Strategies for Parallelizing the
Solution of Rational Matrix Equations

Jos M. Badial, Peter Benner, Maribel Castillo !, Heike FaRbende?, Rafael
Mayo!, Enriqgue S. Quintana-Orti!, and Gregorio Quintana-Orti*

! Depto. de Ingenieria y Ciencia de Computadores, Univadsiume |, 12.071—Castellon, Spain;
E-mail: {badia,castillo,mayo,quintana,gquintp@icc.uji.es

2 Fakultat fur Mathematik, Technische Universitat Chémr09107 Chemnitz, Germanig-mail:
benner@mathematik.tu-chemnitz.de

3 Technische Universitat Braunschweig, Instiiamputational Mathematic88106
Braunschweig, German{-mail: h.fassbender@tu-bs.de

In this paper we apply different strategies to paralleliztracture-preserving doubling method
for the rational matrix equatioX = @ + LX~'LT. Several levels of parallelism are ex-
ploited to enhance performance, and standard sequentaparallel linear algebra libraries
are used to obtain portable and efficient implementatiortheflgorithms. Experimental re-
sults on a shared-memory multiprocessor show that a cogaase-approach which combines
two MPI processes with a multithreaded implementation oABLn general yields the highest
performance.

1 Introduction

The nonlinear matrix equation
X=Q+LX LT, (1)

where@ € R™"*™is symmetric positive definitd, € R"*™ is nonsingular,an € R™*"
is the sought-after solution, arises in the analysis of®staty Gaussian reciprocal pro-
cesses over a finite interval. The solution of certain 1-Bisastic boundary-value systems
are reciprocal processes. For instance, the steady-gaibution of the temperature along
a heated ring or beam subjected to random loads along itthieag be modeled in terms
of such reciprocal processes

The problem considered here is to find the (unique) largestipe definite symmetric
solution X4 of (1) whenn is of large dimensionr(~ O(1,000) — O(10,000)). Given
the cubic computational cost of numerically reliable sod¥gthe use of parallel computers
is necessary for large-scale rational matrix equationsERMSeveral methods have been
proposed for solving (1) in the pdst. Among these, we select the method based on the
solution of a discrete-time algebraic Riccati equation HEA via a structure-preserving
doubling algorithm (SDA), because of its parallel propesti

In this paper we compare different strategies to para#lgliz solution of the RME (1)
via the SDA. The strategies attack the problem at three desfegranularity, or combina-
tions of those, and rely on different programming models staddard libraries. In many
cases, the additional effort required to analyze the paisth of the problem from different
perspectives, so that combining two or more levels of gratitylbecomes feasible, yields
a higher parallel efficiency of the algorithm.

The paper is structured as follows. In Section 2 we review3ba for the RME (1).
In Section 3 we describe several different approaches égpdnallelization of the method.
The results in Section 4 report the performance of theséegies on a shared-memory
multiprocessor consisting of 16 Intel Itanium2 processdiimally, some concluding re-
marks follow in Section 5.

2 Numerical Solution of Rational Matrix Equations via a
Structure-Preserving Doubling Algorithm
The solutionX of
X=Q+LX'LT

satisfie$
I I
o[- [
for some matrid¥ € R™**", where

LT 0 01
Y R
Hence, the desired solutioki can be computed via an appropriate deflating subspace of
G — M\H. The following ide4 delivers a fast solver based on these ideas.
Assume thafX is the unique symmetric positive definite solution of (1)emtit satis-
fies (2) withiW = X 1L, Let

L=LQ 'L, Q=Q+LQ LT, P=LTQ 'L,

and
X=X+P.
Then it follows that
~| 1 ~ |1 9
olx] -7 2])
where
- T 0 ~ oI
G=|~ = , H=|~ 1.
Q+P -1 [L 0}
Itis easy to see that satisfies (3) if and only if the equation
X=(O+P) —LXI” (4)

has a symmetric positive definite solutiéh N

The doubling algoriththwas recently introduced to compute the soluti§nof (4)
using an appropriate doubling transformation for the syoiit pencil (3). Applying this
special doubling transformation repeatedly, the SDA inoAithm 1 is derived.

Algorithm 1 SDA

L():E, Q():@-i-ﬁ, Po=0
for 1=0,1,2,...
Qi—Pi=ClC

2. Ac=1Lfct

3. CA:C;TLiT

4. Qiy1=Qi—CLiCa

5

6

u

[EEY

. Pip1 =P+ Ac AL
. Li+1:ACCA
ntil convergence

As the matriceg); — P;,i = 0, 1,2, ... are positive definité the iterations are all well-
defined and the sequen@g,; will converge toX. Thus, the unique symmetric positive
definite solution to (1) can be obtained by computing

X, =X-P. (5)

The SDA has nice numerical behavior, with a quadratic cayerece rate, low com-
putational cost, and fair numerical stability. The algumitrequires about.3n? floating-
point arithmetic (flops) operations per iteration step whreplemented as follows: first
a Cholesky factorizatiof@; — P;) = CIC; is computed {32 flops), thenL?C;!
and C; LT are solved (each triangular linear system requirésflops), and finally
Lit1, Qi11, Pip1 are computed using these solutions flops if the symmetry 0€);
andP;, is exploited). Hence, one iteration step requi%%vs3 ~ 6.3n3 flops.

The iteration for the SDA is basically composed of tradiibdense linear algebra
operations such as the Cholesky factorization, solutiotriafigular linear systems, and
matrix products. On serial computers these operations eaffiziently performed using
(basic) kernels in BLAS and (more advanced) routines in LGRA

3 Parallelization

We can parallelize the SDA at different levels (see Figure 1)

o At the highest level, several operations of the sequenig@rithm can be executed
concurrently. Thus, e.g., the computationsdef andC 4 are independent operations
which can be performed simultaneously.

e At an intermediate level, parallel implementations of inalgebra kernels and rou-
tines in ScaLAPACK can be used to extract parallelism from each operation. As an
example, the parallel routinedpot r f in ScaLAPACK can be used to compute the
Cholesky factorizatio); — P, = CT C;.

o At the lowest level, multithreaded implementations of BLA& be used to extract
parallelism from the calls to BLAS performed from within @éagperation, as for
example, in invocations to BLAS from the routine for the Gy factorization.

ScaLAPACK i AN
Intermediate . AN

Level

BLACS <— PBLAS

MPI

Low

v
Level BLAS

Figure 1. Parallel levels and libraries exploited by théedént strategies for the parallelization of the SDA.

Figure 2. Execution of two consecutive iterations of the 2Paflelization of the SDA by two processeBy
andP;.

Exploiting the two highest levels of parallelism is moreurat on platforms with
distributed-memory, including multicomputers and clusteOn the other hand, multi-
threaded implementations of BLAS are only suited for amgttitires with shared address
space as, e.g., SMPs or multicore processors.

Following these possibilities, we have developed severedlfel implementations of
the SDA:

e Message-passing, two processes (2Rn analysis of the data dependency graph of
the algorithm shows that there are two groups of operatidrisiwcan be performed
concurrently. In this first approach, one MPI process is eygd per group.

Figure 2 illustrates the execution of two consecutive tiere of the SDA (see Algo-
rithm 1) in this approach. The nodes are labeled with thairesponding number of
the operation of the SDA, and the computational cost of egehnation is included.
The arrows represent communication of intermediate reslritorder to balance the
computational load, we divide the matrix product in step tMeen the two processes.
Thus, each process computes half of the columns of the miatrix which needs then
to be communicated to the other process.

A serial implementation of BLAS and LAPACK is used on eachgess to perform
the different operations of the algorithm.

e Message-passing multiprocesses (MPyVe have also developed a message-passing
implementation that computes all operations in the SDAgitile parallel routines in
ScalLAPACK.

e Multithreading (MT) . In this case theparallel algorithm is reduced to a “serial”
code that uses BLAS and LAPACK, and extracts all parallefiom a multithreaded
implementation of BLAS.

¢ Hybrid (HB) . Different hybrid versions of the parallel algorithm candigained by
combining two of the levels of parallelism described earli@ particular, we have
implemented and tested two hybrid algorithms:

— Two-process hybrid algorithm (HB2P). Each of the two processes in the 2P
implementation invokes the kernels from a multithreadedioa of BLAS to
take advantage of a system with more than two processors.

— Multiprocess hybrid algorithm (HBMP) . Each of the MPI processes executing
the ScaLAPACK routines invokes kernels from a multithrehisheplementation
of BLAS.

4 Numerical Experiments

All the experiments presented in this section were perfdrore a SGI Altix 350. This
is a (CC-NUMA) shared-memory multiprocessor composetiGofintel Itanium?2 proces-
sors running at 1.5 GHz. The processors share 32 GBytes of RAM SGI NUMAIink
interconnect. Two different (multithreaded) implemeiwas of BLAS were used on this
platform:

e The SGIScientific Computing Software librafgCSL).
e TheMath Kernel Library(MKL) 8.1 from Intel.

We have also used the implementation of ScaLAPACK provide&GI. For simplicity,
we only report results for the parallel implementations borad with the optimal imple-
mentation of BLAS for each case. All the speed-ups reporeed have been measured
with respect to an optimized sequential implementatiomef$DA.

Figures 3 and 4 show the speed-up of the parallel implenmentabf the SDA. The
results of the HB2P parallel implementation for two prooesorrespond to those of the
2P algorithm, while the results of the HB2P algorithm for mtinan two processors cor-
respond to the hybrid version that combines two MPI processih different numbers of
threads. Thus, for example, the results of HB2P on 10 procg&svolve two processes,
each running five threads to exploit a multithreaded impletatéon of BLAS. Although
we have also tested the HBMP parallel implementation, tesuk not reported for this
option as the performance was always lower than those of fhail MT parallel imple-
mentations.

The figures show that, as could be expected, the efficien@efspp divided by the
number or processors) decreases with the number of prasesbde the speed-up in-
creases with the equation size. For equations of “small, sstgorithms MP and HB2P
obtain similar speed-ups but, as the equation size is inetkdhe hybrid algorithm outper-
forms the message-passing version. The difference betihesa two algorithms remains
almost constant regardless of the number of processorenergl, the highest speed-ups
are delivered by the algorithm HB2P. On the other hand, theald®@rithm exhibits scala-
bility problems with the number of processors (Figure 3),aviten more than 4 processors

Performance of rational equation solvers. n=500 Performance of rational equation solvers. n=1500

16 . ; . 16 : . .
MP (SCSL) —+— MP (SCSL) ——
14+ MT(MKL) 1 14+ MT(MKL)
HB2P (MKL) -6 HB2P (MKL) -6
12+ 12+
£ 10f g
3 3
g 8¢ 0
Q Q
n 6t]
0 1 1 1 1 1 1 0 1 1 1 1 1 1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Processors # Processors
Performance of rational equation solvers. n=3000 Performance of rational equation solvers. n=5000
16 . ; . . 16 : . .
MP (SCSL) —+— MP (SCSL) ——
14+ MT(MKL) 1 14+ MT(MKL)
HB2P (MKL) -6 HB2P (MKL) -6
12+ q 12+
Q Q
3 3
T T
(] (]
(0] (0]
Q Q
0 0
0 1 1 1 1 1 1 0 1 1 1 1 1 1
2 4 6 8 10 122 14 16 2 4 6 8 10 122 14 16

Processors # Processors

Figure 3. Speed-ups of the parallel implementations MP, BT (=HB2P on 2 processors), and HB2P of the
SDA for n=500, 1500, 3000, 5000, and varying number of processors.

are employed, requires equations of large size to yield fopeance comparable to those

of the other two approaches (Figure 4).
Possible causes of these results are the following:

¢ In general, exploiting the parallelism at a higher levelnilf@es more work to be
“shared” among the computational resources and shouldsdéligher performances.

e In the MT algorithm, all threads/processors must accessiguarcopy of the data
(matrices and vectors) in the main memory. Thus, the colcerbardware of this
architecture is likely to be stressed to keep track of daghithshared. The overall
cost of data transference between cache memories becoghes bs the number of
processors is increased, explaining the lower performafittee MT algorithm when

the number of processors is large.

Speed—-up

Speed—-up

Performance of rational equation solvers. 4 processors

BB SO« S < B e it

O
JO,HO
// —

MP (SCSL) —+—
MT (MKL)
HB2P (MK) -0

12

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Equation size (n)

Performance of rational equation solvers. 12 processors

5l MP (SCSL) —+— |
MT (MKL)
HB2P (MK) 0

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Equation size (n)

Speed—-up

Speed—-up

Performance of rational equation solvers. 8 processors

8
L Oy 4
7 e - oo © 77:);77
6t /,/Fgfq_;7+///k47ﬁr*
5 L
3 K
2 L 4
MP (SCSL) ——
1r MT (MKL)
0 HB2P (MK) --o-
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Equation size (n)
Performance of rational equation solvers. 16 processors
16
14+
Qg OO
S R—
8 L
617
4 L 4
MP (SCSL) ——
2t MT (MKL)
oL PO
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Equation size (n)

Figure 4. Speed-ups of the parallel implementations MP, 2T (=HB2P on 2 processors), and HB2P of the

SDA on 4, 8, 12, 16 processors and varying dimension of thatemyu

¢ In the MP algorithm, the data is partitioned among the preegsAs the SGI Altix
350 is a CC-NUMA platform, the data is also likely to be distiied so that data
accessed from one process lies in the “local” memory of theesponding processor.
Thus, as most of the accesses performed by the algorithmatisfiedd by the local

memory, this solution incurs a lower memory access overtteadthe MT algorithm

when the number of processors is large. On the other handy Weenumber of

processors is small, sharing data between threads, as MThagorithm, is more
efficient than doing so via processes, as in the MP algorithm.

The hybrid algorithm increases the data locality of memageases performed by
the threads since, in this approach, the amount of datagbgreach thread group is
roughly halved with respect to the MT algorithm.

5 Conclusions

In this paper we have implemented five different paralledtsgies to solve the RME (1)
via a structure-preserving doubling algorithm. The altnis pursue the solution of the
equation at different levels of parallelization: at thehegt level we have used MPI pro-
cesses to execute the different operations of the sequalgtaithm concurrently. At the
lowest level we have exploited a multithreaded version eBhAS library to execute each
basic linear algebra kernel in parallel.

Experiments on a shared-memory multiprocessor show tleabéist results are ob-
tained with an hybrid parallel algorithm that combines MiRdgesses with threads. This
algorithm obtains high speed-ups and scales linearly utpricessors. High perfor-
mance is also obtained with the multiprocess version of ldp@rghm which employs only
routines from ScalLAPACK. These results confirm that paliaiteg the solution of the
problem at different levels is worth the effort.

All the parallel algorithms are implemented using standsmgluential and parallel lin-
ear algebra libraries and MPI, ensuring the portabilityhef todes.

Acknowledgments

José M. Badia, Maribel Castillo, Rafael Mayo, Enrique Sirfana-Orti, and Gregorio
Quintana-Orti were supported by the CICYT project TIN2@®®37-C02-02and FEDER.
These authors and Peter Benner were also supported by th®©D¥eaiones Integradas
project HA2005-0081 (Spain), D/05/25675 (Germany).

References

1. B.C. Levy, R. Frezza, and A.J. Kerner. Modeling and edionaof discrete-time
Gaussian reciprocal processdEEE Trans. Automat. ContrpAC(90):1013-1023,
1990.

2. P. Benner and H. FaRbender. On the solution of the ratioa#lix equationX =
Q+ LX~'LT. EURASIP J. Adv. Signal PrgdArticle ID 21850, 10 pp., 2007.

3. A. Ferrante and B.B. Levy. Hermitian solutions of the g@guraX = Q + NX "1 N*.
Linear Algebra Appl.247:359-373, 1996.

4. W.-W Lin and S.-F Xu. Convergence analysis of structueserving doubling al-
gorithms for Riccati-type matrix equationsSIAM J. Matrix Anal. App|.28:26-39,
2006.

5. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. DongarrBulCroz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. SorensebhAPACK Users’ Guide SIAM,
Philadelphia, PA, third edition, 1999.

6. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demyrie Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, DIk&g and R.C. Whaley.
ScalLAPACK Users’ GuideSIAM, Philadelphia, PA, 1997.

