
Numerical Solution of Differential Riccati Equations on

Hybrid CPU-GPU Platforms

Peter Benner1, Pablo Ezzatti2, Hermann Mena3,

Enrique S. Quintana-Ort́ı4, Alfredo Remón4

1 Fakultät für Mathematik, TU Chemnitz, D-09107 Chemnitz (Germany). E-mail:
benner@mathematik.tu-chemnitz.de.

2 Centro de Cálculo-Instituto de la Computación, Universidad de la República, 11.300-Montevideo
(Uruguay). E-mail: pezzatti@fing.edu.uy.

3 Departamento de Matemática, Escuela Politécnica Nacional, EC1701 Quito (Ecuador). E-mail:
hermann.mena@epn.edu.ec.

4 Dpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaime I, 12.071-Castellón (Spain).
E-mails: {quintana,remon}@icc.uji.es.

Abstract

In this paper we propose a differential Riccati equation (DRE) solver that uses
a Lyapunov solver based on the matrix sign function. The algorithm combines an
iterative solver with a refinement procedure, resulting in a mixed-precision algorithm
that exploits the capabilities of both general-purpose multi-core processors and many-
core GPUs, overlapping critical computations.

Keywords: Differential Riccati equations, Rosenbrock methods, matrix sing function, graphics

processors, multi-core processors, control theory

1 Introduction

We consider the time-varying differential Riccati equations (DRE)

Ẋ(t) = Q(t) + X(t)A(t) + D(t)X(t) −X(t)S(t)X(t) ≡ F (t,X(t)),
X(t0) = X0,

(1)

where t ∈ [t0, tf ], A(t) ∈ R
n×n, B(t) ∈ R

m×m, Q(t) ∈ R
m×n, S(t) ∈ R

n×m, and X(t) ∈
R

m×n. We assume that the coefficient matrices are piecewise continuous locally bounded
matrix-valued functions which ensures existence of the solution and uniqueness of (1); see,
e.g., [1, Thm. 4.1.6].

Symmetric DREs (i.e., with symmetric Q(t), S(t), and D(t) = A(t)T for all t ∈ [t0, T ])
arise in linear-quadratic optimal control problems such as LQR and LQG design with
finite-time horizon, in H∞ control of linear-time varying systems, as well as in differential
games; see, e.g., [1, 5]. Unfortunately, in most control problems, fast and slow modes are
present. This implies that the associated DRE will be fairly stiff which in turn demands

1



P. Benner et. al.

for implicit methods to solve such DREs numerically. Matrix-valued algorithms based
on generalizations of the BDF and Rosenbrock methods have proved to yield accurate
solutions for large scale DREs arising in optimal control problems for parabolic partial
differential equations [2, 6].

For the autonomous case, the Rosenbrock methods are more efficient than the BDFs
mainly because they require only the solution of one Lyapunov equation per stage in
each step, which is solved using a low-rank implementation of the ADI iteration [3, 4].
However, some applications require a large interval of integration and/or a small time step
size, which turns these methods not feasible. Hence, we propose to use a hybrid CPU-GPU
solver, based on the matrix sign function, to accelerate the computation of the Lyapunov
equation in each step.

This paper is organized as follows. In Section 2, we briefly describe the application of
the Rosenbrock method of order one to DREs. In Section 3, we review the sign function
method for the solution of Lyapunov equations. In Section 4 numerical experiments are
discussed. A brief summary and outlook on future work closes the paper.

2 Numerical solution of DREs

We focus on solving DREs arising in optimal control for parabolic partial differential
equations. Typically the coefficient matrices of the DRE arising from these control prob-
lems have a certain structure (e.g. sparse, symmetric or low rank). The application of
the Rosenbrock method of order one to an autonomous symmetric DRE of the form (1)
yields:

ÃT
k Xk+1 + Xk+1Ãk = −Q−XkSXk −

1

h
Xk (2)

where Xk ≈ X(tk) and Ãk = A−SXk − 1
2h

I; see [4, 6] for details. In addition we assume,

Q = CT C, C ∈ R
p×n,

S = BBT , B ∈ R
n×m, (3)

Xk = ZkZ
T
k , Zk ∈ R

n×zk ,

with p, m, zk ≪ n. If we denote Nk = [CT Zk(Z
T
k B)

√
h−1Zk ], then the Lyapunov

equation (2) results in
ÃT

k Xk+1 + Xk+1Ãk = −NkN
T
k , (4)

where Ãk = A−B(Zk(Z
T
k B))T− 1

2h
I. The procedure that is obtained from this ellaboration

is given in Algorithm 2.1 Observing that rank(Nk) ≤ p + m + zk ≪ n, we can use the sign
function method to solve (4), as described in the following subsection.

2.1 The sign function method

The matrix sign function is an efficient tool to solve stable Lyapunov equations. There
are simple iterative schemes for the computation of the sign function. Among these,
the Newton iteration described in Algorithm 2.2 is specially appealing for its simplicity,
efficiency, parallel performance, and asymptotic quadratic convergence. However, even if
A is sparse, {Ak}k=1,2,... in general are full dense matrices and, thus, Algorithm 2.2 roughly
requires 2n3 floating-point arithmetic operations (flops) per iteration.

2



Solution of DREs on Hybrid CPU-GPU Platforms

Algorithm 2.1 Rosenbrock method of order one for DREs

Require: A ∈ R
n×n, B, C, Z0 satisfying (3), t ∈ [a, b], and h step size.

Ensure: (Zk, tk) such that Xk ≈ ZkZ
T
k , Zk ∈ R

n×zi with zi ≪ n.
1: t0 = a.
2: for k = 0 to ⌈ b−a

h
⌉ do

3: Ãk = A−B(Zk(Z
T
k B))T − 1

2h
I.

4: Nk = [CT Zk(Z
T
k B)

√
h−1Zk ].

5: Compute Zk+1 by the sign function method such that the low rank factor product
Zk+1Z

T
k+1 approximates the solution of ÃT

k Xk+1 + Xk+1Ãk = −NkN
T
k .

6: tk+1 = tk + h.
7: end for

On convergence S̃ satisfies X ≈ S̃T S̃. Initial convergence can be accelerated using
several techniques. In our case, we employ a scaling defined by the parameter

ck =

√

‖Ak
−1‖∞/‖Ak‖∞.

In the convergence test, τ is a tolerance threshold for the iteration that is usually set
as a function of the problem dimension and the machine precision ǫ.

Algorithm 2.2 Matrix sign function for Lyapunov equations

Require: A ∈ R
n×n, N ∈ R

j×n.
Ensure: S̃T S̃ ≈ X such that AT X + XA = N ∗NT .
1: A0 = A, Ŝ0 = NT .
2: k = 0.
3: repeat

4: Ak+1 = 1√
2

(

Ak/ck + ckAk
−1

)

.

Compute the rank-revealing QR (RRQR) decomposition

5:
1√
2ck

[

S̃k, ckS̃k(A
−1
k )T

]

= Qs

[

Us

0

]

Πs

6: S̃k+1 ← UsΠs

7: k = k + 1.

8: until

√

‖Ak+1+I‖∞
n

< τ‖Ak‖∞

2.2 Matrix inversion

As shown in Algorithm 2.2, the application of Newton’s method to the sign function
requires, at each iteration, the computation of a matrix inverse.

In this section we introduce two different algorithms for matrix inversion: the tradi-
tional approach based on the LU factorization and the Gauss-Jordan elimination algo-
rithm.

3



P. Benner et. al.

2.2.1 Traditional approach

The traditional approach to compute the inverse of a matrix A ∈ R
n×n is based on

Gaussian elimination (i.e., the LU factorization), and consist of the following three steps:

1. Compute the LU factorization PA = LU , where P ∈ R
n×n is a permutation matrix,

and L ∈ R
n×n and U ∈ R

n×n are, respectively, unit lower and upper triangular
factors [7].

2. Invert the triangular factor U → U−1.

3. Solve the system XL = U−1 for X.

4. Undo the permutations A−1 := XP .

LAPACK [8] is a high-performance linear algebra library which provides routines that
cover the functionality required in the previous steps. In particular, routine getrf yields
the LU factorization (with partial pivoting) of a nonsingular matrix (Step 1), while routine
getri computes the inverse matrix of A using the LU factorization obtained by getrf

(Steps 2–4).

The computational cost of computing a matrix inverse following the previous four steps
is 2n3 flops.

2.2.2 The Gauss-Jordan elimination algorithm

The Gauss-Jordan elimination algorithm (gje) for matrix inversion is, in essence, a re-
ordering of the computation performed by matrix inversion methods based on Gaussian
elimination, and hence requires the same arithmetic cost. The convenience of the gje

based methods relies on that all its computations are well suited for parallelization.

Algorithm 2.3 Blocked Gauss-Jordan elimination algorithm for matrix inversion

Require: A ∈ R
n×n

1: t0 = a.
2: for k = 1 to n

b
⌉ do

3: Partition A→





A00 A01 A02

A10 A11 A12

A20 A21 A22



 where A00 ∈ R
(k−1)b×(k−1)b, A11 ∈ R

b×b

4: [A01, A11, A21]
T ← GEINGJ([A01, A11, A21]

T )
5: A00 ← A00 + A01A10

6: A20 ← A20 + A21A10

7: A10 ← A11A10

8: A02 ← A02 + A01A12

9: A22 ← A22 + A21A12

10: A12 ← A11A12

11: end for

Algorithm 2.3 illustrates a blocked version of the gje procedure for matrix inversion
using the FLAME notation [9, 10, 11]. There m(A) stands for the number of rows of matrix

4



Solution of DREs on Hybrid CPU-GPU Platforms

A. We believe the rest of the notation to be intuitive; for further details, see [9, 10]. (A de-
scription of the unblocked version, called from inside the blocked one, can be found in [12];
for simplicity, we hide the application of pivoting during the factorization, but details can
be found there as well.) The bulk of the computations in the procedure can be cast in
terms of the matrix-matrix product, an operation with a high parallelism. Therefore, gje

is a highly appealing method for matrix inversion on emerging architectures like GPUs,
where many computational units are available, provided a highly-tuned implementation
of the matrix-matrix product is available.

3 Implementation

The computational effort of Algorithm 2.1 for the solution of DREs is concentrated on
the solution of a Lyapunov equation per iteration, and more specifically, in the matrix
inversion required at each iteration of the sign function method (Algorithm 2.2). Matrix
inversion is computed by an hybrid implementation of the gje algorithm (2.3) that exploits
the CPU and GPU capabilities. The rest of operations are mainly matrix-matrix products
that involve small matrices, so they can be computed efficiently on the multicore invoquing
a parallel implemetation of BLAS.

4 Numerical Results

In this section we evaluate the parallel performance of Algorithm 2.1 on a platform consist-
ing of two Intel Xeon QuadCore E5410 processors at 2.33GHz, connected to an Nvidia

Tesla C1060 via a PCI-e bus.

Two parallel implementations has been tested, one for the multicore and a more sofisti-
cated hybrid version:

• LAPACK(CPU): all the computations are performed on the CPU using LAPACK
and BLAS kernels (MKL 10.2). Matrix inversion is obtained using LAPACK (a
routine is based on Gaussian elimintation). In this implementation, parallelism is
extracted via a multithreaded implementation of BLAS.

• Hybrid(CPU+GPU): computations are executed on the most convinient architec-
ture. The gje (Algorithm 2.3) is employed for matrix inversion. This implemen-
tation is based on the use of computational kernels from MKL (on the CPU) and
Nvidia CUBLAS (version 2.1) for the GPU.

Experiments employ single precision and execution time always includes the cost of
data transfers between the host and the device (GPU) memory spaces.

We evaluate both implementations employing model STEEL I from the Oberwolfach
benchmark colletion at the University of Freiburg. This model arises in a manufacturing
method for steel profiles. The goal is to design a control that yields moderate temperature
gradients when the rail is cooled down. The mathematical model corresponds to the
boundary control for a 2-D heat equation. A finite element discretization, followed by
adaptive refinement of the mesh results in the examples in this benchmark. The dimensions
of this problem are n = 5,177, m = 7, and p = 6.

5



P. Benner et. al.

Table 1 presents the total time in seconds required for solving the DRE associated
with model STEEL I on the interval [0, 1]. Three different step sizes (h) are tested: 0.1,
0.01 and 0.001, that resulted in 11, 101 and 1001 iterations on algorithm 2.1 respectively.

Step size LAPACK(CPU) Hybrid(CPU+GPU)
Speed-up

(h) Inversion time Total time Inversion time Total time

0.1 2.13178e+02 2.13687e+02 1.65416e+02 1.65894e+02 1.288
0.01 1.63974e+03 1.64495e+03 1.29111e+03 1.29592e+03 1.269
0.001 1.65748e+04 1.66226e+04 1.30865e+04 1.31427e+04 1.264

Table 1: Performance obtained for the STEEL I benchmark.

Results show that time dedicated to computations out of matrix inversions is residual,
and that the presented hybrid implementation is approximately a 25% faster than the
traditional LAPACK implementation.

Acknowledgment

Enrique S. Quintana-Ort́ı and Alfredo Remón were supported by projects PROMETEO
2009/013 and CICYT TIN2008-06570-C04. This work was partially done while Hermann
Mena was visiting the Universidad Jaime I with the support from the program ”Pla de
suport a la investigació 2009” from Universidad Jaime I.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in

Control systems Theory, Birkhäuser, Basel, Switzerland, 2003.

[2] P. Benner and H. Mena, BDF methods for large-scale differential Riccati equations,
In B. De Moor, B. Motmans, J. Willems, P. Van Dooren and V. Blondel editors.
Proc. of Mathematical Theory of Network and Systems, MTNS 2004, 2004.

[3] P. Benner and H. Mena, Rosenbrock methods for solving differential Riccati equa-

tions, Tech. rep., Chemnitz Scientific Computing, TU Chemnitz, 2010, to appear.

[4] P. Benner and H. Mena, Numerical solution of large scale differential Riccati Equa-

tions arising in optimal control problems, Tech. rep., Chemnitz Scientific Computing,
TU Chemnitz, 2010, to appear.

[5] A. Ichikawa and H. Katayama, Remarks on the time-varying H∞ Riccati equations,
Sys. Cont. Lett. 37(5):335-345, 1999.

[6] H. Mena, Numerical Solution of Differential Riccati Equations Arising in Optimal

Control Problems for Parabolic Partial Differential Equations, PhD thesis, Escuela
Politécnica Nacional, 2007 .

6



Solution of DREs on Hybrid CPU-GPU Platforms

[7] G. Golub and C. V. Loan Matrix Computations, 3rd Edition, The Johns Hopkins
University Press, Baltimore, 1996.

[8] E. Anderson and Z. Bai and J. Demmel and J. E. Dongarra and J. DuCroz and
A. Greenbaum and S. Hammarling and A. E. McKenney and S. Ostrouchov and D.
Sorensen, LAPACK Users’ Guide, SIAM 1992

[9] J. A. Gunnels and F. G. Gustavson and G. M. Henry and R. A. van de Geijn,
FLAME: Formal Linear Algebra Methods Environment, ACM Trans. Math. Soft.
vol. 27, num. 4, 2001.

[10] P. Bientinesi and J. A. Gunnels and M. E. Myers and E. S. Quintana-Ort́ı and
R. A. van de Geijn, The Science of Deriving Dense Linear Algebra Algorithms,
ACM Trans. Math. Soft. vol. 31, num. 1, 2005.

[11] University of Texas http://www.cs.utexas.edu/~flame/.

[12] E.S. Quintana-Ort́ı and G. Quintana-Ort́ı and X. Sun and R.A. van de Geijn A note

on parallel matrix inversion, SIAM J. Sci. Comput., vol. 22, 2001.

7


