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Abstract

We propose a new interpolatory framework for model reduction of large-scale bi-
linear systems. The input-output representation of a bilinear system in frequency
domain involves a series of multivariate transfer functions, each representing a
subsystem of the bilinear system. If a weighted sum of these multivariate transfer
functions associated with a reduced bilinear system interpolates a weighted sum
of the original multivariate transfer functions, we say that the reduced system
satisfies a Volterra series interpolation [8]. These interpolatory conditions can
also ensure the necessary conditions for H2-optimal model reduction [8, 5]. We
observe that, by carefully selecting the weights of the series, the Volterra series
interpolatory conditions are transformed to the problem of interpolating a linear
system with an affine parameter dependence. Such linear parametric systems
can then be reduced by some method for parametric model order reduction.

Linear systems where the affine parameter dependence is given as low-rank
variation in the state matrix can be mapped into a non-parameterized multi-
input multi-output linear system. This allows us to utilize the standard (non-
parametric) linear IRKA [10] for the problem of parameterized/bilinear inter-
polation. Numerical results show that the approximations are of comparable
accuracy to those obtained from the bilinear iterative rational Krylov algorithm
[5]. The proposed approach, however, has the advantage that it reduces the
computational costs as it involves computations associated with solving linear
systems only. Keywords. Bilinear control systems, parametric model order
reduction.
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1 Introduction

Bilinear systems are weakly nonlinear systems that have been well studied in the liter-
ature. Some applications include the modeling of electrical circuits, mechanical links,
power systems [1], the heat transfer [6], fluid flow, immunology and cardiovascular reg-
ulators [11]. Often, these models typically involve a large number of state equations
(the system’s order) such that the simulation/control of such models is computation-
ally expensive and prohibitive. In this paper, we discuss model order reduction of such
large-scale bilinear control systems.

Consider a multi-input multi-output (MIMO) bilinear system of the form

ζ :

{
ẋ(t) = Ax(t) +

∑m
i=1Nix(t)ui(t) +Bu(t),

y(t) = Cx(t).
(1)

Here, A,Ni ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are the state-space matrices and
x(t) ∈ Rn, u(t) = [ui(t), . . . , um(t)]T ∈ Rm and y(t) ∈ Rp are the state, input and
output vectors, respectively. It is assumed that ζ is bounded-input bounded-output
(BIBO) stable. See [16] for the concept of stability for bilinear systems.

The problem of model reduction is to construct a reduced-order bilinear system

ζ̂ :

{
˙̂x(t) = Âx̂(t) +

∑m
i=1 N̂ix̂(t)ui(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(2)

with x̂(t) ∈ Rr and r � n such that ŷ(t) is close to y(t) in an appropriate norm. Various

techniques are available in the literature to identify ζ̂ for a given ζ. Analogously to the
reduction of linear systems, projection is often used to construct ζ̂. This, in general,
involves identifying suitable basis matrices V and W (the columns of each matrix span
to a particular subspace), approximating x(t) by V x̂(t) and ensuring Petrov-Galerkin
conditions (with WTV = I). This leads to the following reduced state-space matrices:

Â = WTAV, N̂i = WTNiV, i = 1, . . . ,m,

B̂ = WTB, Ĉ = CV.
(3)

Clearly, the quality of the reduced system matrices depends on the choice of the
basis matrices V and W . Various approaches for model reduction of linear systems
have been extended to bilinear systems such that an efficient choice of these basis
matrices can be identified. For example, it is shown in [16, 6] that an extension of
the balanced truncation technique [9] to bilinear systems identifies a good choice for
V and W . The approach, however, requires the solution of two generalized Lyapunov
equations which is known to be computationally complex [6]. Also, interpolatory
model reduction techniques have been extended to bilinear systems, see for example
[12, 2, 7] and the references therein. Here, the input-output characterization (Volterra
series representation) of a bilinear system, that is to be reduced, identifies an infinite
set of multivariate transfer functions also known as subsystems of the bilinear system.
The basis matrices V and W are than constructed such that the first k subsystems
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of the reduced bilinear system are interpolating the corresponding subsystems of the
original bilinear system.

The problem of H2-optimal model reduction for bilinear systems has also received
attention after its introduction in [16]. Recently, this is linked to the problem of inter-
polation [5] where Wilson-based necessary conditions [15] for H2-optimality have been
extended to bilinear systems and an iterative algorithm is proposed that updates a set
of interpolation points. On convergence, the optimality conditions are satisfied. This
extends the iterative rational Krylov algorithm (IRKA) [10] for linear systems to bi-
linear systems. The algorithm is named as bilinear iterative rational Krylov algorithm
(B-IRKA) and was successfully applied to several bilinear test examples, outperforming
most of the available techniques for bilinear systems. An equivalent set of necessary
H2-optimality conditions has been derived in [8] and a truncated bilinear iterative
rational Krylov algorithm (TB-IRKA) has been proposed, that reduces the compu-
tational costs of B-IRKA. The reduced bilinear system, however, only approximately
satisfies the optimality conditions. This link of H2-optimality with interpolatory pro-
jection suggests that interpolating a weighted sum of multivariate transfer functions
is more useful compared to individually interpolating each multivariate transfer func-
tion. In this paper, we propose that by carefully selecting the weights of the series, the
bilinear interpolation-based necessary conditions can be ensured by using linear com-
putations only. The proposed approach is based on rewriting the bilinear interpolatory
conditions as interpolatory conditions of a linear parametric system.

In Section 2, we briefly review the bilinear interpolatory conditions. It is shown in
Section 3 how these interpolatory conditions are related to the interpolatory conditions
of a linear parametric system. The conditions in the MIMO case are discussed in
Section 4. In Section 5 it is described how the linear parametric system can be reduced
by mapping the system into a non-parametric MIMO linear system and using the
standard IRKA. The efficiency of the proposed approach is underlined by numerical
results in Section 6. Conclusions are given in Section 7.

2 Interpolatory Techniques for Bilinear Systems

In this section, we briefly review the Volterra series representation of a single-input
single-output (SISO) bilinear system. The input-output representation for general
nonlinear systems can be expressed by the Volterra series expansion of the output y(t)
with quantities analogously to the standard convolution operator:

y(t) =
∑∞
k=1 yk(t1, . . . , tk),

=
∑∞
k=1

∫ t
0

∫ t1
0
. . .
∫ tk−1

0
hk(t1, . . . , tk)u(t− t1) · · ·u(t− tk)dtk . . . dt1,

(4)

where it is assumed that the input signal is one-sided, u(t) = 0 for t < 0. In addition,
each of the generalized impulse responses hk(t1, . . . , tk), also called k-dimensional ker-
nels of the subsystem, is also assumed to be one-sided. In terms of the multivariable
Laplace transform, the k-dimensional subsystem can be represented as

Yk(s1, . . . , sk) = Hk(s1, . . . , sk)U(s1) · · ·U(sk), (5)
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where Hk(s1, . . . , sn) is the corresponding multivariable transfer function. The above
equation follows by exploiting properties of convolution in (4), see [13] for details. If
the multivariable Laplace transforms Hk(s1, . . . , sk) of all subsystems and the input
U(s) are known, then the inverse Laplace transforms can be computed to identify
yk(t1 . . . , tk). The output y(t) becomes

y(t) =

∞∑
k=1

yk(t1, . . . , tk)|t1=...=tk=t =

∞∑
k=1

yk(t, . . . , t). (6)

In case of a bilinear system ζ as given in (1) and with the additional assumption that
ζ is a SISO bilinear system with N = N1, the n-dimensional kernels can be written as

hk(t1, . . . , tn) = c eAtkNeAtk−1N · · · eAt1b. (7)

The MIMO case is discussed later in Section 4. The multivariable Laplace transform
of the kernel becomes

Hk(s1, . . . , sk) = c (skI −A)−1N(sk−1I −A)−1N · · · (s1I −A)−1b. (8)

For more details on the above theory, we refer to [13]. Most of the interpolatory tech-
niques for model reduction of bilinear systems [12, 2, 7] identify a reduced bilinear sys-
tem such that the first q multivariable reduced transfer functions, Ĥk(s1, . . . , sk), k =
1, . . . , q, interpolate the corresponding original transfer functions. We call these con-
ditions for interpolatory model reduction the ‘standard interpolation’.

Definition 2.1 (Standard Interpolation). Let Sk = {σ(1)
k , . . . , σ

(r)
k }, k = 1, . . . , q, be

q different sets of interpolation points. Then we say that Ĥk(s1, . . . , sk) achieves the
standard interpolation if

Hk(σ
(i)
1 , . . . , σ

(i)
k ) = Ĥk(σ

(i)
1 , . . . , σ

(i)
k ), k = 1, . . . , q, i = 1, . . . , r. (9)

Based on standard interpolation, one can generate reduced-order models. However
in this setting, unlike for linear systems, we can not link the issue of selecting the
interpolation points to the problem of H2-optimal model reduction. That is, we can
not identify a choice of interpolation points for which the error system associated with
the r dimensional bilinear system is minimized in terms of the H2-norm. For bilinear
systems, the H2-norm was introduced in [16] and, analogously to the linear case, it
was expressed as

‖ζ‖2H2
= cPcT , (10)

where P ∈ Rn×n solves the generalized Lyapunov equation

AP + PAT +NPNT + bbT = 0. (11)

The problem ofH2-optimality for reduced bilinear systems is also considered in [16] and
necessary conditions for H2-optimality are derived that extend the Wilson conditions
to the bilinear case:

Y TX + Q̂P̂ = 0, Q̂N̂ P̂ + Y TNX = 0,

Y T b+ Q̂b̂ = 0, ĉP̂ − cX = 0.
(12)
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Here, P̂ is the solution of the generalized Lyapunov equation corresponding to the
reduced system matrices and X, Y are solutions to the generalized Sylvester equations

AX +XÂT +NXN̂T + bb̂T = 0,

ATY + Y Â+NTY N̂ + cT ĉ = 0.
(13)

The reduced system matrices have to satisfy the conditions in (12) forH2-optimality.
To ensure that a projection technique satisfies these conditions, we assume that there
exist X and Y such that (13) holds and

V = XF, W = Y G, (14)

with F,G ∈ Rr×r. Analogously to the linear case [14], one can view (3), (13)

and (14) as two coupled equations, (Â, N̂ , b̂, ĉ) = F1(X,Y, F,G) and (X,Y, F,G) =

F2(Â, N̂ , b̂, ĉ), for which we have a fixed point (Â, N̂ , b̂, ĉ) = F1(F2(Â, N̂ , b̂, ĉ)) at
every stationary point. This clearly suggests an iterative procedure as recently intro-
duced in [5]. The algorithm on convergence satisfies the necessary conditions given in
(12). An equivalent set of interpolation-based necessary conditions for H2-optimality
is also derived in [5]. To ensure that the reduced system satisfies these interpolatory
conditions, the authors in [5] developed the B-IRKA algorithm which successfully ex-
tends the linear IRKA [10] to bilinear systems. Unlike standard interpolation (9), the
B-IRKA algorithm amounts to a different framework for interpolatory model reduc-
tion. This interpolatory framework is then developed in [8] by observing that the error
system in terms of the H2-norm can be written as

‖ζ − ζ̂‖2H2
=∑∞

k=1

∑n
l1=1 · · ·

∑n
lk=1 φl1,...,lk

(
Hk(−λl1 , . . . ,−λlk)− Ĥk(−λl1 , . . . ,−λlk)

)
+
∑∞
k=1

∑r
l1=1· · ·

∑r
lk=1 φ̂l1,...,lk

(
Hk(−λ̂l1 , . . . ,−λ̂lk)− Ĥk(−λ̂l1 , . . . ,−λ̂lk)

)
,

(15)

where φl1,...,lk are the residues of Hk(s1, . . . , sk) that are defined analogously to the
single variable case. λ1, . . . , λn ∈ C represent the simple zeros of Hk(s1, . . . , sk). This
means that the H2-norm of the error system is due to the mismatch of the weighted
sums of the multivariate transfer functions evaluated at different combinations of the
eigenvalues. This suggested that, analogously to the linear case, one should minimize
the second term in (15). This gives rise to an interpolatory model reduction tech-
nique that aims to capture the response of the underlying Volterra series with respect
to a predefined set of interpolation points in r different combinations. We call this
framework for interpolatory model reduction ‘Volterra series interpolation’.

Definition 2.2 (Volterra Series Interpolation). Let S = {σ(1), . . . , σ(r)} be a set of

interpolation points. Then we say that a reduced bilinear system ζ̂ achieves the Volterra
series interpolation if it interpolates the weighted series∑∞

k=1

∑r
l1=1· · ·

∑r
lk−1=1 ηl1,...,lk−1,j

Hk(σ(l1), . . . , σ(lk−1), σ(j)) =∑∞
k=1

∑r
l1=1· · ·

∑r
lk−1=1 ηl1,...,lk−1,j

Ĥk(σ(l1), . . . , σ(lk−1), σ(j)),
(16)
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where j = 1, . . . , r and η
l1,...,lk−1,j

are weights defined in terms of the elements of

a matrix U ∈ Rr×r such that η
l1,...,lk−1,j

= Uj,lk−1
Ulk−1,lk−2

· · ·Ul2,l1 for k > 2 and

η
l1

= 1 for l1 = 1, . . . , r.

Projection techniques for bilinear systems can achieve the Volterra series interpola-
tion if the matrices V =

[
v1 · · · vr

]
and W =

[
w1 · · · wr

]
are computed such

that

vj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

η
l1,...,lk−1,j

(σjI −A)−1N(σlk−1
I −A)−1N · · ·N(σl1I −A)−1b,

wj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

η
l1,...,lk−1,j

(σjI −A)−TNT(σlk−1
I−A)−TNT· · ·NT(σl1I −A)−TcT,

for j = 1, . . . , r. Clearly, it is not possible to compute explicitly the above infinite
series of shifted systems for each vj and wj . However, it is shown in [8] that the above
conditions are equivalent to solving the following generalized Sylvester equations for
V and W

V Λ−AV −NV UT + beT = 0,
WM −ATW −NTWS + cT e = 0,

(17)

where e ∈ Rr is a vector of ones, Λ and M are r×r diagonal matrices with interpolation
points as diagonal elements. U and S are r × r matrices with elements related to the
weights of the Volterra series.

In case of H2-optimality, these conditions reduce to the interpolatory conditions of
[5]. Based on the Volterra series interpolation, the authors in [8] also proposed the
TB-IRKA algorithm that interpolates the truncated Volterra series where the sum
over k is truncated.

3 Implicit Volterra series interpolation

In this section, we propose a new framework for the Volterra series interpolation by
carefully selecting the weights of the series. We assume that the weights η

l1,...,lk−1,j

in (16) satisfy

η
l1,...,lk−1,j

=

{
(ηj,j )k−1, if j = lk−1 = · · · = l1,

0, otherwise
(18)

for j = 1, . . . , r. If we also assume that ‖η
j,j

(σ(j)I − A)−1N‖ < 1, then the following
lemma shows that the Volterra series interpolation reduces to the interpolation of a
linear system.

Lemma 3.1. Let η
l1,...,lk−1,j

be the weights in the Volterra series interpolation satisfy-

ing (18). Furthermore, ‖η
j,j

(σ(j)I −A)−1N‖ < 1 and ‖η
j,j

(σ(j)I − Â)−1N̂‖ < 1 hold.
Then, the Volterra series interpolation conditions in (16) become

c(σ(j)I −A− η
j,j
N)−1b =: G(σ(j)) = Ĝ(σ(j)) := ĉ(σ(j)I − Â− η

j,j
N̂)−1b̂. (19)
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Proof. We need to show that under the given conditions,

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

η
l1,...,lk−1,j

Hk(σ(l1), . . . , σ(lk−1), σ(j)) = G(σ(j)). (20)

We denote the left-hand side of the above equation by LHS and rewrite the series for
a few values of k

LHS = ηjH1(σ(j))+

r∑
l1=1

η
l1,j
H2(σ(l1), σ(j))+

r∑
l1=1

r∑
l2=1

η
l1,l2,j

H3(σ(l1), σ(l2), σ(j))+ . . . .

Since the weights are only defined when j = lk−1 = · · · = l1, we use (18) to get

LHS = H1(σ(j)) + ηj,jH2(σ(j), σ(j)) + (ηj,j )2H3(σ(j), σ(j), σ(j)) + . . .

= c(σ(j)I −A)−1b+ η
j,j
c(σ(j)I −A)−1N(σ(j)I −A)−1b+

(ηj,j )2c
(

(σ(j)I −A)−1N
)2

(σ(j)I −A)−1b+ . . .

= c

[
I + η

j,j
(σ(j)I −A)−1N +

(
η
j,j

(σ(j)I −A)−1N
)2

+ . . .

]
(σ(j)I −A)−1b.

As ‖ηj,j (σ(j)I −A)−1N‖ < 1, we can use the Neumann lemma to obtain

LHS = c(I − ηj,j (σ(j)I −A)−1N)−1(σ(j)I −A)−1b,

which reduces to the right-hand side of (20). Similarly

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

η
l1,...,lk−1,j

Ĥk(σ(l1), . . . , σ(lk−1), σ(j)) = Ĝ(σ(j)). (21)

The relations (20) and (21) imply that (19) holds and this proves the lemma.

Remark 3.1. The assumption on the weights η
l1,...,lk−1,j

in (18) means that the matrix

U in (16) is diagonal, i.e., U = UD := diag(η1,1, . . . , ηr,r).

Remark 3.2. Although the assumption in (18) is simplifying our conditions of inter-
polation to a great deal, it is also imposing a condition on the original bilinear system
in the sense that ‖η

j,j
(σ(j)I −A)−1N‖ < 1 has to be ensured.

We call this modified framework for interpolatory model reduction ‘implicit Volterra
series interpolation’.

Definition 3.1 (Implicit Volterra Series Interpolation). Let S = {σ(1), . . . , σ(r)} be
a set of interpolation points and let the conditions in Lemma 3.1 hold. Then we say
that a reduced bilinear system ζ̂ achieves the implicit Volterra series interpolation if
the reduced state-space matrices fulfill

c(σ(j)I −A− η
j,j
N)−1b = ĉ(σ(j)I − Â− η

j,j
N̂)−1b̂. (22)

Before going into the discussion of model order reduction via implicit Volterra series
interpolation, we discuss the MIMO case.
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4 The MIMO case

For MIMO systems, the Volterra series representation of the output y(t) can be written
as

y(t) =

∞∑
k=1

∫ t1

0

∫ t2

0

. . .

∫ tk

0

hk(t1, . . . , tk)u(t−
k∑
i=1

ti)⊗ · · · ⊗ u(t− tk)dtk . . . dt1. (23)

The regular k-dimensional kernels are given as

h1(t1) = CeAt1B,
h2(t1, t2) = CeAt2N̄(Im ⊗ eAt1)(Im ⊗B),

...
hk(t1, . . . , tk) = CeAtkN̄(Im ⊗ eAtk−1)(Im ⊗ N̄) · · ·

(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−2 times

⊗eAt2)(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−2 times

⊗N̄)

(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−1 times

⊗eAt1)(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−1 times

⊗B),

(24)

where N̄ =
[
N1 , . . . , Np

]
. The structure of the kernels for k = 1, k = 2 and k ≥ 3

is clear from the above equations. Assuming that x(0) = x0 = 0, the multivariable
Laplace transform of the k-dimensional kernels can be written as

H1(s1) = C(s1I −A)−1B,
H2(s1, s2) = C(s2I −A)−1N̄(Im ⊗ (s1I −A)−1)(Im ⊗B),

...
Hk(s1, . . . , sk) = C(skI −A)−1N̄(Im ⊗ (sk−1I −A)−1)(Im ⊗ N̄) · · ·

(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−2 times

⊗(s2I −A)−1)(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−2 times

⊗N̄)

(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−1 times

⊗(s1I −A)−1)(Im ⊗ Im · · · ⊗ Im︸ ︷︷ ︸
k−1 times

⊗B).

(25)

The above expressions are commonly used for the input-output representation of
MIMO bilinear systems, see [13] for details. However, with this representation, a
model reduction technique can not ensure the Volterra series interpolation. This is
because in the above representation, the size of the multivariable transfer matrix,
Hk(s1, . . . , sk), is p×mk, which changes with k.

We suggest to interpolate a closely related matrix function of fixed size (p×m) which
is obtained by the sum of p×m blocks in a k-th order multivariable transfer matrix,
Hk(s1, . . . , sk). Each transfer matrix, Hk(s1, . . . , sk) includes block diagonal matrices
written in the form of Kronecker products which can be used to identify the p × m
block matrices. Exemplarily we set m = 2. Then, the second subsystem becomes

H2(s1, s2) = C(s2I −A)−1
[
N1 N2

] [(s1I −A)−1B 0
0 (s1I −A)−1B

]
=
[
H

(1)
2 (s1, s2) H

(2)
2 (s1, s2)

]
,

(26)
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where H
(1)
2 (s1, s2) = C(s2I − A)−1N1(s1I − A)−1B and H

(2)
2 (s1, s2) = C(s2I −

A)−1N2(s1I −A)−1B. This means that the output y2(s1, s2) for the two-dimensional
subsystem is

y2(s1, s2) = H
(1)
2 (s1, s2)u1(s1)u(s2) +H

(2)
2 (s1, s2)u2(s1)u(s2)

=
(
H

(1)
2 (s1, s2)u1(s1) +H

(2)
2 (s1, s2)u2(s1)

)
u(s2).

(27)

We assume that the output of the second subsystem is well approximated by the second
subsystem of the reduced system if it interpolates the p×m matrix function

H2(s1, s2) = H
(1)
2 (s1, s2) +H

(2)
2 (s1, s2). (28)

Notice that for m > 2, the above summation will include m matrices. Similarly, for the
third subsystem, H3(s1, s2, s3) will include m2 matrices and the k-th subsystem will
correspond to mk−1 elements. The matrix function for the k-th subsystem therefore
becomes

Hk(s1, . . . , sk) =

mk−1∑
ik=1

H
(ik)
k (s1, . . . , sk).

Now we can write the Volterra series interpolatory conditions for the matrix func-
tions Hk(s1, . . . , sk) for different values of k, similar to the SISO case. This means
that the reduced system has to ensure∑∞

k=1

∑r
l1=1· · ·

∑r
lk−1=1 ηl1,...,lk−1,j

Hk(σ(l1), . . . , σ(lk−1), σ(j)) =∑∞
k=1

∑r
l1=1· · ·

∑r
lk−1=1 ηl1,...,lk−1,j

Ĥk(σ(l1), . . . , σ(lk−1), σ(j)),
(29)

for some weights, η
l1,...,lk−1,j

and interpolation points σ(j). The following theorem

shows that the Volterra series interpolatory conditions can also be written as interpo-
latory conditions of a MIMO linear parametric system.

Theorem 4.1. Let η
l1,...,lk−1,j

be the weights in the Volterra series interpolation satis-

fying (18) and the inequalities ‖
∑m
i=1 ηj,j (σ(j)I−A)−1Ni‖ < 1 and ‖

∑m
i=1 ηj,j (σ(j)I−

Â)−1N̂i‖ < 1 hold. Then the Volterra series interpolation conditions in (29) become

C(σ(j)I −A− η
j,j
N)−1B =: G(σ(j)) = Ĝ(σ(j)) := Ĉ(σ(j)I − Â− η

j,j
N̂)−1B̂ (30)

Proof. The result follows by using the weights in (18) in the interpolatory conditions
(29) and using Neumann series, similar to the proof of Lemma 3.1.

Both, Lemma 3.1 and Theorem 4.1, suggest that the interpolatory conditions of a
bilinear system can be rewritten into interpolatory conditions of a linear parametric
system, with parameters being the weights of the Volterra series. Next, we discuss two
different techniques for linear parametric model reduction, that can be used to reduce
the original bilinear system.

9



5 Linear Parametric Model Reduction

H2-optimal model reduction was addressed in the past years and approaches like B-
IRKA or TB-IRKA were successfully applied to bilinear systems resulting from several
applications. Two-sided projection via these algorithms requires the solution of two
generalized Sylvester equations or four Lyapunov equations in every iteration step
which makes the offline computational costs high for larger problem sizes. In this
section, we consider approaches which are based on the observation that the Volterra
series interpolation conditions lead to a linear system with an affine parameter depen-
dence, see (30) for the MIMO case, (19) for SISO systems.

These linear, parametric systems can, in principle, be reduced by any method for
parametric model order reduction. However, in this work, we further exploit another
system’s property which is encountered in many practical applications. Often, the
bilinear terms are of low (numerical) rank ν, Ni = bic

T
i , with bi, ci ∈ Rn×ν , such that

we obtain a transfer function

G(s) = C(sI −A−
m∑
i=1

ηi bic
T
i )−1B (31)

corresponding to a linear, parametric system with low-rank variation in the state
matrix,

ẋ(t) = Ax(t) +
∑m
i=1 ηi bic

T
i x(t) +Bu(t),

y(t) = Cx(t).
(32)

This system includes parameters η1, . . . , ηm in a parameter domain D. D has to be
chosen such that the conditions in Lemma 3.1 (or in Theorem 4.1, respectively) are
fulfilled. Methods for parametric model order reduction which are especially adapted
to systems of this low-rank form will be described in the following two subsections.

5.1 Bilinear PMOR by system extension with B(η)

System (32) can be rewritten in an extended form by defining auxiliary inputs ui(t) =
cTi x(t), for i = 1, . . . ,m,

ẋ(t) = Ax(t) + [B, η1b1, . . . , ηmbm ]︸ ︷︷ ︸
Bext(η)


u(t)
u1(t)
...
um(t)


︸ ︷︷ ︸

uext

,


y(t)
y1(t)
...
ym(t)


︸ ︷︷ ︸

yext

=


C
cT1
...
cTm


︸ ︷︷ ︸
Cext

x(t) +


0 0 . . . 0
0 −I 0
...

. . .

0 0 . . . −I


︸ ︷︷ ︸

Dext


u(t)
u1(t)
...
um(t)


︸ ︷︷ ︸

uext

.

(33)
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Then, if the artificial inputs {u1, u2, . . . , um} are chosen in order to force the auxiliary
outputs to zero, i.e., y1(t) = y2(t) = . . . = ym(t) = 0, the extended system (33) and
the original parametric system (32) are equivalent.

This system can be reduced similarly to an approach based on IRKA which is
described in [4]. The main observation here is that a combined H2 × L2-norm of the
system (33) is equivalent to the H2-norm of the non-parametric system H(s)L with

H(s) =


C
cT1
...
cTm

 (sI −A)−1[B b1 . . . bm] (34)

and L being a Cholesky factor of

∫
D


Im 0 . . . 0
0 η1Iν 0
...

. . .

0 0 . . . ηmIν



Im 0 . . . 0
0 η1Iν 0
...

. . .

0 0 . . . ηmIν

 dη = LLT . (35)

Thus, IRKA is used to reduce the dimension of H(s)L and the resulting reduced-order
system is, on convergence, optimal w.r.t. a combined H2 × L2-norm,

˙̂x(t) = Â x̂(t) + B̂ext(η)uext(t),

ŷext(t) = Ĉext x̂(t) + Dext uext(t),
(36)

with Â = WTAV , B̂ext(η) = WTBext(η), Ĉext = CextV , and V , W ∈ Rn×r for some
reduced order r � n.

A reduced, parametric system of the same structure as (32) with B̂ = WTB,

Ĉ = C V and b̂i = WT bi, ĉ
T
i = cTi V , for i = 1, . . . ,m, can be recovered from (36)

when u1, . . . , um are chosen s.t. ŷ1(t) = . . . = ŷm(t) = 0:

˙̂x(t) = Â x̂(t) +
∑m
i=1 ηi b̂i ĉ

T
i x̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t).
(37)

A brief sketch of this approach is given in Algorithm 1.

11



Algorithm 1 extB(η): Bilinear PMOR by system extension with B(η)

1. Compute Cholesky factor L by calculating the integral (35) using appropriate
parameter domain D (conditions in Lemma 3.1 for SISO systems or in Theorem
4.1 for MIMO systems are fulfilled).

2. Apply IRKA to H(s)L with H(s) as given in (34) to obtain V and W .

3. Reduced-order bilinear system (37) is obtained by projection:

Â = WTAV, B̂ = WTB, Ĉ = CV,

b̂i = WT bi, ĉTi = cTi V, for i = 1, . . . ,m.

5.2 Bilinear PMOR by system extension with D(η)

Alternatively, we can rewrite system (32) such that the parameter dependency is solely
in D [3]:

ẋ(t) = Ax(t) + [B, b1, . . . , bm ]︸ ︷︷ ︸
Bext


u(t)
u1(t)
...
um(t)


︸ ︷︷ ︸

uext

,


y(t)
y1(t)
...
ym(t)


︸ ︷︷ ︸

yext

=


C
cT1
...
cTm


︸ ︷︷ ︸
Cext

x(t) +


0 0 . . . 0
0 −1/η1 0
...

. . .

0 0 . . . −1/ηm


︸ ︷︷ ︸

Dext(η)


u(t)
u1(t)
...
um(t)


︸ ︷︷ ︸

uext

.

(38)
Here, auxiliary inputs u1(t) = η1c

T
1 x(t), . . . ,um(t) = ηmc

T
mx(t) are taken, and again,

they should be chosen such that the auxiliary outputs are zero: y1(t) = y2(t) = . . . =
ym(t) = 0.

Significantly, the parameterization of (38) resides entirely only in the feed-forward
term Dext(η), which is matched exactly in many model order reduction approaches.
Thus, we can apply IRKA [10] (or other non-parametric methods for MOR) to (38) to
obtain an auxiliary reduced-order system similarly like in (36). The reduced system
in original bilinear form can then be retrieved as in (37). The pseudo-code is listed in
Algorithm 2.
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Algorithm 2 extD(η): Bilinear PMOR by system extension with D(η)

1. Rewrite system (32) into extended form (38).

2. Apply IRKA to (38) to obtain V and W .

3. Reduced-order bilinear system (37) is obtained by projection:

Â = WTAV, B̂ = WTB, Ĉ = CV,

b̂i = WT bi, ĉTi = cTi V, for i = 1, . . . ,m.

6 Numerical Results

We use two different examples from the literature to demonstrate the efficiency of the
new approach. These include the power system model and the heat transfer model.
The systems are reduced by both techniques discussed in Section 5 and by B-IRKA
and TB-IRKA for comparing the accuracy and the computational complexity of the
reduction. Furthermore, we reduce both examples by applying linear IRKA to the
linear part of the systems. The computed matrices V and W are then used to reduce
the bilinear system as in (3).

The (B)-IRKA iterations are randomly initialized in all approaches.

6.1 Power System Model

The first example is a power system model [1] that is often used as a benchmark
example for model reduction of bilinear systems. This system naturally has a low
rank of one in all matrices N1, . . . , N4 which constitute the bilinearity in the system.
Thus, the methods extB(η) and extD(η) for parametric model order reduction can be
applied. The size of the original model is 17 with 4 inputs and 3 outputs. Although
the dimension is very low, and does not call for model order reduction in practice, we
can use use it for verifying the behavior of the algorithms. We reduce the dimension to
r = 4, . . . , 16 with the extB(η) and extD(η) approaches and with BIRKA, TB-IRKA,
and IRKA for comparison. The relative errors in the H2-norm are shown in Figure 1.
We additionally compare in Figure 2 the offline times of the approaches considered.

It can be seen that the accuracy of the new approaches is nearly as good as in B-
IRKA but with a lower computational complexity. TB-IRKA performs similarly well
but also with higher offline costs. The naive approach of ignoring the bilinearity in
the system’s reduction is not surprisingly less accurate, but also cheap to compute.
The peaks in Figure 2 indicate reduced orders for which the iteration of the respective
method did not converge within the prescribed 100 maximum iterations steps.

13



4 6 8 10 12 14 16
10−5

10−4

10−3

10−2

10−1

100

Reduced order

R
el

a
ti

ve
H

2-
er

ro
r

IRKA
B-IRKA
TB-IRKA

extB(η)

extD(η)

Figure 1: H2-errors for power system with different values of r.

4 6 8 10 12 14 16
0

0.5

1

Reduced order

O
ffl

in
e

co
m

p
u

ta
ti

on
a
l

ti
m

e
[s

]

IRKA
B-IRKA
TB-IRKA

extB(η)

extD(η)

Figure 2: Offline times for power system with different values of r.
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6.2 Heat Transfer Model

We consider a boundary controlled heat transfer system, that is a standard example
for testing bilinear control systems [5, 6]. The dynamics of the system are governed
by the heat equation

xt = ∆x, on Ω = (0, 1)× (0, 1), (39)

with mixed Dirichlet and Robin boundary conditions

n ·∆x = u(x− 1), on Γ1,
x = 0, on Γ \ Γ1,

where Γ and Γ1 are the boundaries of Ω and the heat transfer coefficient u is the input
variable. In our example, the input acts only on a small part Γ1 of the boundary such
that the bilinear term is of rank one. The output of the system is chosen to be the
average temperature on the grid. Spatial discretization with an equidistant grid and
nodes xij (together with the boundary conditions) results in a SISO bilinear system
of the form

ẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t),

where x = vec(xij). The input is set to u(t) = cos(πt). For details on the structure of
the coefficient matrices, see for example [6]. The mesh size is set to h = 1

36 , so that the
bilinear system has dimension n = 2500. We restrict the computations to a system of
moderate dimension because of the costly computation of the H2-norm. The bilinear
system is reduced to r = 25 by using implicit Volterra series interpolation with the
extB(η) and extD(η) approaches. The results are compared with those computed by
TB-IRKA and IRKA. The running time of B-IRKA was too long for this example.
The relative H2-errors and the offline times can be found in Table 6.2. The transient
responses of the original and the reduced systems and the corresponding relative output
errors are shown in Figure 3 and 4, respectively.

It can be seen that extB(η) and extD(η) produce very accurate reduced-order sys-
tems in a very short time.

Table 1: Approximation errors and offline times for heat transfer system with r = 25.

IRKA TB-IRKA extB(η) extD(η)

Rel. H2-errors 1.6× 10−3 1.5× 10−8 2.1× 10−8 1.1× 10−8

Offline times [sec] 4.1 838.7 2.3 2.4

7 Conclusions

We proposed a new framework for projection-based model order reduction of bilinear
systems. This framework is especially useful for bilinear systems with a bilinear part
in low-rank form. Such systems can be rewritten into extended, parametric systems
where the system’s dimension can be reduced very efficiently by just applying IRKA.
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We have shown that the proposed approaches compute accurate reduced-order models
involving linear computations only. This makes the framework well applicable to large-
scale bilinear systems.
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