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Preface

With the ever-increasing complexity of control systems, efficient computational methods for their analysis and design
are becoming more and more important. These computational methods need to be based on reliable and robust

numerical software provided by well-tested and user-friendly software libraries.

This workshop is intended as a tutorial on recent developments in advanced reliable and efficient computational methods

for solving analysis and synthesis problems of modern and robust control. Moreover, the importance of providing
corresponding software implementations is demonstrated using the freeware Subroutine Library in Systems and Control

Theory (SLICOT) for solving practical control engineering problems within CACSD environments. SLICOT-based
software usually has improved reliability and efficiency as well as extended functionality compared to the computational

methods implemented in other CACSD software packages like the Matlab Control Toolbox. The SLICOT software
library and the related CACSD tools based on SLICOT were developed within the Numerics in Control Network

(NICONET) funded by the European Community BRITE-EURAM III RTD Thematic Networks Programme. We
will present some of the activities within NICONET and introduce SLICOT-based software to be used either within

Matlab and the Matlab Control Toolbox or the CACSD package Scilab.

Major topics of the course are basic control software, system identification, model reduction, and robust control design
using H∞ techniques.

The course will be particularly interesting for advanced graduate students and young researchers in systems and control

theory who are engaged in the solution of practical control problems.

Peter Benner and Paul Van Dooren
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Van Dooren: Introduction to NICONET and SLICOT

Introduction to NICONET and SLICOT

Paul Van Dooren
Department of Mathematical Engineering
Université Catholique de Louvain-la-Neuve

Avenue Georges Lemaitre 4
B-1348 Louvain-la-Neuve (Belgium)

E-mail: vdooren@csam.ucl.ac.be

URL: http://www.auto.ucl.ac.be/~vdooren

Abstract
The aims and scope of the European thematic network NICONET will be presented.

The requirements of robust numerical software for solving control engineering problems will

be emphasized. Moreover, the contents and structure of the software library SLICOT and

the embedding of SLICOT-based CACSD tools in user-friendly environments like Matlab

and Scilab will be discussed.
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Van Dooren: Introduction to NICONET and SLICOT Overview

Overview

• Introduction

• Why numerics

• A bit of history

– Working Group on Software
– SLICOT

• SLICOT and NICONET

• Conclusion
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Van Dooren: Introduction to NICONET and SLICOT Introduction

Introduction

Systems and control used in real world applications

requires a good balance between :

1. Theory

2. Design methodology

3. Numerical algorithms

4. Software implementation

5. Integration in an application

Computer Aided Control Systems Design tries to address this
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Van Dooren: Introduction to NICONET and SLICOT Introduction

Is CACSD the answer ?

There are several useful developments

• software environments

• data structures

• user interaction and GUI’s ...

but there are also many problems

• real applications are often ill-posed or large-scale

• simple algorithms often fail in practice

• need for reliable, high performance and robust software

• need for good benchmarks
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Van Dooren: Introduction to NICONET and SLICOT Why numerics ?

Why numerics in control ?

Packages like Matlab have pro’s and con’s

Pro’s : powerful tool because

– flexible for developing new algorithmic ideas
– user-friendly and interactive
– widely used in academia

Con’s : sometimes poor performance due to

– Matlab’s data structure
use of dense matrix as main data structure

– structure in control problems
exploiting structure leads to large overhead

– simple ”academic” algorithms
Control Toolbox is one of the oldest

– often sacrifice efficiency for flexibility

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 8



Van Dooren: Introduction to NICONET and SLICOT Why numerics ?

Pole placement example

for n=1:20;A=randn(n,n);B=randn(n,1);L=randn(n,1);F=acker(A,B,L);

Lcomp=eig(A-B*F);err(n)=norm(sort(L)-sort(Lcomp));end

The closed loop eigenvalues loose all accuracy for n > 15
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Advantages of Fortran libraries

– can be integrated in CACSD platforms
rely on robust numerical software (RASP, SLICOT, ...)

– layer of computational routines
basic mathematical routines (linear algebra, simulation, optimization, ...)

– development of Control library
choice of robust control algorithms

– reusability of developed software

Position of Control Library

– True independence of CACSD platforms
– Use of high performance linear algebra software
– Better use of low level routines
– Fortran and C allow better exploitation of structure
– Automated Fortran to C conversion
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Van Dooren: Introduction to NICONET and SLICOT A bit of history

A bit of history

Retrospect

– 70’s : Scandinavian Control library, Swiss library AUTLIB
– 80’s : SLICE (+NAG), BIMAS(C), LISPACK, SYSLAB, RASP
– 90’s : SLICOT (WGS) still active !

WGS and SLICOT

– Benelux initiative involving several universities
– Collaboration with NAG and DLR
– Extension with European universities
– Evolved to NICONET with EU support

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 11



Van Dooren: Introduction to NICONET and SLICOT SLICOT and NICONET

SLICOT and NICONET

Subroutine LIbrary for COntrol Theory

– mathematical library for control theoretic computations
– main emphasis on numerical reliability, robustness and efficiency
– selection of robust and reliable algorithms
– rigorous implementation and standardization
– over 200 user-callable routines
– copyrighted software
– ftp downloadable
– chapters and subchapters
– user manual
– benchmarks
– driver routines
– LAPACK-based
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Van Dooren: Introduction to NICONET and SLICOT SLICOT and NICONET

Contents of SLICOT

– A : Analysis routines
– B : Benchmarks and test programs
– D : Data analysis
– F : Filtering
– I : Identification
– M : Mathematical
– S : Synthesis
– T : Transformations
– U : Utility

over 200 example programs

over 400 documented routines

over 100 Matlab/SCILAB m-files

dozens of Matlab/SCILAB mex-files
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Van Dooren: Introduction to NICONET and SLICOT SLICOT and NICONET

NICONET PROJECT (BRITE-EURAM 1998–2002)

– EU/BRITE-EURAM thematic network
(1998–2002, preparatory phase 1996/97)

– Involved 7 countries, 9 universities, 2 research institutes and 6 companies
– developed benchmarks and maintained SLICOT
– integrated LAPACK in SLICOT
– integrated SLICOT in MATLAB and SCILAB
– maintains and updates the freeware library

Niconet Subtasks

– Task I : Basic numerical tools
– Task II : Model reduction
– Task III : Identification
– Task IV : Robust control
– Task V : Nonlinear systems in robotics
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Van Dooren: Introduction to NICONET and SLICOT SLICOT and NICONET

International Society NICONET (founded January 2001)

aim is to

• stimulate research and development of software,

• maintain and publish SLICOT (copyrighted freeware),

• collect and distribute information on new software,

• publish in journals and present at conferences,

• provide commercial licenses (for commercial use).

See http://www.win.tue.nl/niconet/society
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Conclusions

• SLICOT offers better numerics

• SLICOT is often much faster

• NICONET integration SLICOT in MATLAB and SCILAB

• NICONET provides benchmarks and test programs

• NICONET also issues a newsletter

• SLICOT freely available for non-commercial use

see also
P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga,
SLICOT - a subroutine library in systems and control theory, Applied and
Computational Control, Signals, and Circuits, 1(10), 499–539, Birkhäuser, Boston,
MA, 1999.
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Basic Control Software:
System Analysis, Synthesis, and Matrix Equations

Peter Benner
Institut für Mathematik (MA 4-5)

Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin (Germany)

E-mail: benner@math.tu-berlin.de
URL: http://www.math.tu-berlin.de/~benner

Abstract
This part covers some basic computational problems underlying many control problems

like system analysis (e.g., computing controllability/observability normal forms) or solving

linear and quadratic matrix equations, (e.g., Lyapunov, Sylvester, and Riccati equations

arising in system stabilization, observer design, or optimization of linear control systems).
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Overview

• Linear systems

• System analysis

– canonical forms
– minimal realization

• System synthesis

– linear-quadratic regulator
– H2-/H∞ optimal control (Ã Robust control design using H∞ methods)

• Matrix equations

– Sylvester and Lyapunov equations
– algebraic Riccati equations

• Benchmark collections

• References
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Benner: Basic Control Software Linear systems

Linear Systems

Consider continuous or discrete linear time-invariant (LTI) systems.

State-space representations

ẋ(t) = Ax(t) + Bu(t), t > 0

y(t) = Cx(t) + Du(t)
or

xk+1 = Axk + Buk, k = 0, 1, 2, . . .

yk = Cxk + Duk

Assume

• n state variables, i.e., x(t) ∈ R
n, n = order of the system;

• m inputs, i.e., u(t) ∈ R
m, and p outputs, i.e., y(t) ∈ R

p;

• A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m.

Transfer function representations

G(s) = C(sI − A)−1B + D or G(z) = C(zI − A)−1B + D
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Benner: Basic Control Software System analysis

System Analysis

Check controllability/observability/stabilizability/detectability numerically.

E.g., (A,B) (completely) controllable ⇐⇒

1. For all x0, x1 ∈ R
n there exists admissible ũ and t1 > 0 such that x̃(t1) = x1

where x̃ solves
ẋ = Ax + Bũ, x(0) = x0.

Not feasible.

2. rank
([

A − λI, B
])

= n for all λ ∈ C.

Feasible, but O(n4) in general.

3. rank (C(A,B)) = n where C(A,B) =
[

B AB A2B . . . An−1B
]
.

Feasible, but computing C(A,B) and checking rank is numerically unstable.

Want numerically stable procedure with O(n3) complexity.

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 20



Benner: Basic Control Software System analysis

Staircase Form
There exist U, V ∈ R

n×n orthogonal such that

Â := U
T
AU =

2

6

6

6

6

6

6

6

4

A11 . . . . . . A1,s−1 A1,s

A21 A22 A2,s−1 A2,s

0 . . . . . . ... ...
... . . . . . . ... ...
... . . . As−1,s−2 As−1,s−1 As−1,s

0 . . . . . . 0 As,s

3

7

7

7

7

7

7

7

5

,

B̂ := U
T
BV =

2

6

6

4

B1 B2

0 0
... ...

0 0

3

7

7

5

,

where Ai,i−1 =
[

Σi,i−1 0
]
∈ R

ni×ni−1, As,s ∈ R
ns×ns, B1 ∈ R

n1×n1, and

n1 ≥ n2 ≥ . . . ≥ ns−1 ≥ ns, ns−1 > 0.

Computation via numerically stable procedure based on sequence of singular value
decompositions or rank-revealing QR decompositions.
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Staircase form of (A,B):
2
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• LTI system controllable ⇐⇒ ns = 0 in staircase form of (A,B).
(controllable subsystem: delete states nc + 1, . . . , n in staircase form of (A, B) where

nc := n − ns.)

• LTI system observable ⇐⇒ ns = 0 in staircase form of (AT , CT ).
(observable subsystem: delete states no + 1, . . . , n in staircase form of (AT , CT ) where

no := n − ns.)

• LTI system stabilizable ⇐⇒ λ (As,s) ⊂ C
− in staircase form of (A,B).

• LTI system detectable ⇐⇒ λ (As,s) ⊂ C
− in staircase form of (AT , CT ).

(For discrete-time systems, replace C
− by {z ∈ C ; |z| < 1}.)
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Minimal Realization

Problem: find r ≤ n minimal (McMillan degree) and Ar ∈ R
r×r, Br ∈ R

r×m,
Cr ∈ R

p×r such that

G(s) = C(sI − A)−1B + D = Cr(sI − Ar)
−1Br + D.

Then (Ar, Br, Cr, D) is a minimal realization of the LTI system (A,B, C,D).

Computation via staircase algorithm.
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Benner: Basic Control Software System analysis

Computation of minimal realization:

1. Apply staircase algorithm to (A,B) and update C:

Â := UT
c AUc, B̂ := UT

c BVc, Ĉ := CUc, D̂ := DVc nc := n − ns(A,B).

Extract controllable subsystem, i.e. delete rows nc + 1, . . . , n of Â, B̂, columns
nc + 1, . . . , n of Â, Ĉ, and call the reduced controllable system with nc states
(Ac, Bc, Cc, Dc).

2. Apply staircase algorithm to (AT
c , CT

c ) and update Bc:

Ã := UT
o AcUo, B̃ := UT

o Bc, C̃ := V T
o CcUo, D̃ := V T

o D̂

no := nc − ns(A
T
c , CT

c ) = n − ns(A,B) − ns(A
T
c , CT

c ).

Extract observable subsystem, i.e. delete rows no + 1, . . . , nc of Ã, B̃ and
columns no+1, . . . , n of Ã, C̃. The reduced controllable system (Ao, Bo, Co, Do)
with no states is controllable and observable and hence minimal. Therefore,
r = no and (Ar, Br, Cr, Dr) = (Ao, Bo, Co, Do).
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Software for System Analysis
SLICOT Fortran 77 Subroutines

AB01MD extract a controllable subsystem from a single-input system

AB01ND extract a controllable subsystem from a multi-input system

AB01OD compute controllability staircase form for multi-input system

TB01PD compute a minimal, controllable or observable block Hessenberg realization

TB01UD compute a controllable realization

TB01ZD compute a controllable realization for single-input systems

Matlab Control Toolbox

ctrbf computes the controllability staircase form of an LTI system

obsvf computes the observability staircase form of an LTI system

minreal computes a minimal realization of an LTI system

SLICOT-Based Matlab Functions

syscom mex file for computing controllability/observability staircase forms and minimal

realization based on TB01PD, TB01UD, TB01ZD

slconf computes the controllability staircase form of an LTI system

slobsf computes the observability staircase form of an LTI system

slminr computes a minimal realization of an LTI system
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Structure of the SLICOT–Matlab Interfaces

Matlab-interface for canonical forms and minimal realization

Taken from: V. Mehrmann, V. Sima, A. Varga, and H. Xu, A Matlab MEX-file
environment of SLICOT, SLICOT Working Note 1999-11, August 1999.
Available from http://www.win.tue.nl/niconet/NIC2/reports.html or
ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS/SLWN1999-11.ps.Z.
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Performance Comparison

• Compute controllability staircase form using Matlab Control Toolbox function
ctrbf and SLICOT-based function slconf (calling SLICOT Fortran 77
subroutines TB01ZD/TB01UD via mex file syscom).

• Use randomly generated matrices A and B for single-input (m = 1) and
multi-input (m > 1) systems.

• Accuracy measured by ‖UAUT − Â‖ is comparable.

• Timings (CPU times in sec.) within Matlab (ieee double precision arithmetic)
on SUN UltraSPARC-IIi/440 MHz workstation.

n SLICOT Matlab

16 0.01 0.02
32 0.01 0.07
64 0.02 0.31

128 0.07 2.58
256 0.51 37.86
512 4.35 563.49

n m SLICOT Matlab

16 2 0.00 0.03
32 4 0.01 0.01
64 8 0.03 0.05

128 16 0.08 0.28
256 32 0.68 1.83
512 64 5.01 13.63
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System Synthesis

The linear-quadratic regulator problem

Minimize

Jc(x0, u) =
1

2

∞
Z

0

“

y
T
Q̃y + 2y

T
Lu + u

T
Ru

”

dt

where

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t).

continuous-time LQR problem

discrete-time LQR problem

Minimize

Jd(x
0
, u) =

1

2

∞
X

k=0

“

y
T
k Q̃yk + 2y

T
k Luk + u

T
k Ruk

”

where

xk+1 = Axk + Buk, k = 0, 1, . . . ,

yk = Cxk, x0 = x
0
.
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Numerical Solution of the LQR Problem
Optimal solution is feedback control u∗(t) = −F∗x(t) where the optimal gain
matrix F∗ is determined via the solution of an algebraic Riccati equation (ARE).

F∗ := R
−1

(B
T
X∗ + L

T
)

where X∗ is the unique stabilizing solution of the continuous-

time algebraic Riccati equation (CARE)

0 = C
T
Q̃C +A

T
X +XA− (XB +L)R

−1
(B

T
X +L

T
).

F∗ := (R + B
T
X∗B)

−1
(B

T
X∗A + L

T
)

where X∗ is the unique stabilizing solution of the discrete-time algebraic

Riccati equation (DARE)

X = C
T
Q̃C+A

T
XA−(A

T
XB+L)(R+B

T
XB)

−1
(B

T
XA+L

T
).

Remarks:

• LQG design consists of LQ regulator plus LQ estimator (Kalman filter); LQ estimator is dual to

LQR problem and is solved via the same AREs with different coefficient matrices.

• Optimal gain matrices are returned by Matlab functions for solving AREs and can be computed

by SLICOT subroutine SB02ND.
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Design Example

• Control design for GPS-based automatic

steering of farm tractor.

(GPS Lab of Stanford University/University

of Bremen)

• SLICOT routine SB02MD (discrete-time

algebraic Riccati equation solver) used in

LQG control design.

• Resolved computational bottleneck: solve 5

DAREs/sec. — SB02MD needs 0.01 sec.

for one DARE!

• This allows for adaptive control strategies.

• See SLICOT Drives Tractors!, (P. Benner,

H. Faßbender) NICONET Newsletter 2,

January 1999, pp. 17–22 and NICONET

Report 1999-2.

Figure 1: GPS–equipped tractor.
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State-space variables:

=⇒ state-space model

ẋ = Ax + Bu,

y = Cx,

with states x = [ψ, ψ̇, δ, δ̇, d ]T and parameters
– V , the forward velocity of the tractor,
– τψ, τu identified from experimental data.

A =

2

6

6

6

6

6

4

0 1 0 0 0

0 − 1
τψ

V
lτψ

0 0

0 0 0 1 0

0 0 0 − 1
τu

0

V 0 0 0 0

3

7

7

7

7

7

5

, B =

2

6

6

6

6

6

4

0

0

0
1

τu

0

3

7

7

7

7

7

5

, C =

2

4

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

3

5 .
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Block diagram of LQG regulator:
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Sylvester Equations

continuous-time

AX + XB + C = 0

or discrete-time

AXB − X + C = 0

A ∈ R
n×n, B ∈ R

m×m, C ∈ R
n×m =⇒ X ∈ R

n×m

Sylvester equation is equivalent to system of linear equations in R
nm:

(here consider continuous-time case):

(
(Im ⊗ A) + (BT ⊗ In)

)
vec(X) = −vec(C)

Kronecker product of F ∈ R
n×n, G ∈ R

m×m: F ⊗ G :=




f11G . . . f1nG
... . . . ...

fn1G . . . fnnG




Cost for solution via Gaussian elimination/LU factorization for n = m is O(n6)
=⇒ too expensive!
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Numerical methods for solving Sylvester equations with cost of O(n3):

• Bartels-Stewart method (BS) [Bartels/Stewart ’72],
• Hessenberg-Schur method (HS) [Golub/Nash/Van Loan ’79].

Algorithm:

1. BS: Apply QR-algorithm to A and compute Schur decomposition Ã = UTAU ,
where U ∈ R

n×n is orthogonal and Ã is (quasi-)upper triangular.
HS: Compute Hessenberg decomposition of A, i.e., compute orthogonal matrix

U ∈ R
n×n such that Ã = UTAU is in upper Hessenberg form.

2. Apply QR-algorithm to BT and compute Schur decomposition B̃ = V TBTV
where V ∈ R

m×m is orthogonal and B̃ is (quasi-)upper triangular.

3. C̃ ← UTCV .

4. Solve reduced equation ÃX̃ + X̃B̃T + C̃ = 0 by back substitution process.
(In Kronecker product form, this is a system of linear equations with coefficient matrix in

(quasi-)upper triangular or Hessenberg form.)

5. X ← UX̃V T
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Properties of Numerical Algorithms for Solving Sylvester Equations

• Both methods are numerically backward stable if the back substitution process
is implemented carefully (see [Sima ’96] for details).

• The Hessenberg-Schur method is more efficient than the Bartels-Stewart method
(estimated 30–70% depending on ratio n/m).

• Discrete Sylvester equations are solved in analogous way.
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Lyapunov Equations

Lyapunov equation = symmetric Sylvester equation

continuous-time

AX + XAT + C = 0,

or discrete-time (Stein equations)

AXAT − X + C = 0

A ∈ R
n×n, C = CT ∈ R

n×n.

Numerical solution: Bartels-Stewart method

1. Apply QR-algorithm to A and compute Schur decomposition Ã = UTAU where
U ∈ R

n×n is orthogonal and Ã is (quasi-)upper triangular.

2. C̃ ← UTCU (symmetric update).

3. Solve reduced equation ÃX̃ + X̃ÃT + C̃ = 0 or ÃX̃ÃT − X̃ + C̃ = 0 by back
substitution process.

4. X ← UX̃UT (symmetric update).
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Note: special subroutines available for

• computing Cholesky factor Y of stable Lyapunov equations

AX + XAT + CTC = 0 AXAT − X + CTC = 0

A ∈ R
n×n stable, X = Y Y T , directly (Hammarling’s method);

• solving generalized Sylvester equations

AX − Y B = C,
DX − Y E = F,

A, D ∈ R
n×n, B, E ∈ R

m×m, C, F ∈ R
n×m,

• solving generalized (discrete, stable) Lyapunov equations

ATXE + ETXA + C = 0 ATXA − ETXE + C = 0

C = CT ∈ R
n×n

• computing forward error and condition estimates for all these equations.
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Software for Solving Linear Matrix Equations (LMEs)

SLICOT Fortran 77 Subroutines for Sylvester Equations

SB04MD solve Sylvester equations by Hessenberg-Schur method
SB04ND solve Sylvester equations if one coefficient is in Schur form
SB04OD solve generalized Sylvester equations and estimate condition
SB04PD solve Sylvester equations by Schur method
SB04QD solve Sylvester equations by Hessenberg-Schur method
SB04RD solve Sylvester equations if one coefficient is in Schur form

SLICOT Fortran 77 Subroutines for Lyapunov and Stein Equations

SB03MD solve Lyapunov equations and estimate condition
SB03OD solve stable Lyapunov equations for Cholesky factor
SB03PD solve Stein equations and estimate condition
SB03RD solve Lyapunov equations and estimate condition
SB03TD solve Lyapunov equations, estimate condition and forward error
SB03UD solve Stein equations, estimate condition and forward error
SG03AD solve generalized Lyapunov equations and estimate condition
SG03BD solve stable generalized Lyapunov equations for Cholesky factor
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Matlab Functions for Solving LMEs

Matlab Toolboxes

Control Toolbox lyap solve Sylvester and Lyapunov equations by
Bartels-Stewart method

dlyap solve Stein equations by Bartels-Stewart method
µ-Analysis and
Synthesis Toolbox

clyap solve stable Lyapunov equations for Cholesky
factor by Hammarling’s method

sylv solve Sylvester equation using Kronecker product
form
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SLICOT-Based Matlab Functions

linmeq mex file for solving LMEs based on SB03MD, SB03OD, SB04MD,
SB04ND, SB04PD, SB04QD, SB04RD

genleq mex file for solving generalized LMEs based on SB04OD, SG03AD,
SG03BD

sllyap solve Lyapunov equations
slstei solve Stein equations
slstly solve stable Lyapunov equations for Cholesky factor of solution
slstst solve stable Stein equations for Cholesky factor of solution
slsylv solve continuous-time Sylvester equations
sldsyl solve discrete-time Sylvester equations

slgely solve generalized Lyapunov equations
slgest solve generalized Stein equations
slgsly solve stable generalized Lyapunov equations for Cholesky factor of

solution
slgsst solve stable generalized Stein equations for Cholesky factor of

solution
slgesg solve generalized Sylvester equations
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Performance

• Compare Matlab Control Toolbox

function lyap and SLICOT-based

function sllyap (calling SLICOT

Fortran 77 subroutine SB03MD via

mex file linmeq).

• Accuracy is comparable.

• Timings for randomly generated

examples:

n = 5:5:300

A = rand(n);

X = rand(n); X = X + X’;

C = -(A’*X + X*A);
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Algebraic Riccati Equations
continuous-time (CARE)

0 = Q + ATX + XA − XGX
or

discrete-time (DARE)

X = Q + ATXA − ATXB(R + BTXB)−1BTXA

In control theory, need stabilizing solution X∗ = XT
∗ ∈ R

n×n, i.e., the
unique solution that makes the closed-loop matrix A − GX∗ or A − B(R +
BTX∗B)−1BTX∗A stable. (Here assume X∗ exists.)

λ (A − GX∗) ⊂ C
− or

λ (A−B(R+BTX∗B)−1BTX∗A) ⊂ {z ∈ C ; |z| < 1}
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Numerical Solution of CAREs

• Consider CARE as system of nonlinear equations Ã Newton’s method.

• Use connection to Hamiltonian eigenproblem.

Definition: H ∈ R
2n×2n Hamiltonian ⇔ HJ = (HJ)T with J =

[
0

−In

In
0

]
.

X stabilizing
solution of the
CARE

⇐⇒
H

»

In

X

–

=

»

A

−Q

−G

−AT

– »

In

X

–

=

»

In

X

–

(A − GX),

λ (A − GX) = λ (H) ∩ C
−

I.e., columns of
[

In
X

]
span stable invariant subspace of Hamiltonian matrix H.

Note: here, λ (H) = {±λj |Re (λj) < 0}.
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Methods:

Compute stable H-inv. subspace via (structured, block-) Schur decomposition,

T
−1

HT =

"

H11 H12

0 H22

#

, λ (H11) = λ (H) ∩ C
−
, T =

"

T11 T12

T21 T22

#

=⇒ X = T21T
−1
11

– QR algorithm (Schur vector method) [Laub ’79];

– SR algorithm [Bunse-Gerstner/Mehrmann ’86];

– multishift algorithm [Ammar/Benner/Mehrmann ’93];

– Jacobi-type algoritms [Byers ’90, Bunse-Gerstner/Faßbender ’97];

– embedding algorithm [Benner/Mehrmann/Xu ’97];

or spectral projection methods,

– sign function method [Roberts ’71, Byers ’87, Gardiner/Laub ’86];

– disk function method [Malyshev ’93, Bai/Demmel/Gu ’95, Benner/Byers ’95,’97].

Analogous methods for DAREs: use Newton’s method or connection to
(generalized) symplectic eigenproblem.
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Newton’s Method for CAREs

[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95, Benner/Byers ’94/’98, Benner ’97 ]

1. Find X0 = XT
0 such that λ (A − GX0) ⊂ C

−.

2. FOR j = 0, 1, 2, . . .

2.1 Aj ← A − GXj.

2.2 Solve the Lyapunov equation

AT
j Nj + NjAj = −R(Xj) = −(Q + ATXj + XjA−XjGXj).

2.3 Xj+1 ← Xj + tjNj.

END FOR j
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Properties of Newton’s Method

Advantages:

• convergence is monotone and quadratic after first step;

• cheap stepsize control (exact line search) is available;

• computes solution to highest possible accuracy.

Disadvantages:

• good starting value needed (often used for iterative refinement only!);

• problems occur when the solution has large norm or eigenvalues of A − GX∗

are close to imaginary axis.

Not yet included in SLICOT.
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Sign Function Method for CAREs
[Roberts ’71, Byers ’87]

Assume that H0 := H =

[
A −G
−Q −AT

]
has no purely imaginary eigenvalues.

1. FOR j = 0, 1, 2, . . .

1.1 Hj ← γHj.

1.2 Hj+1 ← Hj −
1
2(Hj − (JHj)

−1)J). (J =
[

0
−In

In
0

]
)

END FOR j

2. Solve consistent least-squares problem

(H∞ − I2n)

[
I

X∗

]
= 0 ⇐⇒

[
H∞,12

H∞,22 − In

]
X∗ =

[
H∞,11 − In

H∞,21

]

using a QR-factorization with column pivoting.
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Properties of the Sign Function Method

• H∞ = limj→∞ Hj = sign (H).
Here: sign (H) := Tdiag {sign (Re(λk))}T−1 if H = T (diag {λk} + N)T−1 is the

Jordan normal form of H.

• γ is scaling parameter for accelerating convergence, e.g.,

γ = det(Hj)
− 1

2n [Byers ’87] or γ =
√

‖H−1
j ‖/‖Hj‖ [Higham ’86].

• Advantages:

– quadratic convergence;

– structure-preserving, i.e., all Hj are Hamiltonian;

– easily parallelizable;

– applicable for medium large problems.

• Disadvantages:

– numerical problems if Hj highly ill-conditioned;

– method does not work if eigenvalues are near or on imaginary axis.
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The Schur Vector Method for CAREs
[Laub ’79]

Use QR-algorithm (from LAPACK) to compute stable H-invariant subspace,

»

A G

Q −AT

– »

U1

U2

–

=

»

U1

U2

–

W, λ (W ) ⊂ C
−
.

1. Apply QR-algorithm to H and compute Schur decomposition H̃ = ŨTHŨ
where Ũ is orthogonal and H̃ is (quasi-)upper triangular.

2. Re-order eigenvalues, i.e., compute orthogonal Û such that

Ĥ = ÛT H̃Û =

[
H11

0

H12

H22

]
, λ (H11) = λ (H) ∩ C

−.

3. Partition Ũ Û =
[

U1
U2

U3
U4

]
, Uj ∈ R

n×n, and solve linear system X∗U1 = −U2.

Note: columns of
h

U1
U2

i

are called Schur vectors of H.
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Properties of the Schur Vector Method
Advantages:

• easy to implement using LAPACK kernels only;

• QR-algorithm and re-ordering are numerically backward stable;

• method can be used for medium large problems;

• error and condition estimation available.

Disadvantages:

• problems if eigenvalues are near or on imaginary axis
(structure is destroyed, numerically computed eigenvalues may be on wrong side of imaginary

axis leading to unequal numbers of stable and unstable eigenvalues);

• numerical problems U1 is ill-conditioned (usually the case if X∗ has large norm).

Note: in DARE case need nonsingular A to use Schur vector method; otherwise

form symplectic pencil
[

A
Q

0
In

]
− λ

[
In
0

−BR−1BT

AT

]
and use QZ algorithm!
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The Generalized Schur Vector Method for CAREs
[Pappas/Laub/Sandell ’80, Van Dooren 81]

Often, ARE coefficients A,G,Q come from LQR problem:

A = A − BR−1LT , G = BR−1BT , Q = Q − LR−1LT .

(Coefficients can be formed using SLICOT subroutine SB02MT.)

Numerical problems can be expected if R is ill-conditioned!

Better: use n-dimensional stable deflating subspace U of extended matrix pencil

H − λK =

2

4

A 0 B

Q AT L

LT BT R

3

5 − λ

2

4

In 0 0

0 −In 0

0 0 0

3

5 , U = colspan

2

4

U1

U2

U3

3

5 .

Solution of CARE is then X∗ = U2U
−1
1 , optimal feedback is F∗ = U3U

−1
1 .

Implementation: apply QZ-algorithm (LAPACK) with re-ordering to compute
generalized Schur form of H − λK.
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Software for Solving AREs
Matlab Toolboxes

Control Toolbox care (generalized) Schur vector method (CAREs)
dare (generalized) Schur vector method (DAREs)

Robust Control aresolv eigenvector or Schur vector method (CAREs)
Toolbox daresolv eigenvector or Schur vector method (DAREs)
µ-Analysis and ric eig eigenvector method (CAREs)
Synthesis Toolbox ric schr Schur vector method (CAREs)

SLICOT Fortran 77 Subroutines

SB02MD Schur vector method (invariant subspace method)
(CAREs/DAREs)

SB02OD generalized Schur vector method (deflating subspace method)
(CAREs/DAREs)

SB02PD matrix sign function method with condition and forward error
estimates (CAREs)

SB02RD refined invariant subspace method with scaling, condition and
forward error estimates (CAREs/DAREs)
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SLICOT-Based Matlab Software for AREs

aresol mex file for solving AREs based on SB02MD, SB02OD,
SB02MT, SB02ND

aresolc mex file for solving AREs based on SB02RD, SB02OD,
SB02MT, SB02ND

slcares solve CARE with Schur vector method
sldares solve DARE with Schur vector method
sldaregsv solve DARE with generalized Schur vector method applied to

symplectic pencil
slcaregs solve CARE with generalized Schur vector method applied to

extended matrix pencil
sldaregs solve DARE with generalized Schur vector method applied to

extended matrix pencil
slcaresc solve CARE with refined Schur vector method and condition

estimation
sldaresc solve DARE with refined Schur vector method and condition

estimation
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Numerical Experiments

• Compare performance of SLICOT-based Matlab functions with Matlab

toolbox functions:

– care, dare from Control and LMI Toolboxes,
– aresolv, daresolv from the Robust Control Toolbox,
– ric eig, ric schr from the µ-Analysis and Synthesis Toolbox (only CARE

solvers).

• Chosen test cases:

– Random examples with n = 30 : 30 : 300 and m = n/5.
– CARE benchmark collection ([Abels/B. ’99 ], see SLICOT routine BB01AD):

20 CAREs, partially parameterized Ã 34 data sets,
– DARE benchmark collection ([Abels/B. ’99 ], see SLICOT routine BB02AD):

19 DAREs, partially parameterized Ã 25 data sets.

• Results obtained on PC Pentium 3 (500 MHz) and Matlab 6.1.
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Accuracy and Efficieny for Random CARE Examples

• slcares versus Matlab care,

• random CAREs, n = 30 : 30 : 300, m = n/5.
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Efficiency for CARE Benchmark Examples

• slcaresc versus Matlab care,

• CAREs from CARE benchmark collection.
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Accuracy for CARE Benchmark Examples

• slcaresc versus Matlab care,

• CAREs from CARE benchmark collection.
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Cumulative Performance of CARE solvers for Benchmark

Collection

Perform. slcaresc care ric eig ric schr aresolv aresolv

’eigen’ ’Schur’

Time (sec.) 6.71 13.84 2.9 15.75 4.07 15.21

Rel. residuals 3.0e-4 4.9e-4 1.3e+3 1.3e+3 1.3e+3 3.2e+3

Rel. errors 8.9e-5 4.4e-5 2.3e-4 2.5e-4 2.3e-4 5.7e-4
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Efficiency for DARE Benchmark Examples

• sldaresc/sldaregs versus Matlab dare,

• DAREs from DARE benchmark collection.
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Accuracy for DARE Benchmark Examples

• sldaresc/sldaregs versus Matlab dare,

• DAREs from DARE benchmark collection.
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Cumulative Performance of CARE solvers for Benchmark

Collection

Performance sldaresc/ dare daresolv daresolv

sldaregs ’eigen’ ’Schur’

Time (sec.) 3.74 14.12 12.64 13.38

Rel. residuals 3.3e-5 6.1e-5 6.1e-5 6.1e-5

Rel. errors 3.3e-5 6.1e-5 6.1e-5 6.1e-5
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SLICOT Benchmark Collections

Collections of benchmark examples for the testing of numerical methods are
available from SLICOT.

Fortran 77

BD01AD benchmark examples of continuous LTI systems
BD02AD benchmark examples of discrete LTI systems
BB01AD CARE benchmark examples
BB02AD DARE benchmark examples
BB03AD benchmark examples of (generalized) Lyapunov equations
BB04AD benchmark examples of (generalized) Stein equations

Matlab

ctdsx benchmark examples of continuous-time LTI systems
dtdsx benchmark examples of discrete-time LTI systems
ctlex benchmark examples of (generalized) Lyapunov equations
dtlex benchmark examples of (generalized) Stein equations
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Concluding Remarks

SLICOT contains many more subroutines for basic control problems, e.g., for
computing

• system norms like Hankel norm, H2-/L2-norm, H∞-/L∞-norm with Matlab

interfaces etc.

(In particular slinorm, is a lot more reliable than Matlab toolbox functions
for H∞-norm computation!)

• stability radii,

• poles and zeros,

• inverse systems,

• many more!

SLICOT also contains many mathematical subroutines extending the functionality
of standard linear algebra software like LAPACK.
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System Identification Using Subspace Methods

Vasile Sima
National Institute for Research & Development in Informatics

Bd. Mareşal Averescu, Nr. 8–10
011455 Bucharest 1 (Romania)

E-mail: vsima@iciadmin.ici.ro
URL: http://www.ici.ro/ici/organizare/directory/vsima.html

Abstract
System identification means finding mathematical models of dynamic systems from

measured data. This is the first, and basic step for both system analysis and control system

design. This lecture mainly addresses linear and Wiener-type discrete-time systems in the

multivariable case. The algorithms discussed are based on subspace methods (MOESP and

N4SID) for the linear part and a neural network approach for the nonlinear part. Efficient

and reliable implementations of these methods are available through the SLICOT-based

toolbox SLIDENT.
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Overview

• System Identification

• Subspace State-space System Identification

• Basic Subspace Identification Algorithm

• Mathematical Foundations

• Algorithmic Details

• Estimation of a Wiener System

• SLICOT-based Software Tools

• Numerical Results

• Summary and Future Work
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System Identification
System identification: finding mathematical models of dynamic systems from
measured data.

u(k) → System (process, plant) → y(k)

Figure 1: Dynamic system with input vector u and output vector y.

Note: u causally influences y, possibly by intermediate, state variables x.

Discrete-time LTI case:
xk+1 = Axk + Buk + wk, k = 1, 2, . . .

yk = Cxk + Duk + vk, uk := u(k), yk := y(k).

Typically, one uses

U =




uT
1

uT
2
...

uT
t


 , Y =




yT
1

yT
2
...

yT
t


 .
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Example: 120 MW Power Plant

DAISY Example [96-003], http://www.esat.kuleuven.ac.be/sista/daisy
Number of data samples: t = 200. Sampling time: ≈ 1200 seconds.

Outputs (3):
steam pressure,
main steam temperature,
reheat steam temperature.

Inputs (5):
gas flow,
turbine valves opening,
super heater spray flow,
gas dampers,
air flow.
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Figure 2: Output y2, Input u5.

Remarks: • noisy data; • trends.
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Mathematical Models
Mathematical models are used for:

analysis
simulation
prediction
optimization

monitoring
fault detection
training
control/synthesis ...

Finding models. Approaches:

white-box – first principles;
gray-box – known structure, parameters = ?;
black-box – just data measurements (system identification).

Models/Systems Types:

linear
time-invariant
discrete-time
lumped parameters

nonlinear
time-varying
continuous-time
distributed parameters

Common models: those in the LH side. Very useful around nominal regimes.
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Key References

From the 1970’s, tremendous development: dozens of books, hundreds of papers,
several software tools, much practical experience.

• time-series analysis: [Åström/Eykhoff ’71], [Eikhoff ’74], [Box/Jenkins ’76],
[Söderström/Stoica ’89];

• prediction error methods (PEM): [Ljung ’87];

• subspace methods:

– realization theory: [Ho/Kalman ’66], [Kung ’78], [Moore ’81];
– stochastic realization: [Faurre ’76], [Van Overschee/De Moor ’93],

[Akaike ’75];
– deterministic realization: [De Moor ’88], [Moonen et al. ’89];
– combined stochastic/deterministic realization: [Larimore ’83], [Van

Overschee/De Moor ’94, ’96], [Verhaegen ’93, ’94], [Verhaegen/Dewilde ’92].
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Surveys for subspace methods: [Viberg ’95], [Van Overschee/De Moor ’96], [De
Moor/Van Overschee/Favoreel ’99], etc.

Special issues: Automatica (Jan. ’94, Dec. ’95), Signal Processing (July ’96).

Software Tools (selective):

• published codes, e.g., [Van Overschee/De Moor ’96];

• commercial codes, e.g., Matlab Identification Toolbox, [Ljung ’88–’00];

• (copyrighted) free codes, e.g., SLICOT Library + Matlab/Scilab Interfaces,
[Benner et al. ’99], [Sima et al. ’00–’03].
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Subspace State-Space System Identification

State space model:
xk+1 = Axk + Buk + wk,

yk = Cxk + Duk + vk, (1)

xk is n-dimensional state vector at k, uk is m-dimensional input (control) vector,
yk is ℓ-dimensional output vector, {wk}, {vk} are zero-mean, stationary ergodic
state and output disturbance or noise sequences (uncorrelated with {uk} and initial
state of (1)), with

E

[ [
wp

vp

] [
wT

q vT
q

] ]
=

[
Q S
ST Rv

]
δpq ≥ 0,

and A, B, C, D are real matrices, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
ℓ×n, D ∈ R

ℓ×m.

Basic System Identification Problem:
Find n, and system matrices (A,B, C,D), using input and output (I/O) data
sequences, {uk} and {yk}, k = 1: t, and an upper bound, s, on n.

Note: Non-uniqueness of (A,B, C,D), up to a similarity transformation.
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Control and Prediction

The identified model could be used, e.g., for either controlling a system, or
predicting its behavior.

Given the initial state estimate x̂1, and the input and output trajectories, {uk} and
{yk}, k = 1: t, the predicted output can be computed using the formulas

ŷk = Ĉx̂k + D̂uk,

x̂k+1 = Âx̂k + B̂uk + K(yk − ŷk),

where the estimated quantities are marked by hat signs (suppressed in the sequel,
for convenience).

The Kalman predictor gain matrix K is computed using the model and covariances.

If K not available, its contribution is omitted. In that case, the predicted output
might not be very good, if the actual system includes disturbance terms.
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Subspace System Identification Summary

Abbreviations

I/O : input/output;
MOESP : Multivariable Output Error state SPace;
N4SID : Numerical algorithm for Subspace State Space System IDentification;
SMI : Subspace Model Identification;
SVD : Singular Value Decomposition;
LS : Least Squares.

SMI advantages:

– no parameterizations needed;
– robust linear algebra tools (QR and SVD);
– only one parameter to be selected, s (a strict upper bound on n).

Classes of SMI techniques:

– State Intersection (SI)—N4SID;
– Output Error—MOESP.
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Motivation

State-space system models are basis for:
– modern systems theory;
– advanced industrial applications.

Need for highly reliable and efficient algorithms and associated software for solving
system identification problems.

SLIDENT—The new system identification toolbox incorporated in the Fortran 77
Subroutine Library in COntrol Theory (SLICOT)—explicitly addresses these
quality requirements.

SLIDENT is freely available (for academic use) from the NICONET Web page
http://www.win.tue.nl/niconet
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Basic Subspace Identification Algorithm

Non-sequential data processing

1. Construct (explicitly or implicitly)

H =
[

UT
1,q,N Y T

1,q,N

]
, N × (m + ℓ)q, (N4SID),

where N = t − q + 1, and U1,q,N and Y1,q,N are block-Hankel matrices, e.g.,

U1,q,N =




u1 u2 u3 · · · uN

u2 u3 u4 · · · uN+1

u3 u4 u5 · · · uN+2
... ... ... ... ...

uq uq+1 uq+2 · · · uN+q−1




.

For MOESP with past I/O and N4SID, q = 2s; s: the “number of block rows”.

2. Use a QR factorization, H = QR, for data compression (Q not needed);
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3. Compute a SVD of a matrix built from R;
n = number of “non-zero” singular values.
E.g., the MOESP approach finds the SVD of Rms+1:(2m+ℓ)s,(2m+ℓ)s+1:2(m+ℓ)s,
while the N4SID approach first computes an “oblique projection.”

4. Find system matrices from the right singular vectors, and other submatrices of
the matrix R.

5. Find covariance matrices using the residuals of a least squares problem.

6. Find the Kalman gain by solving a discrete-time algebraic matrix Riccati
equation.
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Mathematical Foundations

Split up the system (1) into deterministic and stochastic parts, xk = xd
k + xs

k,
yk = yd

k + ys
k,

xd
k+1 = Axd

k + Buk, xs
k+1 = Axs

k + wk,

yd
k = Cxd

k + Duk, ys
k = Cxs

k + vk,

and define the “past” and “future” parts

Up = U1,s,N , Uf = Us+1,2s,N+s,

Yp = Y1,s,N , Yf = Ys+1,2s,N+s,

and similarly define the block-Hankel matrices for ys
k, wk, and vk, as Y s

∗ , M∗, and
N∗, respectively, with ∗ ∈ {p, f}.
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From (1),

Y∗ = ΓsX
d
∗ + Hd

s U∗ + Y s
∗ , ∗ ∈ {p, f}

Y s
∗ = ΓsX

s
∗ + Hs

sM∗ + N∗, with

Γs =
[

CT (CA)T (CA2)T · · · (CAs−1)T
]T

,

X l
p =

[
xl

1 xl
2 xl

3 · · · xl
N

]
, l ∈ {d, s},

X l
f =

[
xl

s+1 xl
s+2 xl

s+3 · · · xl
s+N

]
,

H l
s, l ∈ {d, s}, are lower block triangular Toeplitz matrices in Markov parameters

Hd
s =




D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
... ... ... ... ...

CAs−2B CAs−3B · · · · · · D




=: Hd
s (A,B, C,D),

and Hs
s := Hd

s (A, I, C, 0).
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Projecting the row space of Yf above into the orthogonal complement of Uf , U⊥
f ,

we have asymptotically (for t → ∞)

Yf/U⊥
f = ΓsX

d
f/U⊥

f + Y s
f /U⊥

f

= ΓsXf/U⊥
f + Hs

sMf + Nf ,

since Uf/U⊥
f = 0 and the noise is uncorrelated with the inputs, where

Xf = Xd
f + Xs

f .

Weighting to the left and right with W1 and W2, chosen so that

• rank(W1Γs) = rank(Γs);
• rank(Xf) = rank(Xf/U⊥

f W2);
• MfW2 = 0, NfW2 = 0,

it follows,
Os := W1Yf/U⊥

f W2 = W1ΓsXf/U⊥
f W2.
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From SVD of Os,

Os =
[

U1 U2

] [
S1 0
0 0

] [
V T

1

V T
2

]
,

=⇒ n = rank(Os); W1Γs = U1S
1/2
1 , X̃s := Xf/U⊥

f W2 = S
1/2
1 V T

1 .

MOESP and N4SID use W1 = Iℓs and

W2 =

{
(Wp/U⊥

f )†(Wp/U⊥
f ), for MOESP,

(Wp/U⊥
f )†Wp, for N4SID,

where

Wp =

[
Up

Yp

]
.
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Main Subspace Identification Theorem

Assuming that:

1. {uk} is uncorrelated with {wk} and {vk};
2. {uk} is persistently exciting of order 2s, i.e., rank(U1,2s,NUT

1,2s,N) = 2ms;
3. N → ∞;
4. {wk} and {vk} are not identically 0;
5. W2 = (Wp/U⊥

f )†Wp (N4SID);

then
1. The system order equals the number of nonzero singular values of Os.
2. Os is the oblique projection of future outputs into the past inputs and
outputs along the future inputs, Os = W1Yf/Uf

Wp, and it can be factored

as Os = W1ΓsX̃s, where Γs is the extended observability matrix, and X̃s is a
Kalman filter estimated state sequence of Xf .

3. Γs and X̃s can be recovered from Γs = W−1
1 U1S

1/2
1 and X̃s = S

1/2
1 V T

1 ,
respectively.
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Computation of System Matrices

Use shift invariance property of Γs:

C = Γs(1: ℓ, : ), A = Γs
†Γs,

where Γs and Γs = Γs−1 denote Γs without the first and last ℓ rows, respectively.

In principle, system matrices could be found from the LS problem

[
X̃s+1

Ys+1,s+1,N+s

]
=

[
A B
C D

] [
X̃s

Us+1,s+1,N+s

]
+

[
ρw

ρv

]
,

(generally giving biased estimates) and the covariance matrices from

[
Q S
ST Rv

]
≈

1

N

[
ρw

ρv

] [
ρT

w ρT
v

]
.
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Algorithmic Details
Sequential data processing: Consider several batches, (U1, Y1), (U2, Y2), . . . ,

U =

[
U1

U2

]
, Y =

[
Y1

Y2

]
, . . . .

Let Hi be the block-Hankel matrix for (Ui, Yi).

QR Factorization

1. Compute standard QR, H1 = Q1R1. Set i = 2.

2. Update R1 using a specialized QR

[
R1

Hi

]
= QR,

[
R̃1

0

]
= R.

(2(m + ℓ)s Householder transformations of the same order are used.)

3. Repeat 2 for each additional data batch i.
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Cholesky factorization

1. Build the inter-correlation matrix, G = HTH, exploiting the block-Hankel
structure.

2. Factor G = RTR, assuming G > 0.

Details

G =

[
Guu Guy

GT
uy Gyy

]
,

Gvw consists of 2s × 2s submatrices of orders m × m (for v = u, w = u), m × ℓ
(for v = u,w = y), and ℓ × ℓ (for v = y, w = y).
Let Gi,j

vw—the (i, j)-th submatrix of Gvw. The first block-row of Guu is given by

G1,j
uu = Ĝ1,j

uu + u1u
T
j + u2u

T
j+1 + · · · + uNuT

j+N−1,

j = 1: 2s, Ĝi,j
uu is either a zero matrix, if the first (or single) data batch is computed,

or the currently computed Gi,j
uu, otherwise.
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Exploiting the block-Hankel structure,

Gi+1,j+1
uu = Ĝi+1,j+1

uu − Ĝi,j
uu + Gi,j

uu + ui+NuT
j+N − uiu

T
j ,

j = 1: 2s − 1, and i = 1: j; only upper triangular part evaluated for i = j.

Compute Gyy and Guy similarly.
For Guy, the first block-row and block-column are fully computed by an “expensive”
formula, while the other blocks follow from updating formulas.

Fast QR factorization is also included, based on displacement rank techniques.
The generators of HTH are computed and then used to obtain R.

If Cholesky, or fast QR factorization algorithm fails, the QR factorization is
automatically used, for non-sequential processing.
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Computation of System Matrices (Details)
Other computational steps: analyzed for exploiting any existing structure.

Determination of weighted “oblique projection” O:

Partition R =
[

Up Uf Yp Yf

]
, with ms, ms, ℓs, and ℓs columns

(p - “past”, f - “future”). Note: Notation differs from that used before.

Let Wp =
[

Up Yp

]
, and

r1 = Wp − UfX1, r2 = Yf − UfX2,

the residuals of the two LS problems giving O,

min ‖UfX − Wp‖2, min ‖UfX − Yf‖2.

Then, with MOESP weightings, OM = rT
2 Q1Q

T
1 , with Q1 denoting the first

rank(r1) columns of the matrix Q in the QR factorization of r1.

No least squares problems should be actually solved. Both problems: the same
Uf , consisting of two ms × ms submatrices, the second - upper triangular.
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Fast algorithm for B and D

A structure-exploiting QR factorization algorithm for computing B and D is
available. Essentially, this algorithm solves the problem




Q1s · · · Q12 Q11

0 · · · Q13 Q12

0 · · · Q14 Q13
... ... ... ...
0 · · · 0 Q1s




[
Γ− 0
0 Iℓ

] [
B
D

]
=




K1

K2

K3
...

Ks




,

where Γ− ∈ R
(ℓs−ℓ)×n, Q1i ∈ R

(ℓs−n)×ℓ, and Ki ∈ R
(ℓs−n)×m, i = 1: s.

The first matrix is fast triangularized, and B and D are then found in two steps.

• The matrix
[
Qij

]
is a block permutation of the matrix appearing in literature.

• LS solution is obtained only if the second LHS matrix is square and nonsingular.
• For true LS solutions—algorithm based on Kronecker products with a matrix

having half the size of the corresponding original N4SID matrix.
• Computation of Kj might be ill-conditioned.

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 91



Sima: System identification using subspace methods Algorithmic Details

Simulation-based algorithm for B and D

A simulation-based algorithm is also included for the computation of B and D.
Specifically, denoting

X =
[

(vec(DT ))T (vec(B))T xT
0

]T
,

then X is the LS of SX = vec(Y ), with

S =
[

diag(U) y11 · · · yn1 y12 · · · ynm PΓ
]
,

where diag(U) ∈ R
lt×lm has ℓ-by-ℓ blocks, Γ is given by

Γ =
[

CT (CA)T (CA2)T · · · (CAt−1)T
]T

,

P is a permutation matrix that groups together the rows of Γ depending on the
same row cj of C, for j = 1: ℓ,
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and yij, j = 1:m, i = 1:n, are computed using the following model,

xij(k + 1) = Axij(k) + eiuj(k), xij(1) = 0,

yij(k) = Cxij(k).

The structure of the other block-columns of S is exploited.

The calculations are simpler if D and/or x0 are not needed.

Recommended algorithm: Kronecker product-based algorithm.
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Estimation of a Wiener System

Discrete-time Wiener system: linear part + static nonlinearity

x(k + 1) = Ax(k) + Bu(k),

z(k) = Cx(k) + Du(k),

y(k) = f (z(k)) + v(k),

where x(k), u(k), and y(k) defined, z(k) — output of the linear part, and f(·)
nonlinear vector function, f(·) : R

ℓ → R
ℓ.

The linear part, found by subspace techniques, is then parameterized using the
output normal form, to reduce the number of its parameters to l (including the
initial state vector, x(1)), l := n(ℓ + m + 1) + ℓm.
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Nonlinear part is modeled by a set of ℓ single layer neural networks,

fr (z(k)) = f̂r (z(k)) + ǫr(k) , r = 1, . . . , ℓ ,

f̂r (z(k)):=

ν∑

i=1


α(r, i)φ




ℓ∑

j=1

β(r, i, j)zj(k) + b(r, i)





 + b(r, ν + 1) , (2)

where zr(k)—the r-th entry of z(k) := zk , ǫ(k)—approximation error, ν—number
of neurons, and α(r, i), β(r, i, j), b(r, i) and b(r, ν + 1)—real numbers to be
estimated.

The estimation problem formulated as a structured nonlinear least squares (NLS)
problem, solved in three steps.
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Conceptual algorithm

Step 1: identify linear part assuming f(·) identity (subspace approach).

Step 2: find initial values of weights for f̂r in (2). (Hyperbolic tangent used as φ.)
All α, β, b stacked in θ,

θ =
(
θT
1 | θT

2 | · · · | θT
ℓ

)T
∈ R

ℓ((ℓ+2)ν+1),

Solve the NLS problem

min
θ

N∑

k=1

∥∥∥∥∥∥




y1(k) − ŷ1(k)
...

yℓ(k) − ŷℓ(k)




∥∥∥∥∥∥

2

, (3)

with ŷr(k) := f̂r(ẑk), ẑk—estimated output of linear part.
Note: (3) ≡ ℓ independent NLS problems, solved separately.
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Conceptual algorithm: continued

Step 3: optimize parameters of linear + nonlinear parts, starting with values
corresponding to the results of Steps 1 and 2.

Linear part parameters added at the end of θ → Jacobian matrix of optimization
problem is block diagonal + a right block column:

J =




J1 0 · · · 0
0 J2 · · · 0
... ... . . . ...
0 0 · · · Jℓ

∣∣∣∣∣∣∣∣

L1

L2
...

Lℓ


 , Jc =




J1 L1

J2 L2
... ...
Jℓ Lℓ


 ,

where Jr ∈ R
N×((ℓ+2)ν+1) and Lr ∈ R

N×l are full matrices, corresponding to the
nonlinear and linear part, respectively, r = 1: ℓ.

The submatrices Jr, r = 1: ℓ, are computed analytically, and the block-matrix[
LT

1 · · · LT
ℓ

]T
is computed by a forward-difference approximation. The Jacobian

J is stored in a compressed form, Jc.
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The full nonlinear least squares problem is written as (3), with θ replaced by Θ,
Θ ∈ R

c, c := ℓ((ℓ + 2)ν + 1) + l, and it is no longer separable. This problem,
as well as the ℓ separate problems in (3), are solved by a Levenberg-Marquardt
algorithm.

Specialized implementations of the Levenberg-Marquardt (LM) algorithm:

a. standard implementation: Cholesky factorization for solving symmetric positive
definite linear systems;

b. standard implementation: conjugate gradients (CG) algorithm (idem);
c. MINPACK-like, but LAPACK-based, structure-exploiting QR factorization.
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SLICOT-based Software Tools

SLIDENT abilities

• Flexibility of usage ⇐ options:
– deterministic and stochastic identification;
– MOESP, N4SID, MOESP+N4SID;
– standard or fast techniques for data compression;
– multiple data batches processing;
– non-sequential, and sequential data processing;
– fully documented drivers and computational routines (on-line, html).

• Efficiency:
– structure-exploiting algorithms;
– fast algorithms for data compression (exploit block-Hankel structure);
– LAPACK-based.

• Reliability:
– condition numbers returned.
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SLICOT system identification routines

IB01AD preprocesses the I/O data and estimates n (driver).
IB01BD estimates (A,C,B, D), covariances and K (driver).
IB01CD estimates x0 and/or B, D, given (A,B, C,D), or (A,C), and

I/O trajectories (driver).
IB01MD computes R from I/O data.
IB01MY computes R using fast QR.
IB01ND finds the SVD, using R.
IB01OD finds n, using the SVD.
IB01OY asks for user’s confirmation of n.
IB01PD estimates system and covariance matrices.
IB01PX computes B and D using Kronecker products.
IB01PY computes B and D using a structure exploiting algorithm.
IB01QD estimates x0 and B, D, given (A,C) and the I/O trajectories.
IB01RD estimates x0, given (A,B, C,D) and the I/O trajectories.
IB03AD estimates the parameters of a Wiener system, using a standard

Levenberg-Marquardt algorithm (Cholesky or CG-based).
IB03BD idem, using a MINPACK-like Levenberg-Marquardt algorithm.
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SLIDENT: MEX-file interfaces to Matlab

order preprocesses the I/O data for estimating system matrices and
n.

sident computes (A,B, C,D), Kalman gain K, and covariances, given
n and part of R, using MOESP, N4SID, or combination.

findBD estimates x0 and/or B and D, given A, C, possibly B, D, and
the I/O trajectories.

widentc estimates the parameters of a Wiener system, using a standard
Levenberg-Marquardt algorithm (Cholesky or CG-based).

wident idem, using a MINPACK-like Levenberg-Marquardt algorithm.

[R,n(,sval)(,rcnd)] = order(meth,alg,jobd,batch,conct,...

s,Y(,U,tol,printw,ldwork,R));

[(A,C)(,B(,D))(,K(,Q,Ry,S))(,rcnd)] = sident(meth,job,s,n,...

l,R(,tol,t,A,C,printw));

[(x0)(,B(,D))(,V)(,rcnd)] = findBD(jobx0,comuse(,job),A(,B),...

C(,D),Y(,U,tol,printw,ldwork));
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SLIDENT: M-file interfaces

findR preprocesses the I/O data and estimates n.
findABCD finds system matrices and Kalman gain, given n and part of R,

using MOESP, N4SID, or MOESP+N4SID.
findAC finds A and C, given n and part of R, using MOESP or N4SID.
findBDK finds B and D and Kalman gain, given n, A,C, and part of

R, using MOESP, N4SID, or MOESP+N4SID.
inistate estimates x0, given system matrices, and a set of I/O data.
findx0BD estimates x0 and/or B and D, given A, C, and a set of I/O

data.
slmoesp SLICOT MOESP (method-oriented).
sln4sid SLICOT N4SID (method-oriented).
slmoen4 MOESP + N4SID (method-oriented).
slmoesm MOESP + simulation (method-oriented).
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Calling sequences for computational M-files

[R,n(,sval,rcnd)] = findR(s,Y(,U,meth,alg,jobd,tol,printw));

[sys(,K,Q,Ry,S,rcnd)] = findABCD(s,n,l,R(,meth,nsmpl,tol,printw));

[A,C(,rcnd)] = findAC(s,n,l,R(,meth,tol,printw));

[B(,D,K,Q,Ry,S,rcnd)] = findBDK(s,n,l,R,A,C(,meth,job,nsmpl,tol,

printw));

[x0(,V,rcnd)] = inistate(sys,Y(,U,tol,printw));

[x0,B,D(,V,rcnd)] = findx0BD(A,C,Y(,U,withx0,withd,tol,printw));

Shorter calls

[sys,rcnd] = findABCD(s,n,l,R);

[B,D,rcnd] = findBDK(s,n,l,R,A,C);

x0 = inistate(A,C,Y);

[B,D] = findx0BD(A,C,Y,U,0);
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Calling sequences for method-oriented files

[sys(,K,rcnd,R)] = slmoesp(s,Y(,U,n,alg,tol,printw));

[sys(,K,rcnd,R)] = sln4sid(s,Y(,U,n,alg,tol,printw));

[sys(,K,rcnd,R)] = slmoen4(s,Y(,U,n,alg,tol,printw));

[sys(,K,rcnd,x0,R)] = slmoesm(s,Y(,U,n,alg,tol,printw));

If n = 0, or n = [], or n is omitted, the user is prompted to provide its value,
after inspecting the singular values, shown as a bar plot.

If n < 0, n is determined automatically, according to tol(2).

Shorter calls, e.g.:

[sys,K] = slmoesp(s,Y);

[sys,K] = slmoesp(s,Y,[],n);

sys = slmoesp(s,Y,U);

The first two calls estimate the matrices A, C, and K of a stochastic system (with
no inputs), for an order n found automatically, or specified, respectively.
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Parameter R returns the processed upper triangular factor R of the block-Hankel-
block matrix H, built from the input-output data.
It can be used for fast identification of systems of various orders, using, e.g., the
following commands:

[sys,K,rcnd,R] = sln4sid(s,Y,U,n0,alg);

for n = n0+1 : min( n0+nf, s-1 )

[sys,K,rcnd] = sln4sid(s,Y,U,n,R);

...

end

Inside the loop, the data for Y and U are not used (only size(Y) is needed), but
R replaces alg. The systems of orders (n0+1:min(n0+nf,s-1)) should be used
inside the loop.
rcnd(1) and rcnd(2) set to 1 when sln4sid is called with R instead of alg.
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Numerical Results

Data sets used

The data sets used (except for Appl. 22), are available on the DAISY site

http://www.esat.kuleuven.ac.be/sista/daisy

for increasing accessibility and reproducibility (see Table 1).

Table 1: Summary description of applications

# Application t m ℓ s n
1 Ethane-ethylene distillation column 4 × 90 5 3 5 4
2 Glass furnace 1247 3 6 10 5
3 120 MW power plant 200 5 3 10 8
4 Industrial evaporator 6305 3 3 10 4
5 Simulation data for a pH neutralization process 2001 2 1 15 6
6 Industrial dryer 867 3 3 15 10
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Table 1: continued

# Application t m ℓ s n
7 Liquid-saturated steam heat exchanger 4000 1 1 15 5
8 Test setup of an industrial winding process 2500 5 2 15 6
9 Continuous stirred tank reactor 7500 1 2 15 5

10 Model of a steam generator 9600 4 4 15 9
11 Ball-and-beam 1000 1 1 20 2
12 Laboratory setup for a hair dryer 1000 1 1 15 4
13 CD-player arm 2048 2 2 15 8
14 Wing flutter 1024 1 1 20 6
15 Flexible robot arm 1024 1 1 20 4
16 Steel subframe flexible structure 8523 2 28 21 20
17 Cutaneous potential of a pregnant woman 2500 0 8 21 14
18 Western basin of Lake Erie 4 × 57 5 2 5 4
19 Heat flow through a two layer wall 1680 2 1 20 3
20 Heating system 801 1 1 15 7
21 1 hour Internet traffic at Berkeley Laboratory 99999 0 1 8 2
22 Glass tubes 1401 2 2 20 8

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 107



Sima: System identification using subspace methods Numerical Results

Linear systems identification results

Numerical results: on a Sun 4 SPARC Ultra-2 computer, using OS 5.6, Sun
WorkShop Compiler FORTRAN 77 5.0 and Matlab 5.3.0.10183 (R11).

On an IBM PC computer, 500 MHz, 128 Mb memory, with Digital or Compaq
Visual Fortran, version > V5.0, and/or with Matlab 6.5, the results are similar.

The simplest calls have been used for standard calculations, e.g.,

[sys,K,rcnd] = slsolver(s,y,u,n,alg);

where solver is moesp, n4sid, moen4, or moesm. The notation moesp, n4sid,
moen4 and moesm with indices 1, 2, or 3, indicate the algorithm used in SLICOT
implementation: fast Cholesky, fast QR, and standard QR, respectively.

Alternative Matlab codes for comparison:
MOESP (corresponds to slmoesm) and N4SID.
SLIDENT function slmoesp: refined version of an older MOESP code (OMOESP).

Relative output errors computed with
err = norm(y - ye,1)/norm(y,1); % ye := ŷ.
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Relative output errors using QR or Cholesky factorization (selection)

# Relative output errors
slmoesp sln4sid OMOESP slmoesm

N4SID MOESP
2 6.03e-01 6.21e-01 6.42e-01 4.96e-01

4 5.50e-01 5.53e-01 5.67e-01 4.89e-01

11 3.61e-01 2.78e-01 2.21e+01 2.54e-01

12 3.30e-02 2.16e-02 7.33e-02 1.50e-02

13 1.13e+02 3.45e-01 8.06e+04 1.76e-01

14 2.24e+02 2.94e-01 6.49e+10 2.37e-01

15 1.14e-01 4.51e-02 7.38e+04 3.60e-02

19 4.23e-01 1.38e-01 4.20e-01 1.38e-01

22 5.39e-01 6.09e-01 1.02e+01 4.86e-01

Remarks: MOESP could not solve the identification problem for Application 16
(“Out of memory” error message), and N4SID did not finish after 16 hours of
execution on the Sun machine.
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CPU time (sec. on a Sun) for computing the system matrices using
SLICOT Cholesky factorization and Matlab codes (selection)

# Time
slmoesp sln4sid OMOESP MOESP N4SID

2 0.27 0.36 3.46 4.10 3.48
4 0.32 0.37 8.23 10.29 8.13
11 0.03 0.04 0.69 0.48 0.62
12 0.01 0.03 0.38 0.33 0.41
13 0.10 0.16 2.83 3.37 2.80
14 0.37 0.37 0.71 0.55 0.68
15 0.03 0.04 0.72 0.51 0.69
19 0.08 0.13 2.13 1.75 2.10
22 0.04 0.06 0.76 1.32 0.92

Speed-up factors:

• 10 to 20 comparing to SLICOT QR factorization algorithm;
• 15 to 40 (and even over 200) comparing to Matlab codes.
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Note: Times for Appl. 10 are divided by 10.
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Example: 120 MW power plant
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Figure 3: Output (solid) and estimated output (dash-dotted) trajectories for the
Application 3, with (left), or without (right) Kalman predictor.
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Wiener systems identification results

0 5 10 15 20 25
−1

0

1

2

3

4

5

Application #

lo
g 10

(E
xe

cu
tio

n 
tim

e 
(s

ec
.)

)

wident
widentc, Cholesky
widentc, CG

Figure 4: Decimal logarithms of the execution times in seconds (on the PC
machine) for solving the Wiener system identification problem.
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Figure 5: Decimal logarithms of the sums of squares of the prediction errors for
solving the linear and Wiener system identification problem.
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NLS optimization problem for Application 16, Steel subframe flexible structure:
8523 samples, 2 inputs, and 28 outputs (too large for standard workstations).

Simplified problem solved:

• first half of I/O data used for estimation (all for validation),
• first 7 outputs only modeled,
• system order n = 20,
• 12 neurons for each output.

Corresponding optimization problem:
• 977 variables,
• 7 × ⌊8523/2⌋ = 29827 nonlinear error functions.

QR Cholesky CG
Execution times (sec.): 7956.51 3481.84 98595.72
Sum of Squares: 155 179 155
Error norms, all samples: 225 249 226

Hence, faster Cholesky code was less accurate.

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 123



Sima: System identification using subspace methods Numerical Results

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

35

40
Errors after linear and Wiener identification

Samples

Linear identification error
Wiener identification error

Figure 6: Prediction error norms for Application 16 for linear and Wiener system
identification (t = 8523, N = t/2, c = 977, the first 7 outputs only).

Wiener model • significantly reduces prediction error; • has a smoothing effect.
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Figure 7: Mean values of errors (on a moving window with 40 samples) for linear
and Wiener identification for Application 16 (N = t/2, the first 7 outputs only).
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Summary

• System identification has important applications.

• Impressive advances in the last 3 decades.

• Algorithmic and numerical details on subspace-based techniques for system
identification have been described and compared.

• The techniques are implemented in the new system identification toolbox for
the SLICOT Library.

• The results show that the fast algorithmic variants included in the toolbox can
frequently be used, and they are significantly more efficient than the standard
QR factorization and the existing Matlab codes.

• SLICOT codes are reliable and able to solve large identification problems.
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Future Work

• Further improving the performance and reliability of the SLICOT codes.

• Developing new algorithms or their variations.

• Extensions for other problem classes, e.g., nonlinear systems (bilinear,
Hammerstein, etc.).
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Model and Controller Reduction

Andras Varga
German Aerospace Center
DLR - Oberpfaffenhofen

Institute of Robotics and System Dynamics
D-82234 Wessling (Germany)

E-mail: Andras.Varga@dlr.de
URL: http://www.robotic.dlr.de/~varga/

Abstract
Model reduction has become a standard tool in various control system analysis and design applications,

ranging from simulation of highorder systems to simplification of large order plant models for efficient

evaluation of design criteria in multidisciplinary optimization-based controller tuning. The talk focuses on
methods underlying the numerical software for model and controller reduction available in SLICOT. We discuss

absolute error model reduction methods such as the balanced truncation, singular perturbation approximation,
and Hankel norm approximation, their frequency-weighted counterparts, as well as relative error methods

based on balanced stochastic truncation. Designing low order controllers for practical applications involving

high order plants is a challenging problem where model reduction techniques often play an important role.
To perform controller reduction, special techniques capable to address closed-loop stability and performance

preservation aspects are required. We discuss the newest algorithmic developments for controller reduction for
which robust numerical software is available in SLICOT.

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 133



Varga: Model and controller reduction

Outline

• applications of model reduction

• problem formulation

• classification

• historical perspective

• basic concepts

• model reduction methods

• controller reduction approaches

• software for model and controller
reduction

• model reduction examples
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Applications of model reduction

• Reduction of large order models

– simulation of systems arising from discretization of partial differential
equations

– low order controller design

– real time filter implementation

– complementary to system identification

• Reduction of large order controllers

– real time controller implementation

– complementary to controller synthesis methods
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Model reduction problem

Given the original system of order n

{
ẋ = Ax + Bu
y = Cx + Du

⇔ G(s) = C(sI − A)−1B + D

compute a reduced system of order r < n

{
ẋr = Arxr + Bru
yr = Crxr + Dru

⇔ Gr(s) = Cr(sI − Ar)
−1Br + Dr

such that Gr approximates G as good as possible.
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Classification of model reduction methods

• absolute error methods
‖G − Gr‖ = min

• relative error methods
‖G−1(G − Gr)‖ = min

• frequency-weighted methods

‖Wo(G − Gr)Wi‖ = min

• special methods for controller reduction
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Historical perspective

• modal approach: Davison (1966)
– retain dominant modes of original system

• balanced truncation: Moore (1981)
– a priori error bound for given order (Enns, 1984)

• optimal Hankel-norm approximation: Glover (1984)
– exact solution; relevant to H∞ -norm reduction

• frequency-weighted model reduction:
– balanced truncation: Enns (1984)
– Hankel-norm approximation: Latham & Anderson (1985)
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• relative error methods: stochastic balanced truncation
Desai & Pal (1984), Green (1988), Wang & Safonov (1990)

• controller reduction: Liu & Anderson (1989-90)
– special methods (e.g., coprime factorization based)

• numerical methods:
– square-root (SR) method: Tombs & Postlethwaite (1987)
– balancing-free (BF) method: Wang & Safonov (1990)
– SR & BF methods: Varga (1991,1992)
– frequency-weighted SR & BF: Varga & Anderson (2001)
– controller reduction: Varga & Anderson (2002,2003), Varga (2003)
– large-scale systems: Van Dooren (1995), Penzl (1998), ...
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Gramians

• P - controllability Gramian, Q - observability Gramian
– for a stable, continuous-time system satisfy the Lyapunov equations

AP + PAT + BBT = 0
ATQ + QA + CTC = 0

– for a stable, discrete-time system satisfy the Stein equations

APAT + BBT = P
ATQA + CTC = Q

• Properties: P > 0 ⇔ (A,B) controllable
Q > 0 ⇔ (A,C) observable

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 140



Varga: Model and controller reduction

Hankel singular values (HSV)

• P = SST – controllability Gramian
Q = RTR – observability Gramian

σi = λ
1/2
i (PQ) = λ

1/2
i (STQS) = σi(RS)

• Properties:
– independent of the used (A,B, C,D) realization
– #(nonzero HSV) = order of a minimal realization
– small HSV ⇒ system almost not minimal

• Balanced realization: P = Q = Σ = diag(σ1, ..., σn)
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System balancing

• Let Z be a transformation matrix such that for the transformed system
(Z−1AZ,Z−1B, CZ, D) the transformed Gramians are equal

ZTQZ = Z−1PZ−T = Σ = diag(Σ1,Σ2)

where Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn).

• Assuming σ1 ≥ σ2 ≥ · · ·σr ≫ σr+1 ≥ · · · ≥ σn > 0, partition the transformed
system matrices as

[
Z−1AZ Z−1B

CZ D

]
=




A11 A12 B1

A21 A22 B2

C1 C2 D



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Balanced truncation approximation (BTA)

• Define the reduced model as Gr := (Ar, Br, Cr, Dr) = (A11, B1, C1, D)

• Alternative computation: partition Z−1 and Z as

Z−1 =

[
L
V

]
, Z = [T U ]

and compute Gr := (LAT,LB, CT,D)

Computational approach: determine only the truncation matrices L and T !
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Singular perturbation approximation (SPA)

Define the reduced model as Gr = (Ar, Br, Cr, Dr), where for a continuous-time
system

[
Ar Br

Cr Dr

]
=

[
A11 − A12A

−1
22 A21 B1 − A12A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]

Main advantage: G and Gr have the same DC gains!
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Hankel-norm approximation (HNA)

Define the reduced model as Gr = (Ar, Br, Cr, Dr), where Ar, Br, Cr, and Dr are
computed according to formulas developed by Glover (1984) to solve the optimal
Hankel-norm approximation problem

‖G − Gr‖H = min

Main feature: lower guaranteed error bound.
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Summary of additive error methods

• BTA, SPA and HNA are the basic methods for reduction of stable systems

• Approximation properties:
– guaranteed stability of reduced models
– guaranteed a priori error bound

‖G − Gr‖∞ ≤ 2
n∑

j=r+1

σj

• Easy extensibility to reduce unstable systems in combination with modal or
coprime factorization techniques

• Applicability: dense problems with n ≤ 1000.
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Accuracy enhancing square-root method

• solve the matrix Lyapunov equations to compute Gramians

AP + PAT + BBT = 0
ATQ + QA + CTC = 0

directly for Cholesky factors S and R: P = SST , Q = RTR.

• compute the SVD: RS =
[

U1 U2

]
diag(Σ1,Σ2)

[
V1 V2

]T

• compute the truncation matrices: L = Σ
−1/2
1 UT

1 R, T = SV1Σ
−1/2
1

Main feature: reduced model is balanced !
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Alternative balancing-free approach

• solve the matrix Lyapunov equations to compute Gramians

AP + PAT + BBT = 0
ATQ + QA + CTC = 0

directly for Cholesky factors S and R: P = SST , Q = RTR.

• compute the SVD: RS =
[

U1 U2

]
diag(Σ1,Σ2)

[
V1 V2

]T

• compute the QR-decompositions: SV1 = XW, RTU1 = Y Z

• compute the truncation matrices: L = (Y TX)−1Y T , T = X

Main feature: L and T are well-conditioned !
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Handling unstable systems: modal approach

• Compute Z such that

[
Z−1AZ Z−1B

CZ D

]
=




A11 O B1

O A22 B2

C1 C2 D




where A11 contains the dominant (or unstable) modes
A22 contains the non-dominant modes

• Apply BTA, SPA or HNA to (A22, B2, C2) to obtain (Ar,22, Br,2, Cr,2).

• Construct

[
Ar Br

Cr Dr

]
=




A11 O B1

O Ar,22 Br,2

C1 Cr,2 D



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Handling unstable systems: coprime factorization approach

• Compute a stable left coprime factorization G = M−1N , where M and N are
stable.

• Apply BTA, SPA or HNA to the extended system [M N ] to obtain the reduced
factors [Mr Nr ].

• Compute the reduced system Gr = M−1
r Nr.
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Relative error methods: balanced stochastic truncation (BST)

• Model reduction problem: Given a high order stable plant model G, determine
a reduced order model Gr such that

‖G−1(G − Gr)‖ = min

• Computational approach:

– compute the left spectral factor W such that GG∗ = W ∗W
– compute P , the controllability Gramian of G and,

Q, the observability Gramian of W
– compute the reduced model Gr using square-root & balancing-free BTA or

SPA techniques
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• BST is often suitable to perform model reduction in order to obtain low order
design models for controller synthesis !

• Approximation properties:
– guaranteed stability of reduced models
– approximates simultaneously gain and phase
– preserves non-minimum phase zeros
– guaranteed a priori error bound

‖G−1(G − Gr)‖∞ ≤ 2
n∑

j=r+1

1 + σj

1 − σj
− 1

• Applicability: dense problems with n ≤ 200
– appropriate as final reduction step for absolute error methods
– use [G αI ] to combine absolute and relative error methods

• Restrictions: G must be full row rank
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Frequency-weighted balanced truncation

• Model reduction problem: Given a high order stable plant model G, stable
weighting-matrices Wo and Wi, determine a reduced order model Gr such that

‖Wo(G − Gr)Wi‖ = min

• Computational approach:

– compute P , the controllability Gramian of GWi and,
Q, the observability Gramian of WoG

– compute truncation matrices L and T using square-root & balancing-free
techniques to obtain Gr = (LAT, LB, CT, D).

No nice error bounds are known !!
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Frequency-weighted Hankel norm approximation

• Model reduction problem: Given a high order stable plant model G, and anti-
stable weighting-matrices Wo and Wi, determine a reduced order model Gr

such that
‖Wo(G − Gr)Wi‖ = min

• Computational approach:

– compute G1, the Hankel-norm approximation of the stable projection of
WoGWi

– compute Gr, the stable projection of W−1
o G1W

−1
i .

No nice error bounds are known !!
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Basic approaches to low order controller design

LLooww  OOrrddeerr

PPllaanntt  
LLooww  OOrrddeerr

CCoonnttrroolllleerr  

Model 
Reduction 

Controller 
Reduction 

LQG or H∞∞∞∞ Design 

( Low Order ) 

HHiigghh  OOrrddeerr 

PPllaanntt  
HHiigghh  OOrrddeerr 

CCoonnttrroolllleerr  
LQG or H∞∞∞∞ Design 

( High Order ) 
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Controller reduction problem

• Controller reduction problem: Given a plant G and a stabilizing controller K,
determine a reduced order controller Kr, such that the closed-loop system is
stable and closed-loop performances are preserved.

• Specific aspects:

– controllers often unstable
– information on plant can be used
– controller reduction problems highly structured
– closed-loop stability/performance preserving necessary
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Controller reduction approaches

• Stability/performance preserving reduction using frequency-weighted balancing
techniques:

– special methods for general and state feedback-observer based controllers

• Coprime factorization based reduction:

– direct reduction of coprime factors
– frequency-weighted balanced truncation of coprime factors
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Controller reduction using frequency-weighted balanced

truncation

• Stability enforcing one-sided weights (Anderson & Liu, 1989):

Wo = (I + GK)−1G, Wi = I or Wo = I, Wi = G(I + KG)−1

• Stability and performance enforcing weights (Anderson & Liu, 1989):

Wo = (I + GK)−1G, Wi = (I + GK)−1

• Solve the frequency-weighted balanced truncation approximation problem

‖Wo(G − Gr)Wi‖ = min

Square-root methods: Varga & Anderson (2002,2003)
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Controller reduction using coprime factorization techniques

• apply coprime factorization model reduction to K by exploiting the special
structure of state feedback-observer based controllers
Anderson & Liu (1989); Liu, Anderson & Ly (1990)

• stability preserving coprime factor reduction
basic approach: Zhou, Doyle & Glover (1996)
efficient square-root methods: Varga (ACC’2003)

• performance preserving reduction of H∞ controllers
basic approach: Goddard & Glover (1999)
efficient square-root methods: Varga (ECC’2003)
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Software for model/controller reduction

Software SLICOT Control Toolbox Robust Toolbox µ-Toolbox MatrixX Wor–Toolbox

Provided features

continuous-time + + + + + +

discrete-time + + – – – –

unstable + – + – – +

non-minimal + – + + + +

Methods

balancing + + + + + +

balancing-free (BF) + – + – + –

square-root (SR) + – – + – +

BF-SR + – – – – –

Problem classes

additive error + + + + + +

relative error + – + + + –

frequency weighted + – – + + +

controller reduction + – – – + +
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Model reduction software in SLICOT

• reduction of stable models

Name Function

AB09AD Balanced truncation approximation (BTA)

AB09BD Singular perturbation approximation (SPA)

AB09CD Hankel norm approximation (HNA)

AB09DD Singular perturbation approximation formulas

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 161



Varga: Model and controller reduction

• reduction of unstable models

Name Function mex-function m-function

AB09ED HNA for the stable part sysred hna

AB09FD BTA of coprime factors sysred bta cf

AB09GD SPA of coprime factors sysred spa cf

AB09MD BTA for the stable part sysred bta, btabal

AB09ND SPA for the stable part sysred spa, spabal

AB09HD BST with BTA or SPA bstred bst

AB09ID frequency-weighted BTA or SPA fwered fwbred

AB09JD frequency-weighted HNA fwehna fwhna
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Controller reduction software in SLICOT

• reduction of general controllers

Name Function mex-function m-function

SB16AD frequency-weighted BTA or SPA conred fwbconred

• reduction of state-feedback-observer based controllers

Name Function mex-function m-function

SB16BD coprime factor reduction with BTA or SPA sfored cfconred

SB16CD frequency-weighted BTA of coprime factors sfored cfconred
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SLICOT - Matlab comparison

sysred – SLICOT based mex-function (square-root BTA)
sqrmr – plain Matlab implementation of the square-root BTA
balreal – Matlab Control Toolbox (balancing method)

Order Times [sec]
sysred sqrmr balreal

16 0.003 0.17 0.04
32 0.01 0.5 0.17
64 0.11 2.14 failed
128 0.78 10.55 failed
256 6.12 63.75 failed
512 76.23 478.69 failed

Timing results for a Pentium II 400 MHz PC
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Advanced Technologies Testing Aircraft System: ATTAS

Original linearized aircraft model: n = 55, m = 9, p = 9

Characteristics: continuous-time, non-minimal, unstable

Reduced models obtained with BTA:

global dynamics r = 15, m = 9, p = 9
longitudinal dynamics r = 7, m = 4, p = 4
lateral dynamics r = 10, m = 2, p = 5
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Comparison of frequency responses for element g22(s) of

ATTAS
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CD-player finite element model

Original CD-player model:
n = 120, m = 1, p = 1

Characteristics:
continuous-time, stable

Reduced models obtained
with BTA, SPA, HNA: r = 10
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Linearized gasifier models

Gasifier models linearized at
0%, 50%, 100% loads:
n = 25, m = 6, p = 5

Characteristics: continuous-
time, stable, non-minimal,
badly scaled

Reduced models with BTA:
r = 6, 8, 12

Real Axis

Im
ag

in
ar

y 
A

xi
s

Nyquist Diagrams

−1000 0 1000 2000 3000 4000 5000 6000

−3000

−2000

−1000

0

1000

2000

3000

From: U(5)

T
o:

 Y
(3

)

Original system         
12th order approximation
8th order approximation 
6th order approximation 

100% load 0% load 

50% load 

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 168



Varga: Model and controller reduction

Final remarks

• The best numerical software for model reduction is available for free in SLICOT!

• Matlab/Scilab mex- and m-functions offer flexible interfaces to model
reduction software in SLICOT.

• Special software for controller reduction available.

• Software for reduction of very high order systems using parallel computations
also available!
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Further Reading

[1] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control,
Prentice-Hall, Upper Saddle River, NJ, 1996.

[2] G. Obinata and B. Anderson, Model Reduction for Control System
Design, Communications and Control Engineering Series, Springer-Verlag,
London, UK, 2001.

[3] A. Varga, Model reduction software in the SLICOT library, in Applied and
Computational Control, Signals, and Circuits, B. Datta, ed., vol. 629 of The
Kluwer International Series in Engineering and Computer Science, Kluwer
Academic Publishers, Boston, MA, 2001, pp. 239–282.3

[4] A. Varga, New numerical software for model and controller reduction,
SLICOT Working Note SLWN2002-5, 2002.4

3http://www.robotic.dlr.de/control/publications/2001/varga ACCSC01.pdf
4http://www.robotic.dlr.de/control/publications/2002/varga SLWN2002-5.pdf
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Robust Control Design Using H∞ Methods

Da-Wei Gu, Petko Petkov & Mihail Konstantinov
Control & Instrumentation Group

Department of Engineering
University of Leicester (UK)

E-mail: dag@leicester.ac.uk
URL: http://www.le.ac.uk/engineering/dag

Abstract
As control systems are vulnerable to external perturbations and measurement noise, robust control

design methods aim at computing controllers that stabilize the given plant and guarantee certain performance
levels in the presence of disturbance signals, noise interference, unmodeled plant dynamics, and model

uncertainties. H∞-optimization has become a standard method in this area, but its implementation in
a CACSD environment is challenging due to several subtle numerical aspects. In this talk, reliable tools

for H∞-optimization, H∞-loop shaping design, and µ-synthesis, available in SLICOT based toolboxes for
Matlab and Scilab, will be discussed. A mass-damper-spring system will serve as case study to exemplify

the steps taken in a typical robust control design.
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Outline

• A Mass-Damper-Spring System

• Modeling of Uncertainties

• Robust Designs of MDS System

• Robust Design Routines in SLICOT

• Results and Conclusions
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Mass-Damper-Spring System

Figure 2: Mass-Damper-Spring System

The dynamics:

mẍ + cẋ + kx = u,
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Figure 3: Block Diagram of MDS System

x: displacement of the mass block

u = F : force

m: mass

c: damper constant

k: spring constant
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Modeling of Uncertainties

The coefficients are NOT exactly known, hence assume the parametric uncertainties

m = m(1 + pmδm), c = c(1 + pcδc), k = k(1 + pkδk)

with nominal values
m = 3, c = 1, k = 2

Relative perturbations:

pm = 0.4, pc = 0.2, pk = 0.3

and
−1 ≤ δm, δc, δk ≤ 1

(40% uncertainty in the mass, 20% in the damping coefficient and 30% in the
spring constant)
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Representations of uncertainties in LFTs

1

m
=

1

m(1 + pmδm)
=

1

m
−

pm

m
δm(1 + pmδm)−1

= FU(Mmi, δm)

with

Mmi =

[
−pm

1
m

−pm
1
m

]
.

Similarly,

c = FU(Mc, δc), k = FU(Mk, δk)

with

Mc =

[
0 c
pc c

]
, Mk =

[
0 k

pk k

]
.
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Block Diagrams

Figure 4: Uncertain Parameters in LFTs

and

Figure 5: MDS with Uncertain Parameters
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Further, define the nominal system Gmds with consideration of parametric
uncertainties.

Figure 6: Input/Output Block Diagram of MDS System

Figure 7: LFT Representation of MDS System with Uncertainties
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Designs of Robust Controllers

Design Objectives:
1. Robust Stability
2. Robust Performance:

∥∥∥∥
[

Wp(I + GK)−1

WuK(I + GK)−1

]∥∥∥∥
∞

< 1

for all G = FU(Gmds, ∆)

Figure 8: Closed-Loop System Structure
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3 designs tried

• Sub-Optimal H∞ (S over KS) Design (Khin)

• H∞ Loop Shaping Design Procedure (LSDP) (Klsh)

• µ-Synthesis (D-K Iterations) (Kmu)

Weighting functions selected:

wp(s) = 0.95
s2 + 1.8s + 10

s2 + 8.0s + 0.01
, wu = 10−2

and, in H∞ LSDP,

W1(s) = 2
8s + 1

0.9
, W2(s) = 1
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Robust Design Routines in SLICOT

Routines available for H2, H∞, H∞ LSDP and µ-analysis and synthesis.

H2 design for continuous-time systems

Routine Functionality

SB10HD Design of optimal H2 output controllers (main subroutine)
SB10UD Transformation of system matrices to standard form
SB10VD Computation of the state feedback and output injection matrices

of the optimal H2 regulator
SB10WD Computation of the H2 optimal controller
AB13BD Computation of the H2 or L2 norm of continuous- and

discrete-time systems

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 181



Da-Wei Gu, et al: Robust Design SLICOT-2

H∞ design for continuous-time systems

Routine Functionality

SB10FD Design of suboptimal H∞ output controllers (main subroutine)
SB10PD Transformation of system matrices to standard form
SB10QD Computation of the state feedback and output injection matrices

of the suboptimal H∞ regulator
SB10RD Computation of the suboptimal controller
SB10LD Computation of the closed-loop system matrices
AB13DD Computation of the H∞/L∞ norm of continuous- and

discrete-time systems
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H∞ and H2 synthesis routines for discrete-time systems

Routine Functionality

SB10DD Design of H∞ suboptimal output controllers (main routine)
SB10ED Design of optimal H2 output controllers (main routine)
SB10SD Computation of the H2 controller for the normalized system
SB10TD Computation of the H2 controller for the original system
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Routine for H∞ LSDP and µ computation

Routine Functionality

SB10ID Loop shaping design of output controllers
for continuous-time cases (main subroutine)

SB10JD Transformation of a descriptor system into regular form
SB10KD Loop shaping design of output controllers

for discrete-time cases (main subroutine)

AB13MD Computation of upper bound on the structured singular value
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Other related routines, including matrix algebraic Riccati and Lyapunov
equation solvers with condition and accuracy estimates

Routine Functionality

SB01DD Pole and eigenstructure assignment of a multi-input system
SB02QD Estimation of the condition number of a continuous-time

Riccati equation and estimation of the forward error
SB02RD Solution of the continuous- or discrete-time matrix Riccati

equation with condition and forward error estimation
SB02PD Solution of the continuous-time matrix Riccati equation by the

matrix sign function method
SB02OD Solution of the continuous- or discrete-time algebraic

Riccati equation
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Other related routines (Cont.)

Routine Functionality

SB02SD Estimation of the condition number of a discrete-time
Riccati equation and estimation of the forward error

SB03QD Estimation of the condition number of a
continuous-time Lyapunov equation and estimation
of the forward error

SB03RD Solution of the continuous-time matrix Lyapunov equation with
condition and forward error estimation

SB03SD Estimation of the condition number of a discrete-time
Lyapunov equation and estimation of the forward error

SB03PD Solution of the discrete-time matrix Lyapunov equation with
condition and forward error estimation
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• SLICOT routines used in all 3 robust designs and model reduction

• Mex files available, well integrated in Matlab environment

• Good numerical performance in comparison to those in Matlab

• Numerical accuracy and perturbation error estimations available in SLICOT
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Design Results & Comparisons

1. H∞ Controller: 4th order, minimum γ achieved 0.9506

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
CLOSED−LOOP TRANSIENT RESPONSE

Time (secs)

y 
(m

)

Figure 9: Transient Response to Reference Input (Khin)
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Figure 10: Transient Response to Disturbance Input (Khin)
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2. H∞ LSDP Controller: 4th order, γ = 0.395,
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Figure 11: Transient Response to Reference Input (Klsh)
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Figure 12: Transient Response to Disturbance Input (Klsh)
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3. µ Controller: µ = 0.965 after 4 iterations, original order 20 and reduced to 4
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Figure 13: Transient Response to Reference Input (Kmu)
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Figure 14: Transient Response to Disturbance Input (Kmu)
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Figure 15: Transient Responses of Perturbed Systems (Kmu)
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Figure 16: Comparison of Robust Stability for 3 Controllers
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Figure 17: Comparison of Robust Performance for 3 Controllers
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Figure 18: Performance Degradation for 3 Controllers

c©The NICONET Society ♦ ADVANCED COMPUTATIONAL TOOLS FOR CACSD ♦ 197



Da-Wei Gu: Robust Design Results-11

Model Reduction of µ Controller

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
0

10
2

10
4

Lo
g 

M
ag

ni
tu

de

Frequency (radians/sec)

BODE PLOTS OF FULL AND REDUCED ORDER CONTROLLERS

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−100

−50

0

50

P
ha

se
 (

de
gr

ee
s)

Frequency (radians/sec)

Full order (n = 20) controller
Reduced−order (n = 4) controller

Figure 19: Frequency Responses of Full and Reduced Order Controllers
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Figure 20: Transient Responses of Full and Reduced Order Controllers
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Further Reading

[1] D.-W. Gu, P.Hr. Petkov, and M.M. Konstantinov, An Introduction
to H∞ Optimisations Designs, Niconet Report NIC1999-4, 1999.

[2] D.-W. Gu, P.Hr. Petkov, and M.M. Konstantinov, H∞ and H2

optimization toolbox in SLICOT, SLICOT Working Note SLWN1999-12,
1999.

[3] D.-W. Gu, P.Hr. Petkov, and M.M. Konstantinov, H∞ Loop
Shaping Design Procedure Routines in SLICOT, Niconet Report MIC1999-15,
1999.

[4] G.J. Balas, J.C. Doyle, K. Glover, A. Packard, and R. Smith,
µ-Analysis and Synthesis Toolbox: User’s Guide, MUSYN Inc. and The
Mathworks, Inc., 1995.

[5] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control,
Prentice-Hall, Upper Saddle River, NJ, 1996.
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