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Abstract

We study the numerical solution of a class of algebraic

Riccati equations arising in spectral factorization and H

1

optimal control problems. This type of matrix Riccati

equations di�ers from the standard type usually consid-

ered in linear-quadratic regulator problems in that both

the quadratic and constant term are positive semide�nite.

We show that the exact line search method derived for

the standard \continuous-time" algebraic Riccati equa-

tion can be applied to this type of equation as well. The

method can either be used to solve the Riccati equation

iteratively or to improve a solution computed by any other

method via iterative re�nement.
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1 Introduction

In this paper, we consider the algebraic Riccati equation

(ARE)

0 = R(X) := Q+ A

T

X +XA +XGX (1)

where A;G;Q;X 2 IR

n�n

. Here, A is stable, i.e., has all

its eigenvalues in the open left half plane, G and Q are

symmetric positive semide�nite, and X is the symmet-

ric sought-after solution of (1). The above equation dif-

fers from the continuous-time algebraic Riccati equation

(CARE) arising in the linear-quadratic regulator problem

in the sign of the quadratic term, or, in other words, the

CARE can be given as in (1) assumingG negative semidef-

inite and Q positive semide�nite (without the additional

assumption of A being stable).

The ARE (1) arises, e.g., in spectral factorization and

H

1

optimal control problems (see, e.g., [9] and the ref-

erences given therein), and related model reduction prob-

lems (see, e.g., [14] and the references given therein). As

for the CARE, usually the desired solution X

s

of (1) is

stabilizing in the sense that the matrix A+GX

s

is stable.

The Hamiltonian matrix associated with (1) is

H =

�

A G

�Q �A

T

�

: (2)

As a consequence of the real bounded lemma (see, e.g.,

[9] and many other references given therein), the ARE (1)

withA stable has a unique symmetric positive semide�nite

stabilizing solution X

s

if and only if H has no eigenvalues

on the imaginary axis. Throughout this paper, we will

assume the existence of such a stabilizing solution X

s

.

For a discussion of other solutions of (1) see also [7].

The stabilizing solution of the ARE (1) can therefore

be determined analogously to the stabilizing solution of

the CARE by computing a certain invariant subspace of

the Hamiltonian matrixH given in (2): if we assume that

H has no eigenvalues on the imaginary axis, then H has

exactly n eigenvalues in the open left half plane. Thus,

there exists an n{dimensional H{invariant subspace cor-

responding to these eigenvalues | the stable invariant

subspace of H. Let this invariant subspace be spanned

by the columns of

�

U

V

�

, U; V 2 IR

n�n

, and assume that

U is nonsingular. Then X

s

= V U

�1

. Therefore, any nu-

merical method solving the CARE by means of the stable

H-invariant subspace can also be used to solve the ARE

(1).

Another approach used to solve the CARE is Newton's

method, �rst proposed by Kleinman [8]. Since the proof

of convergence of Newton's method to the stabilizing solu-

tion of the CARE relies upon the de�niteness assumptions

on the coe�cient matrices G and Q it is not straightfor-

ward to apply this method to the ARE (1). However, in

[13] it is proved that Kleinman's method applied to the

ARE (1) has the same convergence properties as for the

CARE.

For several reasons, Newton's method is mainly used

for iterative re�nement of Riccati solutions computed by

some other method rather than for directly solving the

CARE. One of these reasons is that to converge to the

stabilizing solution, the starting point has to be stabiliz-



ing. There exist stabilization procedures that provide a

stabilizing initial guess (e.g., [12]), but often these lead

far away from the desired solution X

s

. In the case consid-

ered here, the matrixA of (1) is stable, and thus X

0

= 0 is

a simple stabilizing starting guess. Still, Newton's method

may be too expensive from the point of view of com-

putational cost. The most commonly used method for

solving the CARE during the last 15 years is the Schur

vector method [11] which essentially computes the stable

H-invariant subspace by applying the standard QR algo-

rithm (e.g., [6]) to the Hamiltonian matrix H and then

reordering the eigenvalues. Solving the CARE by this

method requires roughly the same computation time as

seven steps of Newton's method. Usually, the solution

computed by the Schur vector method is improved by it-

erative re�nement. Often, when used as an iterative solver

of the ARE (1) or the CARE, the number of iterations re-

quired by Newton's method to converge is much higher

than seven. On the other hand, used as defect correc-

tion or iterative re�nement method, usually only one or

two Newton iterations are required to obtain the max-

imum possible accuracy. Having this in mind, we can

conclude that in order to be competitive with the Schur

vector approach, Newton's method should terminate in at

most nine to ten iterations.

In [3], an exact line search method is introduced which

improves Newton's method for the numerical solution of

the CARE in several aspects. There, the Newton iteration

step is modi�ed by computing an optimal step size along

the Newton direction in order to minimize the Frobenius

norm of the next residual. This is achieved by little ex-

tra cost such that compared to a standard Newton step,

an exact line search Newton step requires only about 5{

10% more work. Numerical examples suggest that often,

this exact line search method computes the solution of the

CARE at a computational cost competitive to the Schur

vector method. Moreover, the method has the same pleas-

ant properties as Newton's method when used for iterative

re�nement. Sometimes, it even then compares favorably

to Newton's method when the CARE is ill-conditioned.

In the next section, we will introduce the exact line

search method for the numerical solution of the ARE (1).

A numerical example will be given in Section 3.

2 Exact Line Search

For the ease of notation, we will introduce the following

Lyapunov operators:




j

(Z) = (A +GX

j

)

T

Z + Z(A +GX

j

);

where Z 2 IR

n�n

and X

j

= X

T

j

2 IR

n�n

, j = 0; 1; : : :, will

be the iterates generated by the following algorithm. (It

is assumed that 


j

is a nonsingular operator for all j.)

A general framework for the algorithms considered here

is given in the following algorithm.

Algorithm 1

1. Set X

0

= 0.

2. FOR j = 0; 1; 2; : : :

2.1 N

j

= �


�1

j

(R(X

j

)).

2.2 X

j+1

= X

j

+ t

j

N

j

:

END FOR

In case t

j

= 1 for all j, this is Newton's method for the

ARE (1). Note that this formulation di�ers from the one

given in [13],

X

0

= 0;

X

j+1

= 


�1

j

(X

j

GX

j

� Q); j � 0;

(3)

in that it does not compute X

j+1

directly from the Lya-

punov equation but computes �rst the Newton step N

j

and then updates X

j

by adding the Newton step. Our

formulation is analogous to the usual formulation of New-

ton's method for the solution of nonlinear equations as

given in [5, Algorithm 5.1.1] while the formulation (3)

is based on the original formulation of Newton's method

for the CARE by Kleinman [8]. While mathematically

equivalent, (3) has the disadvantage that a possible ill-

conditioned Lyapunov operator 


j

directly a�ects the ac-

curacy of the approximation X

j+1

. In Algorithm 1, the

same Lyapunov operator is used to solve the Lyapunov

equation, but an ill-conditioning only a�ects the accuracy

of the step N

j

. However, in general, it is su�cient that the

�rst signi�cant digits of N

j

are accurate in order to cor-

rect the most signi�cant wrong digits of X

j

and thereby

obtain a more accurate approximationX

j+1

= X

j

+ t

j

N

j

.

Our aim here is to choose the parameter t

j

in Algo-

rithm 1 in order to minimize some measure of the error

for the next approximationX

j+1

. In optimization theory,

this is called a line search where the search direction is

the Newton direction, given by the step N

j

. A line search

is said to be exact (as opposed to approximate) if t

j

is an

exact minimizer. Here, we choose the Frobenius norm of

the next residual as an error measure, i.e., we try to �nd

t = t

j

minimizing

f

j

(t) = kR(X

j

+ tN

j

)k

2

F

(4)

which is equivalent to minimizing kR(X

j

+ tN

j

)k

F

. We

will see that such a t

j

can be computed without adding a

prohibitive extra cost to the Newton step.

Using the identity given by the Lyapunov equation in

Step 2.1 of Algorithm 1, it is easy to see that [3]

R(X

j

+ tN

j

) = (1� t)R(X

j

) + t

2

N

j

GN

j

: (5)

Using the well-known property of the Frobenius norm that

kMk

2

F

= trace

�

M

T

M

�

, we have

f

j

(t) = �

j

(1� t)

2

+ 2�

j

(1� t)t

2

+ 


j

t

4

; (6)

where

�

j

= trace

�

R(X

j

)

2

�

;



�

j

= trace (R(X

j

)N

j

GN

j

) ;




j

= trace

�

(N

j

GN

j

)

2

�

:

Thus, f

j

is a polynomial of degree at most four. If 


j

=

0, t

j

= 1 minimizes f

j

, and X

j

+ t

j

N

j

is a solution of

(1). Therefore, in the sequel we will assume that 


j

> 0.

This implies that f

j

has either one local minimum and no

local maximaor two local minimaand one local maximum.

Since lim

t!�1

f

j

(t) = 1, one of these local minima is

also the global minimum.

Theorem 1 There is a local minimum at some value t

j

2

[ 0; 2 ].

Proof: Di�erentiating (4), using (5), and de�ning

V

j

:= N

j

GN

j

;

we obtain

f

0

j

(t) = �2 � trace

�

�

R(X

j

)� 2tV

j

��

(1� t)R(X

j

) + t

2

V

j

�

�

:

(7)

Thus,

f

0

j

(0) = �2 � trace

�

R(X

j

)

2

�

� 0;

and

f

0

j

(2) = 2 � trace

�

(R(X

j

) � 4V

j

)

2

�

� 0:

If f

0

j

(0) = 0, then kR(X

j

)k

F

= 0 and t

j

= 0. Otherwise,

f

0

j

(0) < 0 and there must be a local minimum at some

value t

j

2 ( 0; 2 ].

From the proof of Theorem 1 we immediately obtain

the following result.

Corollary 2 a) t

j

= 0 if and only if R(X

j

) = 0, i.e., if

X

j

is a solution of (1).

b) kR(X

j

)k

F

� kR(X

j

+ t

j

N

j

)k

F

and equality holds if

and only if R(X

j

) = 0.

Note that Theorem 1 and Corollary 2 do not require any

assumptions on the coe�cients of the ARE (1) except G

and Q being symmetric. Thus, they both hold for general

AREs of the form (1).

In the following we will see that the interval [ 0; 2 ] turns

out to be the obvious search interval for the suggested line

search procedure.

Lemma 3 If A+ GX

j

is stable, t 2 [ 0; 2 ], and

N

j

= �


�1

j

(R(X

j

)); (8)

then A+G(X

j

+ tN

j

) is stable.

Proof: The identity (8) is equivalent to




j

(X

j

+ N

j

) = �Q+X

j

GX

j

: (9)

Subtracting (9) from R(X

s

) = 0 and adding X

j

GX

s

+

X

s

GX

j

on both sides yields




j

(X

s

� (X

j

+ N

j

)) = �(X

s

�X

j

)G(X

s

�X

j

): (10)

Using a modi�ed version of Lyapunov's theorem (see, e.g.,

[10, Chapter 13, Proposition 1]), the stability of A+GX

j

implies X

s

� (X

j

+N

j

) � 0. Now adding

tN

j

G

�

X

s

� (X

j

+N

j

)

�

+

�

X

s

� (X

j

+ N

j

)

�

GtN

j

on both sides of (10), we obtain

(A +G(X

j

+ tN

j

))

T

(X

s

� (X

j

+ N

j

)) +

+ (X

s

� (X

j

+N

j

)) (A+G(X

j

+ tN

j

))

= � (X

s

� (X

j

+ tN

j

))G (X

s

� (X

j

+ tN

j

))

� t(2� t)N

j

GN

j

(11)

=: W:

Since t 2 [ 0; 2 ], the right-hand side W in (11) is negative

semide�nite.

Now suppose A+G(X

j

+ tN

j

) has an eigenvalue � with

Re(�) � 0 and corresponding eigenvector z 6= 0. Then we

have

(A+G(X

j

+ tGN

j

)) z = �z: (12)

Multiply (11) from the left by z

H

and from the right by

z. Then we obtain

2 �Re(�)z

H

(X

s

� (X

j

+N

j

)) z = z

H

Wz: (13)

The left-hand side of (13) is nonnegative since

X

s

� (X

j

+ N

j

) � 0

and Re(�) � 0. As W is negative semide�nite, the right-

hand side of (13) is nonpositive and it follows that

z

H

Wz = 0:

Thus,

z

H

(X

s

� (X

j

+ tN

j

))G (X

s

� (X

j

+ tN

j

)) z = 0

and since G � 0, this implies

G (X

s

� (X

j

+ tN

j

)) z = 0;

or, equivalently,

GX

s

z = G(X

j

+ tN

j

)z: (14)

From (12) and (14) we obtain

�z = (A +G(X

j

+ tN

j

)) z

= (A +GX

s

) z:

Hence, � is an eigenvalue of A + GX

s

which contradicts

the stability of A +GX

s

.

Theorem 1 and Lemma 3 show that in each step of Algo-

rithm 1, we can �nd a t

j

2 [ 0; 2 ] minimizing kR(X

j+1

)k

F

and that all iterates are stabilizing as long as X

0

was cho-

sen to be stabilizing. Since A is stable, X

0

= 0 satis�es



this last demand. Lemma 3 also shows that if t

j

is cho-

sen from [ 0; 2 ], Algorithm 1 cannot fail due to a singular

Lyapunov operator 


j

.

Even if limited to [ 0; 2 ], there is some ambiguity in

the choice of t

j

. As we have seen before, f

j

may have

two local minima. Because of Lemma 3, we only have a

choice if both of them are contained in [ 0; 2 ]. In that

case, we can choose the one de�ning the global minimum.

In practise, this is very seldom observed. In most cases,

there is only one local minimum (which then is the global

minimum). Two local minima in [ 0; 2 ] occured only twice

while testing Algorithm 1 with exact line search for some

hundred examples.

Let us brie
y discuss the additional computational cost

necessary to perform an exact line search. Usually, the

Lyapunov equation in Step 2.1 is solved using the Bartels-

Stewart algorithm [2]. Thus, using 
op estimates from

[6], performing one iteration step of Algorithm 1 requires

about 36n

3


ops. (Following [6], we de�ne each 
oating

point arithmetic operation together with the associated in-

teger indexing as a 
op.) The computation of the symmet-

ric matrix N

j

GN

j

can be done using 3n

3


ops while the

computation of the coe�cients �

j

, �

j

, and 


j

of f

j

requires

3n inner products of length n, i.e., 6n

2


ops. The compu-

tation of the minimizing t

j

is an O(1) operation negligible

compared to the O(n

3

) cost of the iteration step. We can

conclude that an exact line search does increase the com-

putational cost of one iteration step by no more than 10%.

In other words, the extra work is amortized if we can save

one out of ten iteration steps. In many control applica-

tions, the coe�cient matrix G of the quadratic term in

(1) is given as G = BB

T

where B 2 IR

n�m

. If m � n,

then this comparison becomes even more favourable. For

instance, if m = 1, the additional cost is about 10n

2

, i.e.,

there is no signi�cant extra cost for an exact line search.

In [3], a convergence theory for Algorithm 1 with exact

line search iss derived. The same results can be obtained

for the ARE (1). Since the proofs only di�er marginally

from those given in [3] for the CARE, we omit them here

and only summarize the results in the following theorem.

Theorem 4 Assume that A is stable and (A;G) de�nes

a controllable matrix pair. Let X

j

denote the iterates pro-

duced by Algorithm 1 where in each step the t

j

are chosen

to minimize kR(X

j

+ tN

j

)k

F

in [ 0; 2 ]. If t

j

> " for all j

and some " > 0, then

lim

j!1

X

j

= X

s

:

Moreover, convergence is quadratic in a neighbourhood of

X

s

.

The above convergence result relies on the fact that

t

j

> " for all j and a given constant " > 0. We can

modify Algorithm 1 such that the step size is set to one

if t

j

drops below a prescribed (small) constant. We can

then \re-start" Algorithm 1 with the new \starting guess"

X

j

+N

j

which is stabilizing by Lemma 3. In our numeri-

cal experiments, very small step sizes occured only at the

very beginning of the iteration if the starting guess already

yielded a residual norm within the order of the limiting

accuracy. In such a case, neither Newton's method nor

exact line search can be expected to improve the accuracy

of the approximate solution of (1) any further.

Furthermore, Theorem 1 relies on the controllability of

(A;G). This assumption is needed in parts of the proofs in

[3]. Numerical experiments with uncontrollable data (as,

for instance, the example given in Section 3) suggest that

this assumption can be removed. The iterates produced

by Algorithm 1 with exact line search always converged

to the stabilizing solution X

s

.

3 Numerical Example

We compared Newton's method (NWT) as given by Algo-

rithm 1 with t

j

= 1 for all j, and Algorithm 1 with exact

line search (ELS), i.e., in each step the t

j

are computed to

minimize kR(X

j

+ tN

j

)k

F

for the following example given

in [14, 13].

Consider a transfer function

G(s) = C(sI

n

� A)

�1

B +D

where A 2 IR

n�n

, B 2 IR

n�m

, C 2 IR

p�n

, and D 2

IR

p�m

. Let (A;B;C;D) be a stable minimal state-space

realization of G(s). De�ne the power spectrum ma-

trix �(s) = G(s)G

T

(�s), and let W be a square mini-

mum phase right spectral factor of �, satisfying �(s) =

W

T

(�s)W (s). If we assume that D has full row rank,

then R = DD

T

is positive de�nite and a minimal state

space realization (A

W

; B

W

; C

W

; D

W

) of W is given by

(see [1])

A

W

= A;

B

W

= BD

T

+ P

W

C

T

;

C

W

= R

�

1

2

(C �B

T

W

X

W

);

D

W

= R

1

2

:

Here, P

W

is the solution of

AP + PA

T

= �BB

T

and X

W

is the stabilizing solution of the ARE

(A �B

W

R

�1

C)

T

X + X(A � B

W

R

�1

C) +

XB

W

R

�1

B

T

W

X + C

T

R

�1

C = 0: (15)

In [14], it is observed thatX

W

> 0 as it is the observability

Gramian of W and thus, using a version of Lyapunov's

theorem [10, p.447], A � B

W

R

�1

C is stable which shows

that (15) is of the form (1).

In [14], the computation of X

W

(and P

W

) is part of a

square-root balancing-free stochastic truncation model re-

duction algorithm. This algorithm does not rely upon the

minimality of (A;B;C;D).



As an example consider a transfer function G(s) having

a tenth order non-minimal state-space realization (neither

controllable nor observable) (A;B;C;D) where (see [13,

14])

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�6 �1 0 0 0 0 0 0 0 0

1 �8 0 0 0 0 0 0 0 0

0 0 �10 3 0 0 0 0 0 0

0 0 1 �8 0 0 0 0 0 0

0 0 0 0 �13 �3 9 0 0 0

0 0 0 0 1 �8 0 0 0 0

0 0 0 0 0 1 �8 0 0 0

0 0 0 0 0 0 0 �14 �9 0

0 0 0 0 0 0 0 1 �8 0

0 0 0 0 0 0 0 0 0 �2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

B

T

=

2

6

4

1 0 0 0 1 0 0 0 0 10

�3

0 0 1 0 0 0 0 1 0 10

�3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

3

7

5

;

C =

�

0 1 0 1 0 0 0 0 0 5 � 10

�5

0 0 0 0 0 0 �6 1 �2 5 � 10

�5

�

;

D = 10

��

�

�

0 0 1 0

0 0 0 1

�

:

The two methods NWT and ELS were implemented

in MATLAB 4.2c

1

and tested by solving (15) for the

data given above (and many other examples). Table 1

shows the number of iterations (NIT) and the �nal resid-

ual kR(X

NIT

)k

F

for each of the two methods when used

to solve (15) for varying matrices D (� = 0; 1; : : :; 6).

NWT ELS

� NIT kR(X

NIT

)k

F

NIT kR(X

NIT

)k

F

0 2 1:5� 10

�14

2 8:2� 10

�15

1 3 1:4� 10

�12

3 1:6� 10

�13

2 6 7:4� 10

�11

5 6:5� 10

�11

3 10 9:2� 10

�9

6 8:6� 10

�9

4 14 1:9� 10

�6

7 1:8� 10

�6

5 18 4:4� 10

�4

8 2:7� 10

�4

6 22 7:1� 10

�2

8 8:8� 10

�2

Table 1: Comparison of NWT and ELS

As expected, Table 1 shows that the �nal residuals sig-

nal the same attained accuracy for both methods which

is the limiting accuracy to be expected from estimates of

the condition number K

ARE

of the ARE as proposed in

[4] (K

ARE

= O(10

2�

)). But while ELS stays in the region

of computational cost of the Schur vector method, New-

ton's method becomes prohibitively expensive for smaller

1

MATLAB is a registered trademark by the MathWorks, Inc.

values of �. Note further that for all considered values of

�, the solution of the Schur vector method could be im-

proved by one step of either Newton's method or ELS to

attain the limiting accuracy as given by the residuals in

the table.

4 Conclusions

An exact line search method for the numerical solution of

special algebraic Riccati equations as they arise in spec-

tral factorization and H

1

optimal control problems has

been proposed. This method can be used as an iterative

solution method for this class of equations or as an iter-

ative re�nement method. Used as an iterative re�nement

method, it shows the same fast convergence behaviour as

Newton's method, while it is often competitive as an it-

erative solver when the cost for Newton's method used as

an iterative solver for (1) is prohibitive. The method can

be applied whenever a maximum-accuracy solution of the

ARE (1) is required.
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