 0
0 0

]
−
[

A B0
Ko Jo

]
have non-positive real part. Therefore, WWW (s) has no zeros in the open right half-plane mean-
ing that WWW (s) is minimum phase. The matrices GS

c = Gpc and GS
o =Ymin define the stochas-

tic controllability and observability Gramians of system (1). A reduced-order model can
then be computed by balancing these Gramians and truncating the states corresponding to
small stochastic characteristic values σS

j defined as σS
j =

√
λ j(GS

cET GS
oE). The stochastic

balanced truncation method is summarized in Algorithm 4.

Algorithm 4 Stochastic balanced truncation for DAE systems.
Input: an asymptotically stable system HHH = (E,A,B,C,D) with the proper and invertible trans-

fer function.
Output: a reduced-order asymptotically stable system H̃HH = (Ẽ, Ã, B̃,C̃, D̃).

1: Compute the full rank Cholesky factors Zic and Zio of the improper Gramians Gic = ZicZT
ic

and Gio = ZioZT
io satisfying the projected Lyapunov equations (15) and (16), respectively.

2: Compute the singular value decomposition ZT
ioAZic =U3ΘV T

3 with nonsingular Θ.
3: Compute M0 = D−CZicV3Θ−1UT

3 ZT
ioB.

4: Compute the Cholesky factors ZS
c and ZS

o of the stochastic controllability Gramian
GS

c = ZS
c (Z

S
c )

T = Gpc satisfying (13) and the stochastic observability Gramian GS
o = ZS

o(Z
S
o)

T

which is the minimal solution of the projected Lur’e equation (23).
5: Compute the singular value decomposition

(ZS
o)

T EZS
c = [U1,U2 ]diag(ΣS

1,Σ
S
2)[V1,V2 ]

T ,

where ΣS
1 = diag(σS

1 , . . . ,σ
S
rf
) and ΣS

2 = diag(σS
rf +1, . . . ,σ

S
nf
).

6: Compute the reduced-order system (Ẽ, Ã, B̃, C̃, D̃) = (W TET,W TAT,W TB,CT, M0) with
the projection matrices W = ZS

oU1(Σ
S
1)
−1/2 and T = ZS

cV1(Σ
S
1)
−1/2.

Since X = Gpc solves (22), we have (ETYminE)−r = Xmax ≥ Gpc, and, hence, the eigen-
values of GpcETYminE = GS

cET GS
oE do not exceed one. This implies that the stochastic

characteristic values of (1) satisfy 0≤ σS
j ≤ 1. Moreover, it follows from [65, Theorem 4.1]

that HHH(s) has kz = dim
(
ker((ETYminE)−r −Gpc)

)
−n∞ infinite zeros and finite zeros in the

closed right half-plane, and σS
1 = . . .= σS

kz
= 1. Similarly to [65, 66], one can show that if
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rf ≥ kz in Algorithm 4, then HHH(s) and H̃HH(s) have the same zeros in the closed right half-
plane, and the relative error bound

‖HHH−1(HHH− H̃HH)‖H∞
≤

nf

∏
j=rf +1

1+σS
j

1−σS
j
−1

holds. Thus, if HHH(s) is minimum phase, then H̃HH(s) is also minimum phase.
If M0 is nonsingular, then the projected Lur’e equation (23) reduces to the projected

Riccati equation

ATY E +ETYA+(BT
0 Y E−CPr)

T (M0MT
0 )
−1(BT

0 Y E−CPr) = 0, Y = PT
l Y Pl .

It has been shown in [159] that for standard state space systems with the invertible and
strictly minimum phase transfer function HHH(s), the stochastic balanced truncation method is
equivalent to a frequency-weighted balanced truncation approach with HHH−1(s) as an output
weight and I as an input weight. This approach is based on balancing the controllability
Gramian of HHH against the observability Gramian of HHH−1. It can also be extended to the
DAE system (1). If M0 is nonsingular, then HHH−1(s) can be realized as

HHH−1 = (E, A−PlBM−1
0 CPr, PlBM−1

0 , −M−1
0 CPr, M−1

0 ).

The proper observability Gramian Ĝpo of HHH−1 is defined as the solution of the projected
Lyapunov equation

(A−PlBM−1
0 CPr)

T ĜpoE +ET Ĝpo(A−PlBM−1
0 CPr) = −PT

r CT (M0MT
0 )
−1CPr,

Ĝpo = PT
l ĜpoPl .

The stochastic characteristic values σS
j are related to the new characteristic values σ̂ j =√

λ j(GpcET ĜpoE) via σS
j = σ̂ j/

√
(1+ σ̂2

j ), see [158]. Thus, if (1) is asymptotically sta-

ble, HHH(s) is strictly minimum phase and M0 is nonsingular, then the stochastic balanced
truncation method involves solving two projected Lyapunov equations, and, hence, it is as
expensive as Lyapunov-based balanced truncation.

3.1.5 LQG balanced truncation

Another balancing-related model reduction approach is linear-quadratic Gaussian (LQG)
balanced truncation developed first for unstable standard state-space systems in [78]. An ex-
tension of this method to DAEs was presented in [95] and further developed in [21] for flow
control problems. The LQG balanced truncation method is based on the generalized Riccati
equations

AXT +XAT +BBT − (XCT +BDT )(I +DDT )−1(CXT +DBT ) = 0,

EXT −XET = 0,
(24)

and
ATY +Y T A+CTC− (Y T B+CT D)(I +DT D)−1(BTY +DTC) = 0,

ETY −Y T E = 0,
(25)

where the matrices I +DDT and I +DT D are assumed to be nonsingular. Note that these
equations do not involve the spectral projectors. One can show that if the DAE system (1)
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is S-stabilizable and S-detectable, then equations (24) and (25) have stabilizing solutions X
and Y such that the pencils

λE−
(
A− (XCT +BDT )(I +DDT )−1C

)
,

λE−
(
A−B(I +DT D)−1(BTY +DTC)

)
are both of index one and stable. The matrices GLQG

c = XET and GLQG
o = Y T E are called

the LQG controllability and observability Gramians of the DAE system (1). In contrast to
X and Y , the Gramians GLQG

c and GLQG
o are symmetric, positive semidefinite and uniquely

defined. The LQG characteristic values are defined as

σ
LQG
j =

√
λ j(G

LQG
c (E+)T GLQG

o E+),

where E+ denotes the Moore-Penrose pseudoinverse of E. Balancing the LQG Gramians
and truncating the states corresponding to small LQG characteristic values provides the
LQG balanced truncation model reduction method given in Algorithm 5.

Algorithm 5 LQG balanced truncation for DAE systems.
Input: HHH = (E,A,B,C,D)
Output: a reduced-order model H̃HH = (Ẽ, Ã, B̃,C̃, D̃).

1: Compute the full rank matrices Zr and Zl such that im(Zr) = ker(E) and im(Zl) = ker(ET ).
2: Compute the Cholesky factors ZLQG

c and ZLQG
o such that EXT = EZLQG

c (ZLQG
c )T ET and

ETY = ET ZLQG
o (ZLQG

o )T E, where X and Y are the stabilizing solutions of the generalized
Riccati equations (24) and (25), respectively.

3: Compute a singular value decomposition (ZLQG
o )TEZLQG

c = [U1,U2]diag(ΣLQG
1 ,ΣLQG

2 )[V1,V2]
T

with Σ
LQG
1 = diag(σLQG

1 , . . . ,σLQG
r ) and Σ

LQG
2 = diag(σLQG

r+1 , . . . ,σLQG
k ).

4: Compute the reduced-order system (Ẽ, Ã, B̃, C̃, D̃) = (W TET,W TAT,W TB,CT, D) with the
projection matrices W = [ZLQG

o U1(Σ
LQG
1 )−1/2, Zl ] and T = [ZLQG

c V1(Σ
LQG
1 )−1/2, Zr ].

For the LQG reduced-order system, there exists an error estimate in the gap metric [60]
defined as follows. Let the DAE system (1) be S-stabilizable and S-detectable. Then its
transfer function HHH(s) can be factored as HHH(s) = KKK(s)MMM−1(s), where

KKK(s) = (C+DF)(sE−A−BF)−1B(I +DT D)−1/2 +D(I +DT D)−1/2,

MMM(s) = F(sE−A−BF)−1B(I +DT D)−1/2 +(I +DT D)−1/2

with F = −(I +DT D)−1(BTY +DTC) are stable proper rational functions called the right

coprime factors of HHH(s). Obviously,
[

MMM
KKK

]
∈H∞, and we obtain the error estimate

∥∥∥∥∥
[

M̃MM
K̃KK

]
−
[

MMM
KKK

]∥∥∥∥∥
H∞

≤ 2
k

∑
j=r+1

σ
LQG
j√

1+σ
LQG
j

,

where H̃HH(s) = K̃KK(s)M̃MM
−1
(s) is the right coprime factorization of H̃HH(s) and σ

LQG
j are the LQG

characteristic values from Algorithm 5, see [95].
Projector-free generalized Riccati equations similar to (24) and (25) have also been stud-

ied in the context of linear-quadratic optimal control [79, 117, 154], spectral factorization
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problems [80, 81], and extensions of the positive real and bounded real lemmas to DAE
systems [57, 149, 150, 151, 156]. Stability and the index-1 property of (1) can also be
characterized via the projector-free generalized Lyapunov equations

AXT +XAT +BBT = 0, EXT −XET = 0,
ATY +Y T A+CTC = 0, ETY −Y T E = 0,

see [74, 141]. All these matrix equations provide an alternative way to define different
types of the Gramians for DAEs and also new balancing-related model reduction methods
[112]. They might be advantageous if the spectral projectors are difficult to compute. It
should, however, be noticed that currently existing numerical methods for such equations
are restricted to small and medium-sized problems. Another disadvantage is that these new
model reduction techniques would be limited, in most cases, to index one problems.

3.2 Interpolation-based approximation
Another family of methods for model reduction is based on (rational) interpolation. The
unifying feature of the methods in this family is that the original transfer function H(s) is
approximated by a rational matrix function H̃(s) of lower degree satisfying some interpo-
lation conditions (that is, the original and the reduced-order transfer function coincide, e.g.
H(s0) = H̃(s0) at some predefined value s0 such that (A− s0E) is nonsingular). Computa-
tionally, this is usually realized by certain Krylov subspace methods.

The classical approach is known under the name of moment-matching or
Padé(-type) approximation. In these methods, the transfer functions of the original and
the reduced-order systems are expanded into power series and the reduced-order system is
then determined so that the first coefficients in the series expansions match. In this context,
the coefficients of the power series expansion are called moments, which explains the term
moment-matching. One speaks of Padé-approximation if the number of matching moments
is maximized for a given degree of the approximating rational function.

Classically, the expansion of the transfer function in a power series about an expansion
point s0 as in (11) is used. Recall, that the moments M j(s0), j = 0,1,2, . . . are given by

M j(s0) =−C
(
(A− s0E)−1E

) j
(A− s0E)−1B+δ0, jD.

Note that s0 is necessarily chosen such that A− s0E is nonsingular, and hence s0 is neither
an eigenvalue of the matrix pencil λE−A nor a pole of the transfer function HHH(s). Thus,
the approach described in the following can be applied regardless whether E is singular or
not, so that no special adaptation to DAE systems is necessary.

Now consider the block Krylov subspace

Kk(F,G) = blockspan{G,FG,F2G, . . . ,Fk−1G}

generated by F = (A− s0E)−1E and G = −(A− s0E)−1B with an appropriately chosen
expansion point s0 which may be real or complex. From the definitions of A,B and E, it
follows that F ∈ Kn×n and G ∈ Kn×m, where K = R or K = C depending on whether s0
is chosen in R or in C. Considering Kk(F,G) columnwise, this leads to the observation
that the number of column vectors in [G,FG,F2G, . . . ,Fk−1G] is given by r = m · k, as
there are k blocks F jG ∈ Kn×m, j = 0, . . . ,k− 1. In the case when all r column vectors
are linearly independent, the dimension of the Krylov subspace Kk(F,G) is r. Assume that
a unitary basis for this block Krylov subspace is generated such that the column-space of
the resulting unitary matrix T ∈ Kn×r spans Kk(F,G). Applying the Galerkin projection
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Π = T T ∗ to (1) yields a reduced system whose transfer function satisfies the following
Hermite interpolation conditions

H̃HH
( j)
(s0) = HHH( j)(s0), j = 0,1, . . . ,k−1.

This means that the the transfer functions HHH and H̃HH and their first k derivatives coincide
at s0. Considering the power series expansion (11) of the original and the reduced-order
transfer function, this is equivalent to saying that at least the first k moments M̃ j(s0) of the
transfer function H̃HH(s) of the reduced system (2) are equal to the first k moments M j(s0) of
the transfer function HHH(s) of the original system (1) at the expansion point s0, i.e.,

M j(s0) = M̃ j(s0), j = 0,1, . . . ,k−1.

If further the r columns of the unitary matrix W span the block Krylov subspace Kk(F,G)
for F = (A−s0E)−T ET and G=−(A−s0E)−TCT , applying the Petrov-Galerkin projection
Π = T (W ∗T )−1W ∗ to (1) yields a reduced system whose transfer function matches at least
the first 2k moments of the transfer function HHH(s) of the original system.

Theoretically, the matrix T (and W ) can be computed by explicitly forming the columns
which span the corresponding Krylov subspace Kk(F,G) and using the Gram-Schmidt al-
gorithm to generate unitary basis vectors for Kk(F,G). The forming of the moments (the
Krylov subspace blocks F jG) is numerically precarious and has to be avoided under all
circumstances. Instead, it is recommended to use Krylov subspace methods to achieve an
interpolation-based reduced-order model as described above. The unitary basis of a (block)
Krylov subspace can be computed by employing a (block) Arnoldi or (block) Lanczos
method, see e.g. [7, 63, 54].

In the case when an oblique projection is used, it is not necessary to compute two unitary
bases as above. An alternative is then to use the nonsymmetric Lanczos process [63]. It
computes bi-unitary bases for the above mentioned Krylov subspaces and the reduced-order
model as a by product of the Lanczos process. An overview of the computational techniques
for moment-matching and Padé approximation summarizing the work of a decade is given
in [54] and the references therein.

The use of complex-valued expansion points will lead to a complex-valued reduced-order
system (2). In some applications (in particular, if the original system is real-valued) this is
undesired. In that case one can always use complex-conjugate pairs of expansion points as
then the entire computations can be done in real arithmetic.

In general, the discussed model order reduction approaches are instances of rational in-
terpolation. When the expansion point is chosen to be s0 = ∞, the moments are called
Markov parameters and the approximation problem is known as partial realization. Here,
singularity of E obviously makes a difference as then the Laurent expansion (12) is used.
For singular E, using the reflexive inverse of E, a partial realization method for descriptor
systems was derived in [34].

As the use of one single expansion point s0 leads to good approximation only close to
s0, it might be desirable to use more than one expansion point. This leads to multi-point
moment-matching methods, which can also be interpreted as rational Krylov methods, see,
e.g., [7, 54].

Assume that ` expansion points si, i = 1,2, . . . , ` are considered. The column vectors
of the matrix T are determined from the ` block Krylov subspaces Kki(Fi,Gi) generated by
Fi =(A−siE)−1E and Gi =−(A−siE)−1B for i= 1,2, . . . , `. From each of these subspaces,
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the m · ki column vectors are used to generate an n× r matrix

T̂ =
[

T[k1], T[k2], . . . , T[k`]
]
, r = m

`

∑
i=1

ki.

In order to obtain a unitary, full-rank matrix T , a rank-revealing QR decomposition can be
used T̂ = T R, so that the numerical rank of T̂ can be determined, r̂ = rank(T̂ ), and finally,
T̂ can be truncated to T = [T (:,1 : r̂)] (employing MATLAB R© notation). The columns of
T span the same subspace as the span of the union of the Krylov subspaces Kki(Fi,Gi), that
is, span(T ) = ∪`i=1Kki(Fi,Gi). Then at least ki moments are matched per expansion point
si:

M j(si) = M̃ j(si), j = 0,1, . . . ,ki−1, i = 1,2, . . . , `,

if the reduced system is generated by applying the Galerkin projection Π = T T ∗. In this
case, H̃HH fulfils the Hermite interpolation conditions

H̃HH
( j)
(si) = HHH( j)(si), j = 0,1, . . . ,ki−1, i = 1,2, . . . , `.

A Petrov-Galerkin projection can also be constructed following this idea. Then at least 2ki
moments are matched per expansion point si. It should be noted, that at each si a different
number of moments ki is matched.

In contrast to balanced truncation, these (rational) interpolation methods do not necessar-
ily preserve stability. Remedies have been suggested, see, e.g. [54].

The methods just described provide good approximation quality around the expansion
points. They do not aim at a global approximation as measured by the H2- or H∞-norm.
In [68], an iterative procedure is presented which determines, upon convergence3, locally
optimal expansion points with respect to theH2-norm approximation under the assumption
that the order r of the reduced model is prescribed and such that only 0-th and 1-st order
derivatives are matched. This is motivated by the necessaryH2-norm optimality conditions
for a stable, r-th order, rational interpolant H̃HH of HHH. In order for H̃HH to be a local minimizer of
the error measured in the H2-norm, it is necessarily an Hermite interpolant in the classical
sense, i.e., interpolation of the function value and its first-order derivative at the mirror
images (with respect to the imaginary axis) of the poles of H̃HH, see [94]. Also, for multi-input
multi-output systems (that is, m and q in (1) are both larger than one), no full moment-
matching is achieved, but only tangential interpolation

HHH(s j)b j = H̃HH(s j)b j, c∗jHHH(s j) = c∗jH̃HH(s j), c∗jHHH
′(s j)b j = c∗jH̃HH

′
(s j)b j

for certain vectors b j and c j determined together with the optimal s j by the iterative pro-
cedure. The H2-optimal approximation procedure was extended to DAE systems in [69].
Though the interpolation properties of the reduced-order transfer function are the same for
ODE and DAE systems, one needs to take special care of behavior at infinity for DAE sys-
tems. In order for the error function HHH− H̃HH to be an H2-function, it needs to be zero at in-
finity, which usually is not the case when only applying the necessary optimality conditions
of the ODE case. In addition, it is necessary to ”interpolate” at infinity. This requires some
additional work and altering the realization of the reduced-order model without destroying
the interpolation conditions in the mirror images of its poles. A procedure achieving this
and requiring little extra effort is described in [69], but we refrain here from reproducing
the technical details.

3For partial convergence results, see [51].
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4 Solving large matrix equations
In this section, we discuss the numerical solution of projected Lyapunov and Riccati ma-
trix equations arising in balancing-related model reduction of DAE systems. We assume
that the spectral projectors in these equations are given, though their computation may be
a challenging task, especially for large-scale problems. Fortunately, for some structured
problems, the spectral projectors can either be constructed explicitly or the DAE system
(and also the matrix equations) can be modified such that the projectors are not required
any more. This issue will be addressed in Section 5.

4.1 Projected Lyapunov equations
We consider first the projected discrete-time Lyapunov equation

AXAT −EXET = QlBBTQT
l , X = QrXQT

r , (26)

where A,E ∈ Rn×n, B ∈ Rn×m with m� n. If the pencil λE−A is stable, i.e., all its finite
eigenvalues have negative real part, and it has index ν , then A is nonsingular and the solution
of (26) can be represented as

X =
ν−1

∑
j=0

(A−1E) jA−1QlBBT QT
l A−T ((A−1E)T ) j = ZZT

with Z =Qr[A−1B, (A−1E)A−1B, . . . , (A−1E)ν−1A−1B ]. If the index of λE−A is unknown
a priori, then this low-rank factor can be computed using the generalized Smith iteration
[137] which converges in a finite number of steps, see Algorithm 6.

Algorithm 6 Smith method for projected discrete-time Lyapunov equations.
Input: A, E ∈ Rn×n, B ∈ Rn×m, the spectral projector Qr, and a convergence tolerance tol > 0.
Output: a low-rank factor Zk such that X = ZkZT

k is an approximate solution of (26).
1: V0 = QrA

−1B;
2: Z0 = [ ];
3: k = 0;
4: while ‖Vk‖F > tol do
5: Zk+1 = [Zk,Vk];
6: Vk+1 = A−1EVk;
7: k← k+1;
8: end while

We consider now the projected continuous-time Lyapunov equation

EXAT +AXET =−PlBBTPT
l , X = PrXPT

r , (27)

where λE−A is assumed to be stable. We aim to determine the solution of this equation in
the factored form X = ZZT , avoiding the computation of the solution matrix X . For prob-
lems of small and moderate size (up to a few thousands), this can be achieved using the
generalized Schur-Hammarling method [133] which relies on computing the generalized
Schur form of the pencil λE −A. One can also employ the matrix sign function method
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which was initially developed for standard Lyapunov equations [29, 87, 119] and then ex-
tended to projected Lyapunov equations in [136]. This method is efficient, in particular, for
large dense problems.

As mentioned in Section 3.1.1, to be able to apply the balanced truncation method to
large-scale problems, we are rather interested in a low-rank approximation X ≈ Z̃Z̃T with
Z̃ ∈ Rn×k and k� n. The most simple way to compute such an approximation is based
on the integral representation (17) for the solution of (27). Computing this integral by
a quadrature rule

X ≈
p

∑
j=1

f j(iω jE−A)−1PlBBT PT
l (−iω jE−A)−T

+
p

∑
j=1

f j(−iω jE−A)−1PlBBT PT
l (iω jE−A)−T

with nonnegative nodes ω j and positive weights f j, we obtain the real low-rank factor

Z̃ = [Re(B1), Im(B1), . . . ,Re(Bp), Im(Bp)] ∈ Rn×2pm

with B j =
√

2 f j(iω jE−A)−1PlB. For the dual projected Lyapunov equation, the low-rank
factor can be calculated analogously. Using these factors in Algorithm 1 can be viewed as
an extension of the frequency domain POD approach [153] and the PMTBR method [106]
to DAE systems.

4.1.1 Alternating directions implicit method

A low-rank approximation to the solution of the projected Lyapunov equation (27) can
also be computed iteratively using a low-rank version of the alternating directions implicit
method known as the LR-ADI method [89, 102, 137]. In the last years, several modi-
fications concerning the efficient computation of Lyapunov residuals, adaptive choice of
ADI shift parameters and handling the complex shifts were proposed for Lyapunov equa-
tions with nonsingular E, which significantly improve the performance of the ADI iteration
[25, 26, 27]. An extension of these results to the projected Lyapunov equation is straight-
forward [35, 137] and summarized in Algorithm 7.

One can see that this algorithm provides a real low-rank factor Zk ∈ Rn×km and the com-
putational cost for the LR-ADI method is proportional to the cost of solving linear systems
with the sparse matrix E + τkA. The convergence rate of the ADI iteration is strongly influ-
enced by the shift parameters τk ∈ C−. Optimal parameters can be obtained by solving the
minimax problem

{τ̂1, . . . , τ̂p}= argmin
{τ1,...,τp}∈C−

max
t∈Sp(E,A)

|(1− τ1t) · · ·(1− τ p t)|
|(1+ τ1t) · · ·(1+ τp t)|

,

where Sp(E,A) denotes the set of finite eigenvalues of the pencil λE−A. Suboptimal ADI
parameters can be determined from a set of largest and smallest in modulus approximate
finite eigenvalues of λE−A computed by an Arnoldi or Lanczos procedure, or any other
method to compute the extreme eigenvalues of a matrix pencil. Any other parameter selec-
tion technique developed for standard Lyapunov equations [27, 124, 148] can also be used
for the projected Lyapunov equation.
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Algorithm 7 LR-ADI method for projected continuous-time Lyapunov equations.
Input: A, E ∈ Rn×n, B ∈ Rn×m, the spectral projector Pl , shifts τ1, . . . ,τp ∈ C−, a tolerance tol,

and kmax ∈ N.
Output: a low-rank factor Zk such that X ≈ ZkZT

k solves (27) approximately.
1: W0 = PlB;
2: Z0 = [ ];
3: k = 1;
4: while (‖W T

k−1Wk−1‖F/‖W T
0 W0‖F > tol and k < kmax) do

5: Vk = (E + τkA)−1Wk−1;
6: if τk ∈ R then
7: Wk =Wk−1−2τkAVk;
8: Zk = [Zk−1,

√
−2τk Vk ];

9: else
10: αk =

√
−2Re(τk), βk = Re(τk)/Im(τk);

11: Wk+1 =Wk−1−4Re(τk)A
(
Re(Vk)+βkIm(Vk)

)
;

12: Zk = [Zk−1, αk
(
Re(Vk)+βkIm(Vk)

)
, αk

√
β 2

k +1Im(Vk) ];
13: k← k+1;
14: end if
15: k← k+1;
16: end while

4.1.2 Krylov subspace methods

Alternative iterative methods for Lyapunov equations are Krylov subspace methods [37,
75, 77, 122] which become competitive with the ADI iteration due to recent developments
on extended and rational Krylov subspaces [46, 83, 128], see also [45] for a comparative
analysis of the Krylov subspace and ADI methods. Employing the ADI iteration as a pre-
conditioner in Krylov subspace methods has been considered in [37, 76]. An extension of
these methods to projected Lyapunov equations can be found in [37, 140]. The approaches
differ in the way the linear matrix equation is solved by either interpreting them as classical
linear systems using their Kronecker product representation in Rn2

, as is the case, e.g., for
[37, 76, 77], or by directly working on the matrix equation and building the Krylov sub-
spaces in Rn as done in [46, 75, 83, 122, 128, 140]. The latter approach appears to be more
efficient (though also the first approach uses Krylov subspaces in Rn2

only implicitly), and
we will therefore concentrate on this concept here.

In the Krylov subspace methods, an approximate solution to the projected Lyapunov
equation (27) is determined in the form X ≈ VỸỸ TV T , where columns of V span a certain
Krylov subspace and Y = ỸỸ T solves the reduced Lyapunov equation

ÃY +Y ÃT =−B̃B̃T ,

where Ã =V TA−1EV and B̃ =V TA−1PlB or, alternatively, Ã =V T E−AV and B̃ =V T E−B.
Here,

E− = T−1
r

[
I 0
0 0

]
T−1

l

is a reflexive inverse of E with respect to the projectors Pl and Pr satisfying the matrix
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equations
E−EE− = E−, EE− = Pl , E−E = Pr.

The projection subspace im(V ) can be chosen as an extended block Krylov subspace

Kk(A−1E,A−1PlB) ∪ Kk(E−A,E−B).

The resulting numerical procedure based on a block Arnoldi method for computing an or-
thogonal basis of this subspace and solving the projected Lyapunov equation (27) is given
in Algorithm 8.

Algorithm 8 Extended block Arnoldi method for projected Lyapunov equations.
Input: A, E ∈ Rn×n, B ∈ Rn×m, the spectral projector Pr, and k ∈ N.
Output: a low-rank factor Zk such that X ≈ ZkZT

k solves (27) approximately.
1: V̂1 = orth([E−B, PrA−1B ]) {orthogonalization of the columns of [E−B, PrA−1B ]};
2: V1 = V̂1, V1,1 = V̂1[ Im, 0 ]T , V1,2 = V̂1[0, Im ]T ;
3: for j = 1,2, . . . ,k do
4: V ( j) = [E−AVj,1, A−1EVj,2 ];
5: for i = 1,2, . . . , j do
6: Hi, j = V̂ T

i V ( j);
7: V ( j) =V ( j)−V̂iHi, j;
8: end for
9: V̂j+1 = orth(V ( j)) {orthogonalization of the columns of V ( j)};

10: Vj+1 = [Vj,V̂j+1], Vj+1,1 = V̂j+1[Im,0]T , Vj+1,2 = V̂j+1[0, Im]
T ;

11: Φ j =V T
j E−AVj, B j =V T

j E−B;
12: solve the Lyapunov equation Φ jYj +YjΦ

T
j =−B jB

T
j for Yj = ỸjỸ

T
j ;

13: end for
14: Zk =VkỸk.

The iteration in this algorithm can be terminated as soon as the normalized residual de-
fined by

η(Z j) =
‖EZ jZ

T
j AT +AZ jZ

T
j ET‖F

‖PlBBT PT
l ‖F

satisfies the condition η(Z j)≤ tol with a tolerance tol. Since the computation of the resid-
ual is expensive for large-scale problems, it has been proposed in [140] to use the following
stopping criterion:

‖E−(EZ jZ
T
j AT +AZ jZ

T
j ET )(E−)T‖F

‖E−BBT (E−)T‖F
=

√
2‖V T

j+1,1E−AVjYj‖F

‖(E−B)T (E−B)‖F
≤ tol,

where the matrix V T
j+1,1E−AVj can be obtained as a by-product of the iteration with no

additional matrix-vector products with E− and A and inner products with long vectors.
In the rational Krylov subspace method, the projection subspace im(V ) is taken as the

rational block Krylov subspace defined as

Kk(E,A,B;s1, . . . ,sk) = blockspan
{
(s1E−A)−1PlB,

(s2E−A)−1E(s1E−A)−1PlB, . . . , (skE−A)−1
k−1

∏
j=1

E(s jE−A)−1PlB
}
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for some shifts s1, . . . ,sk which are not the eigenvalues of λE − A. As in the LR-ADI
method, these parameters should be chosen carefully to guarantee fast convergence [45, 46].

4.2 Projected Riccati equations
We consider now the projected Riccati equation in the general form

EXFT +FXET +EXQTQXET +PlRRTPT
l = 0, X = PrXPT

r , (28)

where the matrices F ∈ Rn×n, R ∈ Rn×m and Q ∈ Rq×n vary depending on the balanced
truncation method:

F = A−PlBJ−T
c J−1

c CPr, Q = J−1
c C, R = BJ−T

c , M0 +MT
0 = JcJT

c

in the positive real case and

F = A+PlBM0J−T
c J−1

c CPr, Q = J−1
c C, R = BJ−1

o ,
I−M0MT

0 = JcJT
c , I−MT

0 M0 = JT
o Jo

in the bounded real case. In the stochastic balanced truncation method, where a dual Riccati
equation has to be solved, E, Pr and Pl should be replaced by ET , PT

l and PT
r , respectively,

and
F = (A−B0M−T

0 M−1
0 CPr)

T , Q = M−1
0 BT

0 , R =CT M−T
0 ,

B0 = PlBMT
0 +EGpcCT .

We assume that (28) has a unique stabilizing solution X∗ such that the matrix pencil λE−
(F +EX∗QT QPr) is stable. Since the first equation in (28) is nonlinear, we can solve it by
Newton’s method presented in [35]. For this purpose, we define a Riccati operator

R(X) = EXFT +FXET +EXQTQXET +PlRRTPT
l

and compute its Frechét derivative

R′X (N) = EN(F +EXQTQPr)
T +(F +EXQTQPr)NET .

Then Newton’s method for the projected Riccati equation (28) is given by

N j =−(R′X j
)−1(R(X j)), X j+1 = X j +N j. (29)

It has been shown in [35] that this iteration converges quadratically towards X∗ for any
stabilizing initial guess X0. If λE −F is stable, then we can take X0 = 0. However, for
unstable problems, the computation of a stabilizing X0 might be challenging. For some
methods to find an initial stabilizing feedback for descriptor systems, see [16].

Note that the first equation in (29) is equivalent to the projected Lyapunov equation

EN jFT
j +FjN jET =−PlK jK

T
j PT

l , N j = PrN jPT
r (30)

with Fj = F +EX jQTQPr and K j = EN j−1QT . This equation can now be solved for a low-
rank factor using the LR-ADI method discussed above. The resulting low-rank Newton
method is summarized in Algorithm 9. It should be mentioned that taking the advantage
of the special structure of Fj = F +(EX jQT )(QPr), the inverse of E + τkFj required in the
LR-ADI iteration can be written using the Sherman-Morrison-Woodburry formula [63, Sec-
tion 2.1.3] as

(E + τkFj)
−1 = F−1

jk −F−1
jk (EX jQT )

(
Iq +QPrF

−1
jk (EX jQT )

)−1QPrF
−1
jk ,
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Algorithm 9 Low-rank Newton method for projected Riccati equations
Input: E,F ∈ Rn×n such that λE−F is stable, Q ∈ Rq×n, R ∈ Rn×m, projectors Pr and Pl .
Output: an approximate low-rank factor of the stabilizing solution of (28).

1: Solve EN0FT +FN0ET = −PlRRT PT
l , N0 = PrN0PT

r for the low-rank factor Ñ0 such that
N0 ≈ Ñ0ÑT

0 ;
2: X̃1 = Ñ0;
3: F0 = F ;
4: for j = 1,2, . . . do
5: K j = EÑ j−1ÑT

j−1QT ;
6: Fj = Fj−1 +K jQPr;
7: solve (30) for the low-rank factor Ñ j such that N j ≈ Ñ jÑ

T
j ;

8: X̃ j+1 = [ X̃ j, Ñ j ].
9: end for

with Fjk =E+τkF . Thus, instead of solving the linear system with large and possibly dense
E + τkFj, we can solve two large linear systems with sparse E + τkF and, additionally, one
small system.

Substituting N j =X j+1−X j in (30), Newton’s method can be reformulated as the Newton-
Kleinman iteration, where the new approximation X j+1 to the solution of (28) is determined
by solving the projected Lyapunov equation

EX j+1FT
j +FjX j+1ET =−Pl(RRT−EX jQTQX jE)PT

l , X j+1 = PrX j+1PT
r .

The low-rank version of the Newton-Kleinman iteration as well as a comparison of both the
Newton-type techniques can be found in [35].

5 Structured DAE systems
The main difficulty in the model reduction methods for DAE systems involving the spectral
projectors is the determination of these projectors themselves. This is often a numerically
ill-conditioned problem since it requires the computation of the deflating subspaces corre-
sponding to the finite eigenvalues of λE −A. Fortunately, for some structured problems,
the projectors Pl and Pr can be determined employing the block structures of E and A. Of
course, we should avoid forming them explicitly as they are usually n× n dense matrices.
Since the projectors often inherit the block structures of E and A, projector-vector prod-
ucts can be computed block-wise, where multiplication with sparse matrices and solving
sparse linear systems is involved [137]. Furthermore, some structured DAE systems can
be transformed into the ODE form such that the computation of the projectors can even be
completely avoided.

5.1 Semi-explicit systems of index 1
First, we consider the semi-explicit DAE system[

E11 E12
0 0

][
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12
A21 A22

][
x1(t)
x2(t)

]
+

[
B1
B2

]
u(t), (31)

y(t) = C1x1(t)+C2x2(t)+Du(t). (32)
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Such systems arise in computational fluid dynamics [152] and power systems modeling
[52, 120]. In the latter case, we have additionally E12 = 0. If the matrices E11 and A22−
A21E−1

11 E12 are both nonsingular, then (31) is of index 1, and the spectral projectors are
given by

Pl =

[
I −(A12−A11E−1

11 E12)(A22−A21E−1
11 E12)

−1

0 0

]
,

Pr =

[
I+E−1

11 E12(A22−A21E−1
11 E12)

−1A21 E−1
11 E12(A22−A21E−1

11 E12)
−1A22

−(A22−A21E−1
11 E12)

−1A21 I−(A22−A21E−1
11 E12)

−1A22

]
,

see [137]. Furthermore, (31) can be rewritten as the ODE system

Êẋ(t) = Âx(t)+ B̂u(t),
y(t) = Ĉx(t)+ D̂u(t),

(33)

where x(t) = x1(t)+E−1
11 E12x2(t), Ê = E11, and

Â = A11− (A12−A11E−1
11 E12)(A22−A21E−1

11 E12)
−1A21,

B̂ = B1− (A12−A11E−1
11 E12)(A22−A21E−1

11 E12)
−1B2,

Ĉ = C1− (C2−C1E−1
11 E12)(A22−A21E−1

11 E12)
−1A21,

D̂ = D− (C2−C1E−1
11 E12)(A22−A21E−1

11 E12)
−1B2.

We can now apply any model reduction method to system (33) with nonsingular Ê, where
the spectral projectors are not needed any more. In the LR-ADI method and the Krylov-
based model reduction methods, one has to solve the shifted linear systems of the form
(Ê + τÂ)z = f . This can be done either by solving the linear systems[

E11 + τA11 A12−A11E−1
11 E12

τA21 A22−A21E−1
11 E12

][
z
g

]
=

[
f
0

]
provided the coefficient matrix is sparse, or by using the Sherman-Morrison-Woodburry
formula [63, Section 2.1.3]

z = (Ê + τÂ)−1 f
=

(
I + τ(E11+τA11)

−1(A12−A11E−1
11 E12)Â−1

22 A21
)
(E11+τA11)

−1 f

with Â22 = A22−A21(E11+τA11)
−1(E12+τA12) provided E11+τA11 is nonsingular. Here,

the product ẑ = Â−1
22 f̂ can be computed by solving the sparse linear system[

E11 + τA11 E12 + τA12
A21 A22

][
ĝ
ẑ

]
=

[
0
f̂

]
.

Another condition guaranteeing the index-1 property for (31) is nonsingularity of the
matrices A22 and E11−E12A−1

22 A21. In this case, the second equation in (31) gives

x2(t) =−A−1
22 A21x1(t)−A−1

22 B2u(t).

Substituting it in the first equation in (31) and in the output equation (32), we obtain the
ODE system

Ê1ẋ1(t) = Â1x1(t)+ B̂1u1(t),
y(t) = Ĉ1x1(t)+ D̂1u1(t),

(34)
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where
Ê1 = E11−E12A−1

22 A21, Â1 = A11−A12A−1
22 A21,

B̂1 = [B1−A12A−1
22 B2, E12A−1

22 B2 ], Ĉ1 =C1−C2A−1
22 A21,

D̂1 = [D−C2A−1
22 B2, 0 ], u1(t) = [uT (t), u̇T (t) ]T

provided u is continuously differentiable. It should be emphasized that the matrices Ê1 and
Â1 will never be computed explicitly since they may be dense even if all matrices Ei j and
Ai j are sparse. The solution of (Ê1 +τÂ1)z = f can be obtained by solving the sparse linear
system [

E11 + τA11 E12 + τA12
A21 A22

][
z
g

]
=

[
f
0

]
.

Note that if E12 = 0, then both systems (33) and (34) take the form

E11ẋ1(t) = (A11−A12A−1
22 A21)x1(t)+(B1−A12A−1

22 B2)u(t),
y(t) = (C1−C2A−1

22 A21)x1(t)+(D−C2A−1
22 B2)u(t).

Model reduction of such a system has been considered in [52, 120].

5.2 Magneto-quasistatic systems of index 1
Magneto-quasistatic field systems arise in modeling of electromagnetic devices such as in-
duction machines and transformers by neglecting the displacement currents. A spatial dis-
cretization of Maxwell’s equations in magnetic vector potential formulation together with
the circuit coupling equations using the finite integration technique or the finite element
method yields the DAE system M11 0 0

0 0 0
XT

1 XT
2 0

 ȧ1(t)
ȧ2(t)
j(t)

 =

 −K11 −K12 X1
−K21 −K22 X2

0 0 −R

 a1(t)
a2(t)
j(t)

+
 0

0
I

u(t),

y(t) = j(t),
(35)

where [aT
1 ,a

T
2 ]

T ∈ Rn1+n2 is a semidiscretized magnetic vector potential and
j(t) ∈ Rm is a current vector, e.g., [126, 127]. The matrices M11, K22 and R are symmetric,
positive definite and X2 is of full column rank. In this case, system (35) has index 1 [82].
Let the columns of Y form an orthonormal basis of the kernel of XT

2 and the columns of
Z = X2(XT

2 X2)
−1/2 span the image of X2. Multiplying the first equation in (35) with an

orthogonal matrix

Q =


In1 0 0
0 ZT 0
0 Y T 0
0 0 Im


and introducing a vector Qx(t) =

[
aT

1 (t), aT
21(t), aT

22(t), jT(t)
]T partitioned according to Q,

we obtain the ODE system

Êẋ(t) = Âx(t)+ B̂u(t),
y(t) = Ĉx(t),

(36)
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where

Ê =

[
M11 +X1R−1XT

1 X1R−1XT
2 Z

ZT X2R−1XT
1 ZT X2R−1XT

2 Z

]
, x(t) =

[
a1(t)
a21(t)

]
,

Â = −
[

K11 K12Z
ZT K21 ZT K22Z

]
+

[
K12

ZT K22

]
Y
(
Y T K22Y

)−1Y T [K21, K22Z] ,

B̂ =

[
X1

ZT X2

]
R−1,

Ĉ = −(XT
2 X2)

−1XT
2
(
I−K22Y (Y T K22Y )−1Y T

)
[K21, K22Z ] .

(37)

In order to be able to apply the balanced truncation model reduction method to system (36),
we need to solve linear systems of the form

(Ê + τÂ)z =
[

f1
f2

]
.

Exploiting the block structure of the matrices Ê and Â in (37), the solution of this system
can be determined as z = [zT

1 ,(Z
T z2)

T ]T , where z1 and z2 solve the sparse linear system M11− τK11 −τK12 τX1
−τK21 −τK22 τX2

XT
1 XT

2 −τR

z1
z2
z3

=

 f1
Z f2
0

 .
Furthermore, the ADI shift parameters can be calculated by an Arnoldi procedure applied
to the matrices Ê−1Â and Â−1Ê. Again, the matrix-vector products Ê−1Âv and Â−1Êv
required in the Arnoldi procedure can be computed without the construction of the ma-
trices Ê, Â and their inverses. A main difficulty here is the computation of the vector
z = Y (Y T K22Y )−1Y T w. Fortunately, this vector can be determined by solving the sparse
linear system [

K22 X2
XT

2 0

][
z
g

]
=

[
w
0

]
,

see [82] for details. This shows that the computation of the large dense matrix Y can com-
pletely be avoided that reduces the computational complexity significantly.

5.3 Circuit equations of index 1 and 2
Linear RLC circuits consisting of linear resistors, inductors, capacitors and independent cur-
rent and voltage sources can be described using modified nodal analysis [72, 111]. Choosing
currents through inductors and voltages of voltage sources as inputs, as well as voltages of
current sources and currents through voltage sources as outputs, one obtains a DAE system
of the form (1) described by

E=

 AC C AT
C 0 0

0 L 0
0 0 0

, A=

−AR R −1AT
R −AL −AV

AT
L 0 0

AT
V 0 0

, B=

−AI 0
0 0
0 −I

=CT,

(38)

D = 0, x(t) =

 η(t)
jL(t)
jV (t)

 , u(t) =

[
jI (t)

vV (t)

]
, y(t) =−

[
vI (t)
jV (t)

]
.
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Here η ∈ Rnη is a vector of node potentials, jL ∈ RnL , jI ∈ RnI and jV ∈ RnV are vectors
of currents through inductors, current and voltage sources, respectively, and vI and vV are
vectors of voltages of current and voltage sources, respectively. Furthermore, AC , AL , AR ,
AV and AI are the incidence matrices describing the topological structure of the circuit, and
C , R and L are the capacitance, resistance and inductance matrices. Under the assumptions
that AV has full column rank, [AC , AL , AR , AV ] has full row rank and C , R and L are
positive definite, system (1), (38) is of index at most 2 and passive [48, 109]. It has index 1
if, additionally, [AC , AL , AR ] has full row rank and ZT

C AV has full column rank, where the
columns of ZC span ker(AT

C ).
In model reduction of circuit equations, it is crucial to preserve passivity. This al-

lows a back interpretation of the reduced-order model as an electrical circuit which has
fewer electrical components than the original one [6, 109]. Passivity-preserving Krylov
subspace based model reduction methods for structured circuit equations have been de-
veloped [53, 55, 56, 84, 99], whereas balancing-related methods have been considered
in [15, 105, 114, 116, 155]. Unfortunately, the application of the positive real balanced
truncation method is currently restricted to small and medium-sized problems, since there
exists no explicit representation for the spectral projectors required in the positive real
Lur’e equations (18) and (19). In contrast, for the Moebius-transformed system HHHM =
(E,A−BC,−

√
2B,
√

2C, I), the right and left spectral projectors are given by

Pr =

 H5(H4H2− I) H5H4AL H7 0
0 H7 0

−AT
V (H4H2− I) −AT

V H4AL H7 0

 ,
Pl =

 (H2H4− I)H6 0 (H2H4− I)AV
−H8AT

L H4H6 H8 −H8AT
L H4AV

0 0 0

 ,
where

H1 = ZT
C R I V AL L−1AT

L ZC R I V ,

H2 = AR R−1AT
R +AI AT

I +AV AT
V + AL L−1AT

L ZC R I V H−1
1 ZT

C R I V AL L−1AT
L ,

H3 = ZT
C H2ZC , H4 = ZC H−1

3 ZT
C ,

H5 = ZC R I V H−1
1 ZT

C R I V AL L−1AT
L − I, H6 = AL L−1AT

L ZC R I V H−1
1 ZT

C R I V − I,

H7 = I−L−1AT
L ZC R I V H−1

1 ZT
C R I V AL , H8 = I−AT

L ZC R I V H−1
1 ZT

C R I V AL L−1,

ZC is a basis matrix for ker(AT
C ),

ZC R I V is a basis matrix for ker([AC , AR , AI , AV ]T ),

see [114, 139]. This allows us to compute the passive reduced-order model by applying
the bounded real balanced truncation to HHHM in the large-scale setting. Taking into account
the block structure of the system matrices in (38), we can also determine the matrix M0 =
lim
s→∞

HHHM(s) in the form

M0 =

[
I−2AT

I ZH−1
0 ZT AI 2AT

I ZH−1
0 ZT AV

−2AT
V ZH−1

0 ZT AI −I +2AT
V ZH−1

0 ZT AV

]
,

where H0 = ZT (AR R−1AT
R +AI AT

I +AV AT
V )Z, Z = ZC Z′R I V−C and Z′R I V−C is a basis

matrix for im([AR , AI , AV ]T ZC ). Having this matrix, we do not need to compute the im-
proper Gramians any more. Furthermore, if C , R and L are symmetric, then Pl = PT

r and
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the bounded real Gramians GBR
c and GBR

o are related by GBR
c = SintGBR

o Sint with a signature
matrix Sint = diag(Inη

,−InL ,−InV ). In this case, only one Lur’e equation has to be solved
that reduces the computational cost.

A further cost reduction can be achieved for RC and RL circuits. The underlying equa-
tions for such circuits are either symmetric or they can be transformed to symmetric systems
for which passivity-preserving model reduction can be performed employing the Lyapunov
balancing [116].

5.4 Stokes-like systems of index 2
Another block structured DAE system arises in computational fluid dynamics, where the
flow of an incompressible fluid is modeled by the Navier-Stokes equation. After a lineariza-
tion along a stationary trajectory and discretization in space by the finite element method,
one gets the Stokes-like system[

E11 0
0 0

][
v̇(t)
ṗ(t)

]
=

[
A11 A12
A21 0

][
v(t)
p(t)

]
+

[
B1
B2

]
u(t),

y(t) = C1v(t)+C2 p(t)+Du(t),

(39)

where v(t) and p(t) are the semidiscretized velocity and pressure vectors. Model reduction
of such systems has been considered in [33, 69, 71, 135]. Note that unlike [71], we do
not assume here that E11 is symmetric and A21 = AT

12. If E11 and A21E−1
11 A12 are both

nonsingular, then system (39) is of index 2, and the spectral projectors Pl and Pr have the
form

Pl =

[
Πl −Πl A11E−1

11 A12(A21E−1
11 A12)

−1

0 0

]
,

Pr =

[
Πr 0

−(A21E−1
11 A12)

−1A21E−1
11 A11Πr 0

]
,

where
Πl = I−A12(A21E−1

11 A12)
−1A21E−1

11 ,

Πr = I−E−1
11 A12(A21E−1

11 A12)
−1A21 = E−1

11 Πl E11.

Note that the conditions for A12 and A21 to be of full rank are not enough for the index-2
property unless E11 is symmetric and positive definite. It has been shown in [71] that the
velocity and pressure vectors can be determined as

v(t) = v0(t)−E−1
11 A12(A21E−1

11 A12)
−1B2u(t),

p(t) = −(A21E−1
11 A12)

−1
(
A21E−1

11 A11v0(t)+A21E−1
11 B12u(t)+B2u̇(t)

)
,

where B12 =B1−A11E−1
11 A12(A21E−1

11 A12)
−1B2 and v0(t) =Πrv0(t) solves the DAE system

Êv̇0(t) = Âv0(t)+ B̂u(t),
y(t) = Ĉv0(t)+ D̂u(t)+ D̂1u̇(t),

(40)

with

Ê = Πl E11Πr, Â = Πl A11Πr, B̂ = Πl B12, (41)
Ĉ =C1−C2(A21E−1

11 A12)
−1A21E−1

11 A11,

D̂ = D−C1E−1
11 A12(A21E−1

11 A12)
−1B2−C2(A21E−1

11 A12)
−1A21E−1

11 B12,

D̂1 =−C2(A21E−1
11 A12)

−1B2.
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Note that the matrices Ê and Â in (41) have a common nontrivial kernel, and, hence, λ Ê− Â
is singular for all λ ∈ C. At first glance, this renders the application of balanced trunca-
tion and interpolatory-based model reduction methods to (40) impossible since there the
inversion of Ê +τkÂ (or Â− skÊ) is required. Fortunately, these matrices can be inverted on
a subspace. Then the LR-ADI iteration for the projected Lyapunov equation

ÂXÊT + ÊXÂT =−B̂B̂T

associated with (40) can be reformulated as

Ŵ0 = B12, Z0 = [ ],

V̂k = (Ê + τkÂ)−Ŵk−1,
Ŵk = Ŵk−1−2Re(τk)A11V̂k,

Ẑk = [ Ẑk−1,
√
−2Re(τk)V̂k ],

(42)

where (Ê +τkÂ)− is the reflexive inverse of Ê +τkÂ with respect to Πl and Πr. Taking into
account the structure of Ê and Â, the matrices V̂k = (Ê + τkÂ)−Ŵk−1 can be computed by
solving the linear matrix equation[

E11 + τkA11 A12
A21 0

][
V̂k
V

]
=

[
Ŵk−1

0

]
with sparse (if E11 and Ai j are sparse) coefficient matrix. The main advantage of the LR-
ADI iteration (42) over those in Algorithm 7 is that the matrices V̂k, Ŵk and Ẑk have smaller
dimension than Vk, Wk and Zk, respectively, and no multiplication with the projectors is
required. For further details of this novel formulation of the ADI iteration and its specific
implementation for Stokes-like equations, see [33], where also an extension of balanced
truncation to unstable descriptor systems is considered. Further note that LQG balanced
truncation for (Navier-)Stokes flow is discussed in [21].

5.5 Mechanical systems of index 1 and 3
Consider a second-order DAE system[

M11 0
0 0

][
p̈(t)
η̈(t)

]
+

[
D11 0

0 0

][
ṗ(t)
η̇(t)

]
+

[
K11 K12
K21 K22

][
p(t)
η(t)

]
=

[
B1
B2

]
u(t),

C1 p(t)+C2η(t) = y(t),
(43)

where p(t) is a displacement vector and η(t) is a vector of electrical potentials. Such
systems frequently arise in mechatronics, where micro-electromechanical devices are of
great interest, e.g., [144]. Introducing x(t) = [ pT (t), ṗT (t), ηT (t) ]T , system (43) can be
written as the first-order DAE system (1) with

E=

I 0 0
0 M11 0
0 0 0

, A=

 0 I 0
−K11 −D11 −K12
−K21 0 −K22

, B=

 0
B1
B2

, C=[C1,0,C2 ], D=0.

If M11 and K22 are both nonsingular, then this system (and also (43)) is of index 1. Similarly
to the semi-explicit DAE system (31), (32), system (43) can be rewritten in the compact
form

M11 p̈(t)+D11 ṗ(t)+ K̂11 p(t) = B̂u(t),
y(t) = Ĉp(t)+ D̂u(t),
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where K̂11 =K11−K12K−1
22 K21, B̂=B1−K12K−1

22 B2, Ĉ =C1−C2K−1
22 K21 and D̂ =C2K−1

22 B2.
Applying the second-order balanced truncation method as proposed in [26, 31] or the second-
order Krylov subspace methods [8, 125] requires the solution of the linear systems (τ2M11±
τD11 + K̂11)z = f . Employing the structure of the involved matrices, the vector z can be
determined by solving the sparse system[

τ2M11± τD11 +K11 K12
K21 K22

][
z
g

]
=

[
f
0

]
using a sparse LU factorization or Krylov subspace methods [123].

The dynamical behaviour of linear multibody systems with holonomic constraints is de-
scribed by the Euler-Lagrange equations I 0 0

0 M 0
0 0 0

 ṗ(t)
v̇(t)

λ̇p(t)

 =

 0 I 0
−K −D −GT

G 0 0

 p(t)
v(t)

λp(t)

+
 0

B
0

u(t),

y(t) = Cp p(t)+Cvv(t),
(44)

where p(t) and v(t) are the position and velocity vectors, λp(t) is the Lagrange multiplier,
M, D and K are the mass, stiffness and damping matrices, respectively, and G is a matrix
of constraints. If M and GM−1GT are both nonsingular, then system (44) is of index 3.
Exploiting the block structure of the system matrices, the spectral projectors Pl and Pr can
be computed as

Pl =

 Πr 0 ΠrM−1DG1
ΠT

r D(I−Πr) ΠT
r ΠT

r (K−DΠrM−1D)G1
0 0 0

 ,
Pr =

 Πr 0 0
ΠrM−1D(I−Πr) Πr 0

−GT
1 (KΠr +DΠrM−1D(I−Πr)) −GT

1 DΠr 0

 ,
where G1 = M−1GT (GM−1GT )−1 and

Πr = I−M−1GT (GM−1GT )−1G = I−G1G

is a projector onto the constraint manifold ker(G). Instead of using the spectral projectors
Pl and Pr explicitly, one can reformulate the DAE system (44) in such a way that only
the implicit projection is needed. This can be achieved by the Gear-Gupta-Leimkuhler
formulation [59] given by

I 0 0 0
0 M 0 0
0 0 0 0
0 0 0 0




ṗ(t)
v̇(t)

λ̇p(t)
λ̇v(t)

 =


0 I 0 −GT

−K −D −GT 0
G 0 0 0
0 G 0 0




p(t)
v(t)

λp(t)
λv(t)

+


0
B
0
0

u(t),(45)

y(t) = Cp p(t)+Cvv(t)

which has index 2. In computational multibody dynamics, (45) is also known as stabilized
index-2 formulation of the equations of motion, e.g., [38]. It can be obtained by differen-
tiating the position-level constraint Gp(t) = 0 and adding the resulting velocity-level con-
straint equation Gv(t) = 0 to (44) by introducing an additional Lagrange multiplier λv. It
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was shown in [59] that if (p,v,λp) is a solution of (44), then (p,v,λp,λv) with λv = 0 is
a solution of (45). Conversely, if (p,v,λp,λv) solves (45), then λv = 0 and (p,v,λp) satisfies
(44). Observe that system (45) has the Stokes-like form (39) with

E11=

[
I 0
0 M

]
, A11=

[
0 I
−K −D

]
, A12=

[
0 −GT

−GT 0

]
, A21=

[
G 0
0 G

]
,

B1 =

[
0
B

]
, B2 =

[
0
0

]
, C1 = [Cp, Cv] , C2 = 0, D = 0.

(46)
Therefore, all results of Section 5.4 can be applied to the constrained mechanical sys-
tem (45). Exploiting the block structure of the matrices in (46), we obtain the second-order
system

M̂ p̈(t)+ D̂ ṗ(t)+ K̂ p(t) = B̂u(t),
y(t) = Ĉp p(t)+Ĉv ṗ(t)

(47)

for the position vector p(t) = Πp(t), where

M̂ = ΠlMΠ, D̂ = ΠlDΠ, K̂ = ΠlKΠ,

B̂ = ΠlB, Ĉp = CpΠ, Ĉv = CvΠ,
Πl = MΠrM−1, Π = I−GT (GGT )−1G.

Combining the balanced truncation technique from [71] with the second-order LR-ADI
method presented in [26, 31], we can derive an efficient computational procedure for model
reduction of system (47) which does not require forming the first-order system. This proce-
dure involves solving projected linear systems

Πl(τ
2M− τD +K)Πz = Πl f

whose solution z = Πz can be determined from the saddle point linear system[
τ2M− τD +K GT

G 0

][
z
g

]
=

[
f
0

]
without computing the projectors Πl and Π.

6 Other model reduction topics
In this section, we briefly discuss other works related to model reduction of DAE systems.
This list is far from complete and rather provides a very short overview of recent develop-
ments in this active research area.

Model reduction of periodic discrete-time descriptor systems

The balanced truncation model reduction method can also be formulated for discrete-time
DAEs. In this case, instead of projected continuous-time Lyapunov equations (13) and (14),
one has to solve the projected discrete-time Lyapunov equations

AXAT −E XET =−PlBBT PT
l , X = PrXPT

r , (48)

ATYA−ETY E =−PT
r CTCPr, Y = PT

l Y Pl , (49)

introduced in [133].
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Model reduction of periodic discrete-time descriptor systems

Ekxk+1 = Akxk +Bkuk,
yk = Ckxk,

(50)

where Ek ∈ Rµk+1×nk+1 , Ak ∈ Rµk+1×nk , Bk ∈ Rµk+1×mk , Ck ∈ Rqk×nk are periodic with a pe-
riod K ≥ 1, ∑

K−1
k=0 µk = ∑

K−1
k=0 nk = n, ∑

K−1
k=0 mk = m and ∑

K−1
k=0 qk = q, has been considered

in [24, 39]. The Gramians for such systems can be determined as solutions of periodic pro-
jected Lyapunov equations. Using a lifted representation [132] for the periodic descriptor
system (50), these equations can be written in the form (15), (16) and (48), (49) with block
structured matrices E,A ∈ Rn×n, B ∈ Rn×m and C ∈ Rq×n. The efficient solution of these
lifted systems using methods from Section 4.1 adapted to exploit the block sparsity in the
lifted system matrices is considered in [23, 24, 73].

Index-aware model reduction for DAEs

In [1, 2], an index-aware model reduction approach was proposed for DAE systems which
is based on splitting the DAE into an ODE system and a system of algebraic equations. It
was shown in [1] that the index-1 DAE system (1) can be written in the form

ẋ1(t) = A11x1(t)+B1u(t), y1(t) =C1x1(t), (51)
x2(t) = A21x1(t)+B2u(t), y(t) = y1(t)+C2x2(t)+Du(t),

where[
x1(t)
x2(t)

]
=

[
W T

1
W T

2

]
x(t),

[
A11
A21

]
=

[
W T

1
W T

2

]
E−1

1 AT1,

[
B1
B2

]
=

[
W T

1
W T

2

]
E−1

1 B,

E1 = E−AT2W T
2 , [C1, C2 ] =C[T1, T2 ], [W1, W2 ]

T = [T1, T2 ]
−1,

and the columns of the matrices T1 and T2 form the basis of im(ET ) and ker(E), respectively.
Then the ODE system (51) is approximated by a reduced-order model

˙̃x1(t) = Ã11x̃1(t)+ B̃1u(t), ỹ1(t) = C̃1x̃1(t)

with Ã11 =V T A11V , B̃1 =V T B1 and C̃1 =C1V using any projection-based model reduction
method, and ỹ(t) = ỹ1(t) +C2A21V x̃1(t) + (C2B2 +D)u(t) approximates the output y(t).
The transformation matrix [T1, T2 ] can be determined from the sparse LUQ factorization
[85] of ET as a product of a permutation matrix and a sparse lower triangular matrix, and
its inverse is computed by forward substitution, see [157] for a detailed discussion. The
index-aware model reduction approach was also extended in [2] to DAEs of index 2. It
should be noted that this approach does not require any special structure of the matrices E
and A, but its efficiency strongly relies on sparsity of the matrix A11 = W T

1 E−1
1 AT1. Even

if [T1, T2 ] is sparse, the multiplication with E−1
1 may result in a full matrix that makes this

approach unfeasible for large-scale problems.

Parametric model reduction

In the last years, model reduction of parameterized systems has received a lot of attention,
see [20] for an overview and numerous references. Here, we are only going to provide a
brief sketch on some approaches, noting that a lot remains to be done to adapt some of them
to descriptor systems, and to exploit special structures as in Section 5.
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Consider a linear parametric DAE system

E(p)ẋ(t, p) = A(p)x(t, p)+B(p)u(t),
y(t, p) = C(p)x(t, p), (52)

where the system matrices and, hence, the state and the output depend on a parameter
p ∈ P⊂ Rd . Such systems appear frequently in control design and optimization problems,
where parameters describe varying geometric configurations and material characteristics.
When approximating the parametric system, it is important to preserve the parameter de-
pendence in the reduced-order model. For parametric model reduction, different techniques
have been developed over the years, that are, in some sense, extensions of traditional non-
parametric model reduction approaches, see [20] for a survey of state-of-the-art parametric
model reduction methods. In Krylov subspace based methods [9, 17, 41, 49, 90], the trans-
fer function

H(s, p) =C(p)(sE(p)−A(p))−1B(p)

of (52) is approximated by

H̃(s, p) = C̃(p)(sẼ(p)− Ã(p))−1B̃(p)

of lower dimension that satisfies (tangential) interpolation conditions with respect to s and
p. Another class of the parametric model reduction methods is based on interpolation. For
selected parameters p1, . . . , pk ∈ P, one computes first the reduced-order local models

Ẽ j ˙̃x j(t) = Ã j x̃ j(t)+ B̃ ju(t),
ỹ j(t) = C̃ j x̃ j(t),

where Ẽ j = W T
j E(p j)Tj, Ã j = W T

j A(p j)Tj, B̃ j = W T
j B(p j) and C̃ j = C(p j)Tj. Then a

parameter-dependent reduced-order model is constructed by using one of the following in-
terpolation approaches:

1. interpolation in the frequency domain [10, 50, 129], where the reduced transfer func-
tion is obtained by interpolation of the reduced local transfer functions

H̃HH(s, p) =
k

∑
j=1

f j(p)C̃ j(sẼ j− Ã j)
−1B̃ j;

2. interpolation in the time domain [3, 5, 42, 61, 101], where the reduced-order model
is derived by interpolation of the reduced system matrices

Ẽ(p) =
k
∑
j=1

f j(p)Ẽ j, Ã(p) =
k
∑
j=1

f j(p)Ã j,

B̃(p) =
k
∑
j=1

f j(p)B̃ j, C̃(p) =
k
∑
j=1

f j(p)C̃ j;

3. interpolation of the projection subspaces [4, 130], where the reduced-order model is
determined by projection

Ẽ(p) =W T (p)E(p)T (p), Ã(p) =W T (p)A(p)T (p),
B̃(p) =W T (p)B(p), C̃(p) =C(p)T (p),

and the projection matrices W (p) and T (p) are obtained by interpolation of W1, . . . ,Wk
and T1, . . . ,Tk, respectively, on the Grassmann manifolds.
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For an extension of these methods to descriptor systems and a comparative analysis of them,
with particular focus on their application to circuit equations, we refer to [131].

Model reduction of nonlinear parametric DAEs arising in circuit simulation using a re-
duced bases method was considered in [43].

7 Conclusions
We have surveyed model order reduction methods for linear descriptor systems, i.e., systems
with input-output structure and dynamics described by systems of differential-algebraic
equations. We have seen that most methods based on system-theoretic approaches such
as balanced truncation and the related family of balancing-based methods as well as meth-
ods based on rational interpolation of the associated transfer function can be adapted to
descriptor systems by using appropriate spectral projectors. As an extension of the avail-
able literature, we have extended the method of balanced stochastic truncation to descriptor
systems. The presented approaches rely on the availability of the spectral projectors. Often,
in applications, these can be formed explicitly without additional computation by a smart
usage of the structure arising from the different applications. Moreover, the explicit forma-
tion of the spectral projectors can usually be avoided using clever implementations of the
algorithms needed, e.g., to compute the factors of the system Gramians used in balancing-
based methods. These Gramians are solution of projected algebraic Lyapunov or Riccati
equations. We have shown recent advances in the numerical methods to solve these pro-
jected matrix equations. Details of the projector-avoiding strategies have been discussed
for various engineering problems leading to descriptor systems of index 1, 2, or 3, resulting
in specialized implementations of the model order reduction methods.

Future work in this area will address extensions of the methods discussed to nonlinear
systems. Such extensions of the system-theoretic methods for nonlinear systems described
by ordinary differential equations have been surveyed recently in [11]. First attempts focus-
ing on bilinear descriptor systems as discussed in [19, 64] show that in particular the inter-
polatory approaches carry over directly when the underlying structure is carefully exploited.
The extension of these results to more general classes of nonlinear descriptor systems will
require further research efforts in the future.
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[25] P. BENNER, P. KÜRSCHNER, AND J. SAAK, Efficient handling of complex shift
parameters in the low-rank Cholesky factor ADI method, Numer. Algorithms, 62
(2013), pp. 225–251.

[26] , An improved numerical method for balanced truncation for symmetric
second-order systems, Math. Comput. Model. Dyn. Systems, 19 (2013), pp. 593–
615.

[27] , Self-generating and efficient shift parameters in ADI methods for large Lya-
punov and Sylvester equations, Electron. Trans. Numer. Anal., 43 (2014), pp. 142–
162.

[28] P. BENNER, V. MEHRMANN, AND D. SORENSEN, eds., Dimension Reduction of
Large-Scale Systems, vol. 45 of Lecture Notes in Computational Science and Engi-
neering, Springer-Verlag, Berlin, Heidelberg, 2005.
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