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Nowadays many technical and industrial processes require accurate and systematic ana-
lysis and simulation of the underlying mathematical models. However, the demand on the
models of being as exact as possible frequently leads to very large-scale control systems
which prevent efficient numerical treatment. In this talk, we will discuss the problem of
model order reduction of state-nonlinear single-input and single-output control systems,
i.e. systems of the form

z(t) = [f(z(t)) + bu(t) (1)
y(t) = cx(t), 2(0) = xo,

with f : R” — R" nonlinear and b, ¢’ € R™”. While most existing reduction techniques
like TPWL and POD require specific training inputs and snapshots of a state trajectory,
respectively, we want to focus on a numerically efficient Krylov-based approach which will
additionally allow constructing input independent reduced order models. As has recently
been shown in [1], for a large class of nonlinear systems, this can be achieved by trans-
forming the original system (1) into an equivalent, though increased, quadratic bilinear
differential algebraic system

Ex(t)
y(t)

with E, A;, N € R A, e R B OT € R™. As the above model combines the class
of quadratic and bilinear control systems its output can be characterized by means of
generalized transfer functions obtained from nonlinear system analysis concepts described
in [2]. Finally, expanding these transfer functions at certain frequencies then leads to
the idea of multimoment-matching. We will discuss the choice of interpolation points,
possible two-sided projection techniques as well as difficulties arising from large-scale
Kronecker products. The effectiveness of the new approach is evaluated with the help of
some numerical examples resulting from semi-discretized nonlinear PDEs.

AE(t) + A (t) ® #(t) + Ni(tu(t) + Bu(t)
Cz(t), z(0) = o,

[1] Gu, C.: A New Projection-Based Approach for Nonlinear Model Order Reduction,
ICCAD’09, San Jose, 2009.

2] Rugh, W. J.: Nonlinear System Theory - The Volterra-Wiener Approach, The Johns
Hopkins University Press, 1981.
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Nonlinear Model Order Reduction

Motivation

Consider a large-scale state-nonlinear control system of the form

o X = Fx(©) + Bu(),
) = o), x(0) = .

with f : R” — R" nonlinear, B€ R"™", Ce RP*", x e R", u e R", y € R”.

. {ﬂn?@u»+éwm
y(t) = Cx(t), %(0) = %o,

with f: R" 5 R" BeR™™ CeRP*" xeR" ueR™ § R, A< n.

y = y for all admissible u.
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Nonlinear Model Order Reduction

Common Reduction Techniques

Proper Orthogonal Decomposition (POD)

Take computed or experimental 'snapshots’ of full model:

[x(t1), x(t2), - .., x(tw)] =:

perform SVD of snapshot matrix: X = VSWT ~ V;S; WA
Reduction by POD-Galerkin projection: % = V,J f(V,%) + V.] Bu.
Requires evaluation of f

~+ discrete empirical interpolation [Sorensen/Chaturantabut '10].

Input dependency due to 'snapshots’!

Trajectory Piecewise Linear (TPWL)

Linearize f along trajectory,
reduce resulting linear systems,
construct reduced model by weighting sum of linear systems.

Requires simulation of original model and several linear reduction steps,
many heuristics.
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State-Space Representation

MAX-PLANCK-GESELLSCHAFT

We will consider quadratic-bilinear SISO systems of the form

Ex(t) = Aix(t) + Axx(t) @ x(t) + Nx(t)u(t) + Bu(t),
y(t) = Cx(t), x(0) = xo,

where E, Aj, N € R™1 A, e R™7 B CT € R,

e A large class of nonlinear control-affine systems can be transformed into
the above type of control system.

e The transformation is exact, but a slight increase of the state dimension
has to be accepted.

e Input-output behavior can be characterized by generalized transfer functions
~~ enables us to use Krylov-based reduction techniques.
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Quadratic-Bilinearization

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = agx + a181(x) + ... + akgk(x) + Bu,

where gi(x) : R” — R" are compositions of uni-variable rational, exponential,
logarithmic, trigonometric or root functions, respectively. Then, by iteratively
taking Lie derivatives and adding algebraic equations, respectively, 2 can be
transformed into a system of quadratic-bilinear DAEs of dimension N > n

| \

Example (Taking Lie Derivatives)

o x1 =exp(—x) - /X2 +1, X =sinxy+ u.
o 7 :=exp(—x2), z:=+\/x2+1, zz:=sinxy, 2z :=cCoSxp.
° x1=2z1-2, X=zn+u z1=-z1 (z3+u),
Z2>0Vt 2.X1+21-2Z . .
= A2 =x-2, n=z (z+tu), z2=-z (z+u)
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Quadratic-Bilinearization

MAX-PLANCK-GESELLSCHAFT

Theorem [Gu'09]

Assume that the state equation of a nonlinear system % is given by
x = agx + a181(x) + ... + akgk(x) + Bu,

where gi(x) : R" — R" are compositions of uni-variable rational, exponential,
logarithmic, trigonometric or root functions, respectively. Then, by iteratively
taking Lie derivatives and adding algebraic equations, respectively, 2 can be
transformed into a system of quadratic-bilinear DAEs of dimension N > n.

Example (Adding Algebraic Equations)

Accepting DAEs, it might be advantageous adding algebraic equations

o x=—x% yi=x>

wx=—y* y-x*=0,
wk=—y? Yy =-2-x-y%
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Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
e consider input of the form au(t),

e nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + o?xa(t) + ®x3(t) + .. ..
e comparison of terms a/,i = 1,2, ... leads to series of systems

E).(l = A1X1 + BU,
Exo = A1xo + Aoxy ® x1 + Nxyu,
Exs = A1xz 4+ Az (x1 ® xo + x2 @ x1) + Nxou

e although i-th subsystem is coupled nonlinearly to preceding systems, linear
systems are obtained if terms x;, j < i, are interpreted as pseudo-inputs.
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Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can be
obtained via the growing exponentials approach:

Hi(s1) = C(s1E — A;)7'B,
Grf 2
Hols1,52) = 5;C (51 + 2)E — A N (Gi(s1) + Ga(%)
1A (Gi(51) @ Gu(2) + Gil2) @ Gi(s1))]

1 _
Hs(s1,52,53) = gc((sl + 5+ 53)E — A;) '

[N(GQ(Sl, 52) + G2(52, 53) + Gg(Sl, 53))

+ A2(G1(5]_) & GQ(SQ, 53) + G1(52) (029 G2(51, 53)
+ Gi(s3) ® Go(s1,53) + Go(52,53) ® Gi(s1)

+ Go(51,53) @ Gi(s2) + Ga(s1,52) ® G1(53))}-
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Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For H;(s1), choosing o
and making use of the Neumann lemma leads to

Hi(s) =Y € (A1 — GE)'E) (AL — 0E) 1B (s, — o).

i=0 g

i
mSl (o8

Similarly, specifying an expansion point (7,&) yields

2(s152) = 5 3 C (A= (T + 9E) E) (A — (1 + OF) H (s1 45— 7= €)'
=0
(3 s”®zm52§+zmsﬁ®zn¢” +N(zms”+zm;g,§)
j=0 p=0
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Constructing the Reduced System

For derivatives around o = 7 = £ up to order g — 1, construct the Krylov spaces:

=Kq (AL — 0E)'E, (AL — 0cE)'B)
fori=1:q
Wi = Kq—is1 (A1 — 20E) ' E, (AL — 20E) ' NU;),
for j=1:min(qg —i+1,i)
Zi = Kq—i—jto (A1 — 20E)'E, (A1 — 20E) " Ay(Ui ® U + U; @ Uy)),
U; denoting the i-th column of U.
Set V = orth([U, W, Z]) and construct ¥ by the Galerkin-Projection P = VVT:

Al =VTAVER™ A, = VTAV @V c R

N=VTNVeR™ B=vTBeR" (CT=VTCeR"
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Viscous Burgers’ Equation

Let us consider a simple nonlinear PDE

o, v o
ot Vox U ox2

subject to initial and boundary conditions

v(x,0) =0, x€]0,1], v(0,t) = u(t), v(1,t)=0, t>0.

(x,t) € (0,1) x (0, T),

A spatial discretization by e.g. finite differences yields a system of QBODEs

in = h”Q(VQ—zvl) V12h +%u( ) + %u(t),
v = %(v,-+1 — 2V Vi) — (V"+21h_ vie) g ok,
VK = :2( 2vk + V- 1)+%

Output: vuye = % [1 1} )
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Viscous Burgers’ Equation

Transient responses for k = 10000 and u(t) = cos(t)
\ N N N

— Original nonlinear model
—O'ZO, q1:5, CI2:2, n==~6
—0=10,g1=5, ¢ =2,n=9

0.4

0.2

Vavg

—0.2

0.4 | | | |
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Viscous Burgers’ Equation

10-4T \ \ \ \ ]
—0=0,q1=5 q=21=6 |||
]_0_5§ —a:10,q1—5,q2—2,n—9 E
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Nonlinear Advection-Diffusion-Reaction System

Next, let us focus on a nonlinear PDE arising in jet diffusion flame models

%—W+U Vw —V(kVw) + f(w) =0, (x,t)€(0,1) x (0, T),

with Arrhenius type term f(w) = Aw(c — W)e_ﬁ and constant parameters
U,A E, c,d,k, see [Galbally’09]. Again define initial and boundary conditions
w(x,0) =0, xe€]0,1], w(0,t) = u(t), w(l,t)=0, t=>0.
Output: Weenter = [O ... 01 0 ... 0} )

After spatial discretization of order k, define new state variables

s z
zi = — g .= €°
] 6—W,’ 1 I

and iteratively construct a system of QBDAEs
~ state dimension increases to n = 8 - k.
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Nonlinear Advection-Diffusion-Reaction System

Transient responses for k = 1500 and u(t) = e !
\ \ : : : : : :
— Original nonlinear model
Ll —o=-1, g =4 ¢g=21=8 |
0 —U:—l,q1:8,QQ:0,ﬁ:8
A Co=-1,q1=6 g =3 =12
3 —0c=1, =4, =2, n=8
$ 03] qi qz ]
g
0.2} |
0.1
O l | | | l

| | | |
0O 02 04 06 08 1 12 14 16 18 2
Time t
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Nonlinear Advection-Diffusion-Reaction System

Relative errors for k = 1500 and u(t) =e™*

107t

102

Relative error

10_3; —a:—l,q1—4,q2:2,ﬁ:8 -
E —U:—l,q1:8,QQ:0,ﬁ:8 E
. —O':—].,Q1:6,QQ:3ﬁ 12 :
10~* —

Q
|
_I—‘
QO
=
|
__-b
Q
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I
oo |l
Ll
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Time t
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Tensor Approximations and Two-Sided Methods?

Note that V € R"*9 in general is dense
~+ computation of A, = VT A,V ® V might cause memory problems,
~> find approximations:

A2%g1®G1+---gr®Gr7

with g7 € R", G; € R"™" possibly sparse and low-rank and r < n.

For a two-sided method, the output Krylov space will be of dimension n?

~~ need for approximations of the corresponding vectors by tensor products.

Choice of interpolation points for optimal H,-norm reduction?
~ need for a reasonable generalization of the linear H-norm.
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State-Space and Output Representatlon

For the special case E = I, A, = 0, we arrive at continuous-time bilinear systems

x(t) = Ax(t) + Nx(t)u(t) + Bu(t),
y(t) = &x(t),  x(0) = xo,

where A,N e R"™*" B, CT e R".

Output Characterization: Volterra series

0 t t1 ti_1
y(t):Z/O/O /0 h(ty, ..., t)u(t—tr —...— ;) u(t — t;)dt; - - - dty,
j=1

with kernels h(ti,...,t;)) = Ce*iN - .- e*2Net B,
Multivariable Laplace-transform:

H(si,...,s;)) = C(sjl — AN ---(sol — A)"'N(s/ — A)~!B.
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Approximation via Carleman Bilinearization

Approximate nonlinear state evolution function f by Taylor polynomial, e.g.
x = f(x) + Bu~ A1 x + Ax(x ® x) + Bu.

Construct enlarged bilinear system as

i X ~ A1 A2 X
dt |x2x] 710 AQI+10A] |x®x

A®
0 0 X B
T {B®I+I®B 0} {x@x] U [0} Y
. ~ - —~
N® B®

] B
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Error System and Optimal Interpolation Points

We can show that Hjy-norm of the error system is given as

HZ — iH?}'tQ = Z Z q>>\£1,...,)\£j <Hj(_)‘f17 SR _)‘fj) - Flj(_AEN ) _)‘Kj))

J=16,...6
+Z Z chel A (H,-(—Agl,...,—x@j)—Hj(—Agl,...,—A@j)>,
Jj= 161, )

with generalized residues

Oy, = im Hi(st, e 5)(s1— Ag) -+ (55— Agy)-

J Sk—>>\gk
= Similar to the linear case, we aim at:
Hi(=Ai, ..., —)\,-j) = Hi(—Ai,, ..., —)\,-j),

0 2 0
o H(=Xs =) =
85 ( )\1 )\J) 85/(

forip,...,;i<n k=1,...,jand j=1,2,3,...
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Generalized Rational Interpolation

Let > be a bilinear SISO system. Assume that V and W are given as bases of
the unions of the column spaces

—Hi (X, =),

= [(o1] = A)7'B,..., (o4l — A)'B],
\/,-: [(all—A)_lN\/J 1oy (0gl = ANV, <,
W1 = [(o11 = AT)'C, .. (Jql—AT) 1],
= [(o1] = AT)INT Wiy, ..., (ogl —AT)'NTW;_4], j<r

constructed by projection A= WTAV, N = WTNV, B= WTB,

Iffis
C = CV, it holds:
I‘IJ'(S]_,...,SJ'):Flj(sl,...,Sj), j§2r,
0 —H;(s s-)—iltl-(s s;) =1 r, k=1 '
85 1559 _ask j\2Ly - -59j )y J=4...50 =L
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Bilinear IRKA

Algorithm 1 Bilinear Iterative Rational Krylov Algorithm (Bilinear-IRKA)

Input: A,IA\I,AB,g,C,q
Output: AN,B,C

1. Make an initial selection {o1,...,04}.

2: while (change in 0; > ¢) do

32 Compute V =[V4,...,V,]and W = [W4, ..., W,] € R"x(a++d),
4. Compute truncated SVD V, and W, of V and W.

5. A= (W] V) tw]AY,

6: g < —)\,(/2\)

7. end while

8:

N = (WTV,)'WINV,, B=(W]V,)'WB, ¢=cCV,

Remark: Exact interpolation properties are lost due to SVD.
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Burgers’ Equation Revisited

Consider again

ov ov 0%v

vl =ue g (1) €(0,1)x(0,T),

subject to initial and boundary conditions
v(x,0) =0, xe€][0,1], v(0,t) = u(t), v(1,t)=0, t>0.

Spatially discretize the PDE and approximate the occurring quadratic
nonlinearity by a Carleman bilinearized system of dimension n = k + k2.
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Burgers’ Equation Revisited

Transient responses for k = 100, r = 2 and u(t) = cos(t)

I \A \A \/\
— Original Nonlinear Model
— Bilinearized Model

— Bilinear IRKA, A = 10

0.4

0.2 _IRKA, A=3+3-3=12
w
=0
0.2
04 | | |
0 2 4 6 8 10
Time t
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Burgers’ Equation Revisited

Relative errors for k = 100, r = 2 and u(t) = cos(rt)

10t — Bilinearized model
— Bilinear IRKA, A = 10

0
10 “IRKA, A=3+3-3=12

101

Ll \Hm T T R 11 B

102

Relative error

103

1074 |
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To do:
e investigate possible two-sided reduction methods for quadratic-bilinear
systems.
e Extend Krylov-based techniques to partial realization problem.
e Approximations for Kronecker products of the form V ® V.
e Lyapunov-based reduction possible?
e Improve Hy-model reduction approach for bilinear systems.
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