
Strategies for Parallelizing the
Solution of Rational Matrix Equations

Jośe M. Badı́a1, Peter Benner2, Maribel Castillo 1, Heike Faßbender3, Rafael
Mayo1, Enrique S. Quintana-Ortı́1, and Gregorio Quintana-Ortı́1

1 Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain;
E-mail: {badia,castillo,mayo,quintana,gquintan}@icc.uji.es.

2 Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany;E-mail:
benner@mathematik.tu-chemnitz.de.

3 Technische Universität Braunschweig, InstitutComputational Mathematics, 38106
Braunschweig, Germany;E-mail: h.fassbender@tu-bs.de

In this paper we apply different strategies to parallelize astructure-preserving doubling method
for the rational matrix equationX = Q + LX−1LT . Several levels of parallelism are ex-
ploited to enhance performance, and standard sequential and parallel linear algebra libraries
are used to obtain portable and efficient implementations ofthe algorithms. Experimental re-
sults on a shared-memory multiprocessor show that a coarse-grain approach which combines
two MPI processes with a multithreaded implementation of BLAS in general yields the highest
performance.

1 Introduction

The nonlinear matrix equation

X = Q + LX−1LT , (1)

whereQ ∈ R
n×n is symmetric positive definite,L ∈ R

n×n is nonsingular, andX ∈ R
n×n

is the sought-after solution, arises in the analysis of stationary Gaussian reciprocal pro-
cesses over a finite interval. The solution of certain 1-D stochastic boundary-value systems
are reciprocal processes. For instance, the steady-state distribution of the temperature along
a heated ring or beam subjected to random loads along its length can be modeled in terms
of such reciprocal processes1.

The problem considered here is to find the (unique) largest positive definite symmetric
solutionX+ of (1) whenn is of large dimension (n ≈ O(1, 000) − O(10, 000)). Given
the cubic computational cost of numerically reliable solvers2, the use of parallel computers
is necessary for large-scale rational matrix equations (RMEs). Several methods have been
proposed for solving (1) in the past2–4. Among these, we select the method based on the
solution of a discrete-time algebraic Riccati equation (DARE) via a structure-preserving
doubling algorithm (SDA), because of its parallel properties.

In this paper we compare different strategies to parallelize the solution of the RME (1)
via the SDA. The strategies attack the problem at three levels of granularity, or combina-
tions of those, and rely on different programming models andstandard libraries. In many
cases, the additional effort required to analyze the parallelism of the problem from different
perspectives, so that combining two or more levels of granularity becomes feasible, yields
a higher parallel efficiency of the algorithm.

1

The paper is structured as follows. In Section 2 we review theSDA for the RME (1).
In Section 3 we describe several different approaches for the parallelization of the method.
The results in Section 4 report the performance of these strategies on a shared-memory
multiprocessor consisting of 16 Intel Itanium2 processors. Finally, some concluding re-
marks follow in Section 5.

2 Numerical Solution of Rational Matrix Equations via a
Structure-Preserving Doubling Algorithm

The solutionX of

X = Q + LX−1LT

satisfies3

G

[
I

X

]
= H

[
I

X

]
W (2)

for some matrixW ∈ R
n×n, where

G =

[
LT 0
−Q I

]
, H =

[
0 I

L 0

]
.

Hence, the desired solutionX can be computed via an appropriate deflating subspace of
G − λH . The following idea4 delivers a fast solver based on these ideas.

Assume thatX is the unique symmetric positive definite solution of (1). Then it satis-
fies (2) withW = X−1LT . Let

L̂ = LQ−1L, Q̂ = Q + LQ−1LT , P̂ = LT Q−1L,

and

X̂ = X + P̂ .

Then it follows that

Ĝ

[
I

X̂

]
= Ĥ

[
I

X̂

]
W 2, (3)

where

Ĝ =

[
L̂T 0

Q̂ + P̂ −I

]
, Ĥ =

[
0 I

L̂ 0

]
.

It is easy to see that̂X satisfies (3) if and only if the equation

X̂ = (Q̂ + P̂) − L̂X̂−1L̂T (4)

has a symmetric positive definite solution̂X.
The doubling algorithm4 was recently introduced to compute the solutionX̂ of (4)

using an appropriate doubling transformation for the symplectic pencil (3). Applying this
special doubling transformation repeatedly, the SDA in Algorithm 1 is derived4.

2

Algorithm 1 SDA

L0 = bL , Q0 = bQ + bP , P0 = 0

f o r i = 0, 1, 2, . . .

1 . Qi − Pi = CT

i Ci

2 . AC = LT

i C−1

i

3 . CA = C−T

i
LT

i

4 . Qi+1 = Qi − CT

ACA

5 . Pi+1 = Pi + ACAT

C

6 . Li+1 = ACCA

u n t i l conve rgence

As the matricesQi−Pi, i = 0, 1, 2, . . . are positive definite4, the iterations are all well-
defined and the sequenceQi+1 will converge toX̂. Thus, the unique symmetric positive
definite solution to (1) can be obtained by computing

X+ = X̂ − P̂ . (5)

The SDA has nice numerical behavior, with a quadratic convergence rate, low com-
putational cost, and fair numerical stability. The algorithm requires about6.3n3 floating-
point arithmetic (flops) operations per iteration step whenimplemented as follows: first
a Cholesky factorization(Qi − Pi) = CT

i
Ci is computed (n

3

3
flops), thenLT

i
C−1

i

and C−T

i
LT

i
are solved (each triangular linear system requiresn3 flops), and finally

Li+1, Qi+1, Pi+1 are computed using these solutions (4n3 flops if the symmetry ofQi+1

andPi+1 is exploited). Hence, one iteration step requires19

3
n3

≈ 6.3n3 flops.
The iteration for the SDA is basically composed of traditional dense linear algebra

operations such as the Cholesky factorization, solution oftriangular linear systems, and
matrix products. On serial computers these operations can be efficiently performed using
(basic) kernels in BLAS and (more advanced) routines in LAPACK5.

3 Parallelization

We can parallelize the SDA at different levels (see Figure 1):

• At the highest level, several operations of the sequential algorithm can be executed
concurrently. Thus, e.g., the computations ofAC andCA are independent operations
which can be performed simultaneously.

• At an intermediate level, parallel implementations of linear algebra kernels and rou-
tines in ScaLAPACK6 can be used to extract parallelism from each operation. As an
example, the parallel routinepdpotrf in ScaLAPACK can be used to compute the
Cholesky factorizationQi − Pi = CT

i
Ci.

• At the lowest level, multithreaded implementations of BLAScan be used to extract
parallelism from the calls to BLAS performed from within each operation, as for
example, in invocations to BLAS from the routine for the Cholesky factorization.

3

� � �
� � � � � � � � �

� 	 � � �	 � � � �

 � �

� � � � � �
	 � � �

� � �� � � � �

� � � � � � � � � � �� � � � �
� � �� � � � �

Figure 1. Parallel levels and libraries exploited by the different strategies for the parallelization of the SDA.

� � � �

�

� �

 � � �

! "

! #

$ % � � � �

�

� �

 � � �

! "

! #

$ %& ' " ('
&) " ('* +

* , -
. / �

-
.

-
.

-
.

-
.

-
.

-
.

0 " ('

Figure 2. Execution of two consecutive iterations of the 2P parallelization of the SDA by two processes,P0

andP1.

Exploiting the two highest levels of parallelism is more natural on platforms with
distributed-memory, including multicomputers and clusters. On the other hand, multi-
threaded implementations of BLAS are only suited for architectures with shared address
space as, e.g., SMPs or multicore processors.

Following these possibilities, we have developed several parallel implementations of
the SDA:

• Message-passing, two processes (2P). An analysis of the data dependency graph of
the algorithm shows that there are two groups of operations which can be performed
concurrently. In this first approach, one MPI process is employed per group.

Figure 2 illustrates the execution of two consecutive iterations of the SDA (see Algo-
rithm 1) in this approach. The nodes are labeled with their corresponding number of
the operation of the SDA, and the computational cost of each operation is included.
The arrows represent communication of intermediate results. In order to balance the
computational load, we divide the matrix product in step 6 between the two processes.
Thus, each process computes half of the columns of the matrixLi+1, which needs then
to be communicated to the other process.

A serial implementation of BLAS and LAPACK is used on each process to perform
the different operations of the algorithm.

• Message-passing multiprocesses (MP). We have also developed a message-passing
implementation that computes all operations in the SDA using the parallel routines in
ScaLAPACK.

4

• Multithreading (MT) . In this case theparallel algorithm is reduced to a “serial”
code that uses BLAS and LAPACK, and extracts all parallelismfrom a multithreaded
implementation of BLAS.

• Hybrid (HB) . Different hybrid versions of the parallel algorithm can beobtained by
combining two of the levels of parallelism described earlier. In particular, we have
implemented and tested two hybrid algorithms:

– Two-process hybrid algorithm (HB2P). Each of the two processes in the 2P
implementation invokes the kernels from a multithreaded version of BLAS to
take advantage of a system with more than two processors.

– Multiprocess hybrid algorithm (HBMP) . Each of the MPI processes executing
the ScaLAPACK routines invokes kernels from a multithreaded implementation
of BLAS.

4 Numerical Experiments

All the experiments presented in this section were performed on a SGI Altix 350. This
is a (CC-NUMA) shared-memory multiprocessor composed of16 Intel Itanium2 proces-
sors running at 1.5 GHz. The processors share 32 GBytes of RAMvia aSGI NUMAlink
interconnect. Two different (multithreaded) implementations of BLAS were used on this
platform:

• The SGIScientific Computing Software library(SCSL).

• TheMath Kernel Library(MKL) 8.1 from Intel.

We have also used the implementation of ScaLAPACK provided by SGI. For simplicity,
we only report results for the parallel implementations combined with the optimal imple-
mentation of BLAS for each case. All the speed-ups reported next have been measured
with respect to an optimized sequential implementation of the SDA.

Figures 3 and 4 show the speed-up of the parallel implementations of the SDA. The
results of the HB2P parallel implementation for two processors correspond to those of the
2P algorithm, while the results of the HB2P algorithm for more than two processors cor-
respond to the hybrid version that combines two MPI processes with different numbers of
threads. Thus, for example, the results of HB2P on 10 processors involve two processes,
each running five threads to exploit a multithreaded implementation of BLAS. Although
we have also tested the HBMP parallel implementation, results are not reported for this
option as the performance was always lower than those of the MP and MT parallel imple-
mentations.

The figures show that, as could be expected, the efficiency (speed-up divided by the
number or processors) decreases with the number of processors while the speed-up in-
creases with the equation size. For equations of “small” size, algorithms MP and HB2P
obtain similar speed-ups but, as the equation size is increased, the hybrid algorithm outper-
forms the message-passing version. The difference betweenthese two algorithms remains
almost constant regardless of the number of processors. In general, the highest speed-ups
are delivered by the algorithm HB2P. On the other hand, the MTalgorithm exhibits scala-
bility problems with the number of processors (Figure 3) and, when more than 4 processors

5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p

e
e

d
−

u
p

Processors

Performance of rational equation solvers. n=500

MP (SCSL)
MT (MKL)

HB2P (MKL)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p

e
e

d
−

u
p

Processors

Performance of rational equation solvers. n=1500

MP (SCSL)
MT (MKL)

HB2P (MKL)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p

e
e

d
−

u
p

Processors

Performance of rational equation solvers. n=3000

MP (SCSL)
MT (MKL)

HB2P (MKL)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p

e
e

d
−

u
p

Processors

Performance of rational equation solvers. n=5000

MP (SCSL)
MT (MKL)

HB2P (MKL)

Figure 3. Speed-ups of the parallel implementations MP, MT,2P (=HB2P on 2 processors), and HB2P of the
SDA for n=500, 1500, 3000, 5000, and varying number of processors.

are employed, requires equations of large size to yield a performance comparable to those
of the other two approaches (Figure 4).

Possible causes of these results are the following:

• In general, exploiting the parallelism at a higher level identifies more work to be
“shared” among the computational resources and should deliver higher performances.

• In the MT algorithm, all threads/processors must access a unique copy of the data
(matrices and vectors) in the main memory. Thus, the coherence hardware of this
architecture is likely to be stressed to keep track of data that is shared. The overall
cost of data transference between cache memories becomes higher as the number of
processors is increased, explaining the lower performanceof the MT algorithm when
the number of processors is large.

6

 0

 1

 2

 3

 4

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
p

e
e

d
−

u
p

Equation size (n)

Performance of rational equation solvers. 4 processors

MP (SCSL)
MT (MKL)

HB2P (MK)
 0

 1

 2

 3

 4

 5

 6

 7

 8

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
p

e
e

d
−

u
p

Equation size (n)

Performance of rational equation solvers. 8 processors

MP (SCSL)
MT (MKL)

HB2P (MK)

 0

 2

 4

 6

 8

 10

 12

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
p

e
e

d
−

u
p

Equation size (n)

Performance of rational equation solvers. 12 processors

MP (SCSL)
MT (MKL)

HB2P (MK)
 0

 2

 4

 6

 8

 10

 12

 14

 16

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
p

e
e

d
−

u
p

Equation size (n)

Performance of rational equation solvers. 16 processors

MP (SCSL)
MT (MKL)

HB2P (MK)

Figure 4. Speed-ups of the parallel implementations MP, MT,2P (=HB2P on 2 processors), and HB2P of the
SDA on 4, 8, 12, 16 processors and varying dimension of the equation.

• In the MP algorithm, the data is partitioned among the processes. As the SGI Altix
350 is a CC-NUMA platform, the data is also likely to be distributed so that data
accessed from one process lies in the “local” memory of the corresponding processor.
Thus, as most of the accesses performed by the algorithm are satisfied by the local
memory, this solution incurs a lower memory access overheadthan the MT algorithm
when the number of processors is large. On the other hand, when the number of
processors is small, sharing data between threads, as in theMT algorithm, is more
efficient than doing so via processes, as in the MP algorithm.

• The hybrid algorithm increases the data locality of memory accesses performed by
the threads since, in this approach, the amount of data shared by each thread group is
roughly halved with respect to the MT algorithm.

7

5 Conclusions

In this paper we have implemented five different parallel strategies to solve the RME (1)
via a structure-preserving doubling algorithm. The algorithms pursue the solution of the
equation at different levels of parallelization: at the highest level we have used MPI pro-
cesses to execute the different operations of the sequential algorithm concurrently. At the
lowest level we have exploited a multithreaded version of the BLAS library to execute each
basic linear algebra kernel in parallel.

Experiments on a shared-memory multiprocessor show that the best results are ob-
tained with an hybrid parallel algorithm that combines MPI processes with threads. This
algorithm obtains high speed-ups and scales linearly up to 16 processors. High perfor-
mance is also obtained with the multiprocess version of the algorithm which employs only
routines from ScaLAPACK. These results confirm that parallelizing the solution of the
problem at different levels is worth the effort.

All the parallel algorithms are implemented using standardsequential and parallel lin-
ear algebra libraries and MPI, ensuring the portability of the codes.

Acknowledgments

José M. Badı́a, Maribel Castillo, Rafael Mayo, Enrique S. Quintana-Ortı́, and Gregorio
Quintana-Ortı́ were supported by the CICYT project TIN2005-09037-C02-02and FEDER.
These authors and Peter Benner were also supported by the DAAD Acciones Integradas
project HA2005-0081 (Spain), D/05/25675 (Germany).

References

1. B.C. Levy, R. Frezza, and A.J. Kerner. Modeling and estimation of discrete-time
Gaussian reciprocal processes.IEEE Trans. Automat. Control, AC(90):1013–1023,
1990.

2. P. Benner and H. Faßbender. On the solution of the rationalmatrix equationX =
Q + LX−1LT . EURASIP J. Adv. Signal Proc., Article ID 21850, 10 pp., 2007.

3. A. Ferrante and B.B. Levy. Hermitian solutions of the equationX = Q+NX−1N∗.
Linear Algebra Appl., 247:359–373, 1996.

4. W.-W Lin and S.-F Xu. Convergence analysis of structure-preserving doubling al-
gorithms for Riccati-type matrix equations.SIAM J. Matrix Anal. Appl., 28:26–39,
2006.

5. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.LAPACK Users’ Guide. SIAM,
Philadelphia, PA, third edition, 1999.

6. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley.
ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

8

