Numerical Solution of Linear-Quadratic Optimal Control Problems for Parabolic PDEs

Peter Benner

Zentrum für Technomathematik Fachbereich 3 – Mathematik und Informatik Universität Bremen

> SIAM-EMS Conference Berlin, September 2–6, 2001

Dedicated to Thilo Penzl

Outline

- Linear-quadratic optimal control of parabolic PDEs
- Algebraic Riccati equations and their numerical solution
- A low-rank Newton method
- Numerical examples
- Conclusions and outlook

LQ Optimal Control of Parabolic PDEs

Linear parabolic PDE (e.g., heat equation, convection-diffusion equation):

$$\frac{\partial x}{\partial t} - \nabla \left(A(\xi) \nabla x \right) + d(\xi) \nabla x + r(\xi) x = \frac{Bu(t)}{\xi},$$
$$\xi \in \Omega, \ t > 0,$$

with initial and boundary conditions $(\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3)$

$$\begin{aligned} x(\xi,0) &= x_0(\xi), \quad \xi \in \Omega, \\ x(\xi,t) &= B_1 u_1(t), \qquad \xi \in \Gamma_1, \\ \frac{\partial}{\partial \eta} x(\xi,t) &= B_2 u_2(t), \qquad \xi \in \Gamma_2, \\ x(\xi,t) + \frac{\partial}{\partial \eta} x(\xi,t) &= B_3 u_3(t), \qquad \xi \in \Gamma_3. \end{aligned}$$

- $B = 0 \implies$ boundary control problem
- $B_j = 0 \ \forall j \implies$ point control problem

Output equation:

$$y = Cx, \qquad t \ge 0.$$

Quadratic performance index:

$$\min_u \mathcal{J}(x_0,u) \;=\; rac{1}{2} \int\limits_0^\infty \left(\|y\|_\mathcal{Y}^2 + \|u\|_\mathcal{U}^2
ight) dt,$$

Abstract Setting: Linear-Quadratic Regulator Problem

Given Hilbert spaces

- X − state space,
- \mathbb{U} control space,
- \mathbb{Y} output space,

and operators

 $\mathcal{A}: \mathsf{dom}(\mathcal{A}) \subset \mathbb{X} \to \mathbb{X}, \quad \mathcal{B}: \mathbb{U} \to \mathbb{X}, \quad \mathcal{C}: \mathbb{X} \to \mathbb{Y}.$

LQR Problem:

$$\begin{aligned} \text{Minimize} \\ \mathcal{J}(x_0, u) &= \frac{1}{2} \int_0^\infty \left(\|y\|_{\mathcal{Y}}^2 + \|u\|_{\mathcal{U}}^2 \right) dt, \\ \text{for } u \in \mathbb{L}_2(0, \infty; \mathbb{U}), \text{ where} \\ \dot{x} &= \mathcal{A}x + \mathcal{B}u, \qquad x(0) = x_0 \in \mathbb{X}, \\ y &= \mathcal{C}x. \end{aligned}$$

Example

Heat equation with point control:

$$\begin{aligned} x_t &= \Delta x + b(\xi)u(t) \text{ in } \Omega, \qquad x = 0 \text{ on } \delta\Omega, \\ y &= \int_{\Omega} c(\xi)x \, d\xi \end{aligned}$$

Weak formulation with test functions $v \in \mathbb{H}_0^1(\Omega)$:

$$\int_{\Omega} x_t v \, d\xi = \int_{\Omega} \Delta x v \, d\xi + \int_{\Omega} b(\xi) u(t) v \, d\xi$$
$$= -\int_{\Omega} \nabla x \nabla v \, d\xi + \left(\int_{\Omega} b v \, d\xi\right) u(t)$$

Then $\mathbb{X} = \mathbb{L}_2(\Omega)$, $\mathbb{U} = \mathbb{R} = \mathbb{Y}$, and with

$$< w, v > := \int_{\Omega} wv \, d\xi$$

define linear operators:

$$egin{array}{rcl} < \mathcal{A}w,v> &:= &-\int_\Omega
abla w
abla v \, d\xi \ \mathcal{B}u &:= &b(\xi)u(t) \ \mathcal{C}v &:= &\int_\Omega c(\xi)v\,d\xi \end{array}$$

Solution of the LQR Problem

Theorem

[Gibson '79]

Assumptions:

- \mathcal{A} infinitesimal generator of C_0 -semigroup.
- \mathcal{B}, \mathcal{C} linear, bounded.
- $(\mathcal{A}, \mathcal{B})$ stabilizable $(\exists \mathcal{K} : \mathbb{X} \to \mathbb{U} \text{ linear, bounded, such that } C_0\text{-semigroup generated by } \mathcal{A} \mathcal{B}\mathcal{K} \text{ is exponentially stable.})$
- $(\mathcal{C}, \mathcal{A})$ detectable, i.e., $(\mathcal{A}^*, \mathcal{C}^*)$ stabilizable.
- $\forall x_0 \in \mathbb{X}$ there exists admissible control u. $(u \in \mathbb{L}_2(0, \infty; \mathbb{U}) \text{ admissible } \iff \mathcal{J}(x_0, u) < \infty.)$

Then: The algebraic operator Riccati equation

 $0 = \mathcal{R}(\mathcal{P}) := \mathcal{C}^* \mathcal{C} + \mathcal{A}^* \mathcal{P} + \mathcal{P} \mathcal{A} - \mathcal{P} \mathcal{B} \mathcal{B}^* \mathcal{P}$

has unique, selfadjoint solution \mathcal{P}_{∞} , where

- \mathcal{P}_{∞} : dom $(\mathcal{A}) \rightarrow$ dom (\mathcal{A}^*) linear, bounded,
- $\mathcal{P}_{\infty} \geq 0$, i.e., positive semidefinite.

Solution of LQR problem is feedback control:

$$u_{\infty}(t) = -\mathcal{B}^* \mathcal{P}_{\infty} x(t) = -\mathcal{K}_{\infty} x(t).$$

 \mathcal{P}_{∞} is stabilizing, that is, the C_0 -semigroup generated by $\mathcal{A} - \mathcal{B}\mathcal{B}^*\mathcal{P}_{\infty}$ is exponentially stable.

Numerical Solution

Galerkin approach, space discretization by finite element method \Rightarrow solve LQR problem on $X_n \subset X$, $\dim(X_n) = n$:

Minimize

$$\begin{aligned} \mathcal{J}(x_0, u) &= \frac{1}{2} \int_0^\infty \left(y^T y + u^T u \right) dt, \\ \text{for } u \in \mathbb{L}_2(0, \infty; \mathbb{R}^m) \text{, where} \\ M\dot{x} &= -Lx + Bu, \qquad x(0) = x_0, \\ y &= Cx, \end{aligned}$$

with stiffness matrix $L \in \mathbb{R}^{n \times n}$, mass matrix $M \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$.

Solution of finite-dimensional LQR problem given by

$$u_*(t) = -B^T P_* x(t) =: -K_* x(t),$$

where $P_* \ge 0$ is stabilizing solution of the algebraic Riccati equation (ARE)

$$0 = \mathcal{R}(P) := C^T C + A^T P + P A - P B B^T P,$$

with $A := -M^{-1}L$, $B := M^{-1}B$.

Convergence: Gibson '79, Banks/Kunisch '84, Lasiecka/Triggiani '91

Peter Benner 💠 Zentrum für Technomathematik 💠 Universität Bremen 💠 6

Algebraic Riccati Equations General form:

$$0 = \mathcal{R}(P) := Q + A^T P + P A - P G P$$

with given $A, G, Q \in \mathbb{R}^{n \times n}$ and unknown $P \in \mathbb{R}^{n \times n}$.

Symmetric ARE: $G = G^T$, $Q = Q^T$.

Here, control-theoretic assumptions ensure existence of unique stabilizing solution P_* , i.e.,

$$\sigma\left(A-GP_*\right)\subset\mathbb{C}^-.$$

(In LQR problems, $P_* = P_*^T \ge 0.$)

In large scale applications from semi-discretized control problems for PDEs,

- $n = 10^3 10^5 \implies 10^6 10^{10} \text{ unknowns!}$),
- A has sparse representation,
- G, Q low-rank with

-
$$G = BB^T$$
, $B \in \mathbb{R}^{n \times m}$, $m \ll n$,
- $Q = C^T C$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.

Numerical Solution of AREs

First approach:[Potter '66, Laub '79,...]Use connection to Hamiltonian eigenproblem.

 \boldsymbol{P} is stabilizing solution of the ARE

 \iff

$$H\begin{bmatrix}I_n\\P\end{bmatrix} = \begin{bmatrix}A & -G\\-Q & -A^T\end{bmatrix}\begin{bmatrix}I_n\\P\end{bmatrix} = \begin{bmatrix}I_n\\P\end{bmatrix}(A - GP),$$
$$\sigma(A - GP) = \sigma(H) \cap \mathbb{C}^-$$

I.e., columns of $\begin{bmatrix} I_n \\ P \end{bmatrix}$ span stable invariant subspace of Hamiltonian Matrix H.

Note: here, $\sigma(H) = \{\pm \lambda_j | \operatorname{Re}(\lambda_j) < 0\}.$

Definition:

$$H \in \mathbb{R}^{2n \times 2n} \text{ Hamiltonian}$$

$$\iff$$

$$HJ = (HJ)^T, \text{ where } J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}, \text{ in other words, } H \text{ is skew-symmetric w.r.t. } \langle x, y \rangle_J = x^T J y.$$

Methods:

• Compute stable *H*-invariant subspace via (structured, block-) Schur decomposition,

$$T^{-1}HT = \begin{bmatrix} H_{11} & H_{12} \\ 0 & H_{22} \end{bmatrix}, \quad \sigma(H_{11}) = \sigma(H) \cap \mathbb{C}^{-},$$
$$T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \implies P = T_{21}T_{11}^{-1}$$

- QR algorithm [Laub '79];
- SR algorithm [Bunse-Gerstner/Mehrmann '86];
- multishift algorithm [*Ammar/B./Mehrmann '93*];
- embedding algorithm [*B./Mehrmann/Xu '97*];

or spectral projection methods,

sign function method [Roberts '71, Byers '87, Gardiner/Laub '86]
disk function method [Malyshev '93, Bai/Demmel/Gu '95, B./Byers '95, B. '97]

 $\implies \mathcal{O}(n^3)$, sparse matrix structure is destroyed.

 Krylov subspace methods ⇒ employ sparse matrix structure, but need n-dimensional subspace!

Newton's Method for AREs

Other approach:

Consider

$$0 = \mathcal{R}(P) = C^T C + A^T P + P A - P B B^T P$$

with stable A, i.e., $\sigma(A) \subset \mathbb{C}^-$, as nonlinear system of equations.

Frechét derivative of $\mathcal{R}(P)$ at P:

$$\mathcal{R}'_P: Z \to (A - BB^T P)^T Z + Z(A - BB^T P)$$

Newton-Kantorovich method:

$$P_{j+1} = P_j - \left(\mathcal{R}'_{P_j}\right)^{-1} \mathcal{R}(P_j), \qquad j = 0, \, 1, \, 2, \, \dots$$

⇒ Newton's method (with line search) for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

1. $P_0 = 0$.

2. FOR
$$j = 0, 1, 2, ...$$

2.1 $A_j \leftarrow A - BB^T P_j =: A - BK_j$.
2.2 Solve Lyapunov equation
 $A_j^T N_j + N_j A_j = -\mathcal{R}(P_j)$.
2.3 $P_{j+1} \leftarrow P_j + t_j N_j$.
END FOR j

Properties

• Choice of t_j via solution of minimization problem corresponding to $\mathcal{R}(P) = 0$ (exact line search):

$$\min_{t} f(t) = \min_{t} \|\mathcal{R}(P+tN)\|_{F}^{2}$$
$$= \min_{t} \operatorname{trace} \left(\mathcal{R}(P+tN)^{T}\mathcal{R}(P+tN)\right).$$

- Convergence:
 - $A_j = A BK_j = A BB^T P_j$ is stable $\forall j \ge 1$.
 - $\|\mathcal{R}(P_j)\|_F \ge \|\mathcal{R}(P_{j+1})\|_F \,\forall \, j \ge 0.$
 - $\lim_{j \to \infty} \|\mathcal{R}(P_j)\|_F = 0.$
 - $P_* \leq \ldots \leq P_{j+1} \leq P_j \leq \ldots \leq P_1$ (if $t_j \equiv 1$).
 - $\lim_{j\to\infty} P_j = P_* \ge 0$ (locally quadratic).
- Need sparse Lyapunov solver.
- BUT: $P = P^T \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1)/2$ unknowns!

Low-Rank Approximation

Consider spectrum of ARE solution.

Example: Linear 1D heat equation with point control, $\Omega = [0, 1]$, FEM discretization using linear B-splines, $h = 1/100 \implies n = 101$).

Idea:

$$P = P^T \ge 0 \implies P = ZZ^T = \sum_{k=1}^n \lambda_k z_k z_k^T$$

$$\lambda_k \approx 0, \ k > r \implies P \approx Z^{(r)} (Z^{(r)})^T = \sum_{k=1}^r \lambda_k z_k z_k^T$$

Peter Benner 💠 Zentrum für Technomathematik 💠 Universität Bremen 💠 13

Iteration for $Z^{(r)}$

Re-write Newton's method for AREs [Kleinman '68]

$$A_j^T N_j + N_j A_j = -\mathcal{R}(P_j)$$

$$\Leftrightarrow$$

$$A_j^T \underbrace{(P_j + N_j)}_{=P_{j+1}} + \underbrace{(P_j + N_j)}_{=P_{j+1}} A_j = \underbrace{-C^T C - P_j B B^T P_j}_{=:-W_j W_j^T}$$

Set $P_j = Z_j Z_j^T$ for rank $(Z_j) \ll n$:

$$A_j^T (Z_{j+1} Z_{j+1}^T) + (Z_{j+1} Z_{j+1}^T) A_j = -W_j W_j^T$$
$$\bigcup$$

Solve Lyapunov equations for Z_{j+1} directly and use 'sparse + low-rank' structure of A_j ,

$$A_{j} = A - BK_{j} = A - B \cdot (B^{T}Z_{j}) \cdot Z_{j}^{T},$$
$$= \boxed{\text{sparse}} - \boxed{m} \cdot \boxed{ \cdot } \cdot \boxed{ \cdot }$$

 $m \ll n \implies$ "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j)^{-1} = (I_n + A^{-1}B(I_m - K_jA^{-1}B)^{-1}K_j)A^{-1}.$$

ADI-Method for Lyapunov equations [Wachspress '88]

Let $A \in \mathbb{R}^{n \times n}$ be stable ($\sigma(A) \in \mathbb{C}^-$), $W \in \mathbb{R}^{n \times w}$ ($w \ll n$), consider Lyapunov equation

$$A^T Q + Q A = -W W^T.$$

ADI iteration:

$$(A^T + p_k I)Q_{(k-1)/2} = -WW^T - Q_{k-1}(A - p_k I)$$

$$(A^T + \overline{p_k}I)Q_k^T = -WW^T - Q_{(k-1)/2}(A - \overline{p_k}I)$$

with parameters $p_k \in \mathbb{C}^-$ and $p_{k+1} = \overline{p_k}$ in case $p_k \notin \mathbb{R}$.

With $Q_0 = 0$ and appropriate choice of p_k :

$$\lim_{k\to\infty}Q_k=Q \text{ superlinear.}$$

Factored ADI Iteration
[B./Li/Penzl '00]
Set
$$Q_k = Y_k Y_k^T$$
, re-formulation \Longrightarrow
 $V_1 \leftarrow \sqrt{-2\text{Re}(p_1)}(A + p_1I)^{-1}W$
 $Y_1 \leftarrow V_1$
FOR $k = 2, 3, ...$
 $V_k \leftarrow \frac{\sqrt{\text{Re}(p_k)}}{\sqrt{\text{Re}(p_{k-1})}} \left(I - (p_k + \overline{p_{k-1}})(A + p_kI)^{-1}\right)V_{k-1}$
 $Y_k \leftarrow [Y_{k-1} V_k]$

$$Y_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix},$$

 $V_k = \begin{bmatrix} \in \mathbb{C}^{n \times w} \end{bmatrix}$

with

 \implies

and

$$Y_{k_{\max}}Y_{k_{\max}}^T pprox Q.$$

Newton-ADI for AREs [B./Li/Penzl '00]

Solve Lyapunov equation

 $(A - BK_{j-1})^{T} Z_{j} Z_{j}^{T} + Z_{j} Z_{j}^{T} (A - BK_{j-1}) = -W_{j-1} W_{j-1}^{T}$

with factored ADI iteration

Sequence $Y_0^{(j)}, Y_1^{(j)}, \ldots, Y_{k_{\max}}^{(j)}$ of low-rank approximations to solution of Lyapunov equation

$$Z_j = Y_{k_{\max}}^{(j)}$$

Newton's method with factored iterates $P_j = Z_j Z_j^T$

Factored solution of ARE: $P_* \approx Z_{j_{\max}} Z_{j_{\max}}^T$

Solution of LQR Problems

Recall: solve LQR problem via ARE.

But: ARE is detour, need feedback!

 $K = B^T P = B^T Z Z^T$

Idea: Direct iteration for feedback matrix.

• Approximate feedback matrix in step *j* of Newton iteration:

$$K_{j} = B^{T} Z_{j} Z_{j}^{T} = \sum_{k=1}^{k_{\max}} (B^{T} V_{j,k}) V_{j,k}^{T}$$

• Direct updating inside ADI iteration possible:

$$K_{j,0} = 0, \quad K_{j,k} = K_{j,k-1} + (B^T V_{j,k}) V_{j,k}^T$$

- Set $K := K_{j_{\max},k_{\max}}$.
- Requires only workspace of size $m \times n$ for feedback matrix and $n \times (m + p)$ for $V_{j,k}$.

Numerical Examples

Example 1

[Tröltzsch/Unger '99, Penzl '99]

- Optimal cooling of steel profiles.
- Model: boundary control for linearization of 2D heat equation.

$$x_t = \Delta x, \qquad x \in \Omega$$

$$x + x_\eta = u_k, \qquad x \in \Gamma_k, \ k = 1, \dots, 6,$$

$$x_\eta = 0, \qquad x \in \Gamma_7.$$

 $\implies m = p = 6$

• FEM discretization, initial mesh (n = 821).

2 refinement steps $\implies n = 3113$.

Numerical Examples

Solution of linear systems of equations:

- Instead of $A = -M^{-1}L$ consider $A = -M_C^{-1}LM_C^{-T}$, $M_C =$ Cholesky factor of M,
- Cholesky factorization and solution of 'shifted' linear systems using sparse direct solver.

Example		1a	1b	1c
ARE	Newton iterations	5	8	12
	$\#$ columns of $ ilde{Z}$	540	492	522
	$\frac{\ \mathcal{R}(\tilde{Z}\tilde{Z}^{H})\ _{F}}{\ C^{T}C\ _{F}}$	$7 \cdot 10^{-14}$	$4\cdot 10^{-14}$	$1 \cdot 10^{-14}$
Lyapunov eq.	min. # iterations	45	40	42
	max. # iterations	46	45	46

Peter Benner

Peter Benner \diamondsuit Zentrum für Technomathematik \diamondsuit Universität Bremen \diamondsuit 20.1

Example 1, Cholesky Factor of Mass Matrix

Peter Benner \diamondsuit Zentrum für Technomathematik \diamondsuit Universität Bremen \diamondsuit 20.2

Example 2: Direct Feedback Iteration

Test scalability:

- Linear 3D convection-diffusion equation with boundary control in unit cube.
- Finite differences discretization on uniform grid.
- Solution of linear systems of equations using QMR and ILU preconditioning.

Example		2a	2b	2c
(n,m,p)		(1000,1,1)	(5832,1,1)	(27000,1,1)
feedback	Newton iterations	4	4	3
	$\frac{\ \tilde{K} - K\ _F}{\ K\ _F}$	$1.3\cdot 10^{-8}$	$8.8 \cdot 10^{-8}$	-
Lyapunov eq.	min. # iterations	103	143	96
	max. # iterations	129	143	96

Peter Benner

 \diamond

♦ 21

Conclusions and Outlook

- Solution of LQR problems for parabolic PDEs via low-rank factor ADI-Newton method is efficient and reliable.
- Riccati-approach applicable to other control problems for linear evolution equations as well.
- Newton's method guarantees stabilization property of low-rank ARE solutions!
- Direct computation of feedback matrix for LQR problem possible without ARE detour.
- Number of columns in low-rank factors can be kept low using column compression with updating technique.
- Need analysis on how accurate Lyapunov equations need to be solved (inexact Newton methods).
- Line search for ADI-Newton method efficient (i.e. reduces no. of iterations), but too expensive (w.r.t. flops per step).