Numerical Methods for Model Reduction of Large-Scale Dynamical Systems

Peter Benner

Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz

(日) (日) (日) (日) (日)

Sonderforschungsbereich 393 "Parallele Numerische Simulation für Physik und Kontinuumsmechanik"

> GAMM Jahrestagung 2005 Luxembourg, March 28 – April 1, 2005

Overview

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples
- Current and Future Work
- References

1 Introduction

- Model Reduction
- Systems Theory
- Model Reduction for Linear Systems
- Application Areas

2 Model Reduction

- Goals
- Methods
- Comparison

3 Examples

Optimal Control: Cooling of Steel Profiles

- Microthruster
- Butterfly Gyro
- 4 Current and Future Work
- 5 References

Thanks to

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples
- Current and Future Work
- References

- Enrique Quintana-Ortí, Gregorio Quintana-Ortí, Rafa Mayo, José Manuel Badía (Universidad Jaume I de Castellón).
- Jan Korvink, Evgenii Rudnyi, Jan Lienemann (IMTEK, Universität Freiburg).
- Thilo Penzl for LyaPack.
- Members of the working group MIIT: Ulrike Baur, Matthias Pester, Jens Saak, Viatcheslav Sokolov.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

Introduction Model Reduction

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reductior

Examples

Current and Future Work

References

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction Model Reduction

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reductior

Examples

Current and Future Work

References

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction Model Reduction

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reductior

Examples

Current and Future Work

References

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

(日) (四) (王) (日) (日) (日)

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

- A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ii} contains color information of pixel (i, j).
- Memory: $4 \cdot n_x \cdot n_y$ bytes.

heorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-*r* approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\widehat{X} = \sum_{k=1}^{r} \sigma_j u_j v_j^T,$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \hat{X}||_2 = \sigma_{k+1}$.

Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightsquigarrow memory = $r \times (n_x + n_y)$ bytes.

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

- A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ii} contains color information of pixel (i, j).
- Memory: $4 \cdot n_x \cdot n_y$ bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-*r* approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\widehat{X} = \sum_{k=1}^{r} \sigma_j u_j v_j^{T},$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \hat{X}||_2 = \sigma_{k+1}$.

Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightsquigarrow memory = $r \times (n_x + n_y)$ bytes.

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

- A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ii} contains color information of pixel (i, j).
- Memory: $4 \cdot n_x \cdot n_y$ bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-*r* approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\widehat{X} = \sum_{k=1}^{r} \sigma_j u_j v_j^{T},$$

where $X = U\Sigma V^{T}$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \hat{X}||_2 = \sigma_{k+1}$.

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□ ◆ ○ ◆

Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightsquigarrow memory = $r \times (n_x + n_y)$ bytes.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

Example: Clown

Original image

 $\begin{array}{l} 320 \times 200 \text{ pixel} \\ \rightsquigarrow \approx 256 \text{ kb} \end{array}$

Model Reduction

Peter Benner

Introduction

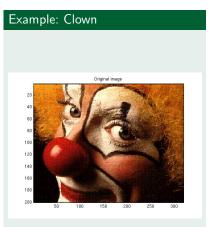
Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References



 $\begin{array}{l} 320 \times 200 \text{ pixel} \\ \rightsquigarrow \approx 256 \text{ kb} \end{array}$

• rank r = 50, ≈ 104 kb

Rank-50 approximation

Model Reduction

Peter Benner

Introduction

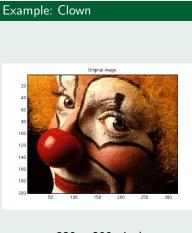
Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References



 $\begin{array}{l} 320\times 200 \text{ pixel} \\ \rightsquigarrow \approx 256 \text{ kb} \end{array}$

• rank r = 50, ≈ 104 kb

Rank-50 approximation

• rank r = 20, ≈ 42 kb

Rank-20 approximation

・ロト・日本・日本・日本・日本・ ショー

Background

Model Reduction

Peter Benner

Introduction

Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

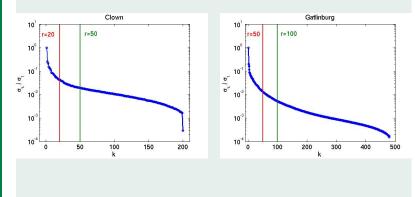
Examples

Current and Future Work

References

Image data compression via SVD works, if the singular values decay (exponentially).

Singular Values of the Image Data Matrices



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - のへぐ

Systems Theory

Model Reduction

Peter Benner

Introduction Model Reductior Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

Dynamical Systems

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), & x(t_0) = x_0, \\ y(t) = g(t, x(t), u(t)) \end{cases}$$

with

```
states x(t) \in \mathbb{R}^n,
```

Inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs
$$y(t) \in \mathbb{R}^{p}$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Model Reduction for Dynamical Systems

Model Reduction

Peter Benner

Introduction Model Reduction Systems Theory Linear Systems Application Areas

Σ

Model Reduction

Examples

Current and Future Work

References

Original System

$$\begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

• states
$$x(t) \in \mathbb{R}^n$$
,

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs
$$y(t) \in \mathbb{R}^{p}$$
.

Goal

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Model Reduction for Dynamical Systems

Model Reduction

Peter Benner

Introduction Model Reduction Systems Theory Linear Systems Application Areas

Model Reductio

Examples

Current and Future Work

References

Original System $\Sigma : \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$

• states $x(t) \in \mathbb{R}^n$,

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs $y(t) \in \mathbb{R}^{p}$.

Reduced-Order System

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \widehat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{cases}$$

states
$$\widehat{x}(t) \in \mathbb{R}^r$$
, $r \ll n$

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs
$$\widehat{y}(t) \in \mathbb{R}^{p}$$
.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

Goal

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Model Reduction for Dynamical Systems

Model Reduction

Peter Benner

Introduction Model Reduction Systems Theory Linear Systems Application Areas

Model Reductio

Examples

Current and Future Work

References

Original System					
$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$					
• states $x(t) \in \mathbb{R}^n$,					

Σ

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs $y(t) \in \mathbb{R}^{p}$.

Reduced-Order System

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \widehat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{cases}$$

states
$$\widehat{x}(t) \in \mathbb{R}^r$$
, $r \ll n$

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs
$$\widehat{y}(t) \in \mathbb{R}^{p}$$
.

- 日本 本語 本 本語 本 本語 本 日本

Goal:

LI.

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

у

Linear Systems in Frequency Domain

Model Reduction

Peter Benner

Introduction Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

Linear, Time-Invariant (LTI) Systems

f(t, x, u)	=	Ax + Bu,	$A \in \mathbb{R}^{n \times n}$,	$B \in \mathbb{R}^{n \times m},$
g(t, x, u)	=	Cx + Du,	$C \in \mathbb{R}^{p \times n},$	$D \in \mathbb{R}^{p \times m}$.

.aplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{B(sI_n - A)^{-1}C + D}_{O(s)}\right)u(s)$$

G is the transfer function of Σ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Linear Systems in Frequency Domain

Model Reduction

Peter Benner

Introduction Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

Linear, Time-Invariant (LTI) Systems

f(t, x, u)	=	Ax + Bu,	$A \in \mathbb{R}^{n \times n}$,	$B \in \mathbb{R}^{n \times m},$
g(t, x, u)	=	Cx + Du,	$C \in \mathbb{R}^{p \times n},$	$D \in \mathbb{R}^{p \times m}.$

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{B(sI_n - A)^{-1}C + D}_{O(s)}\right)u(s)$$

G is the transfer function of Σ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Linear Systems in Frequency Domain

Model Reduction

Peter Benner

Introduction Model Reductior Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} f(t,x,u) &=& Ax+Bu, \qquad A\in \mathbb{R}^{n\times n}, \quad B\in \mathbb{R}^{n\times m},\\ g(t,x,u) &=& Cx+Du, \qquad C\in \mathbb{R}^{p\times n}, \quad D\in \mathbb{R}^{p\times m}. \end{array}$$

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{B(sI_n - A)^{-1}C + D}_{=:G(s)}\right)u(s)$$

G is the transfer function of Σ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへで

Model Reduction for Linear Systems

Model Reduction

Peter Benner

- Introduction Model Reduction Systems Theory Linear Systems Application Areas
- Model Reduction

Examples

Current and Future Work

References

Problem

Approximate the dynamical system

$$\begin{array}{rcl} \dot{x} &=& Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y &=& Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{array}$$

by reduced-order system

$$\begin{aligned} \dot{\widehat{x}} &= \widehat{A}\widehat{x} + \widehat{B}u, & \widehat{A} \in \mathbb{R}^{r \times r}, \quad \widehat{B} \in \mathbb{R}^{r \times m}, \\ \hat{y} &= \widehat{C}\widehat{x} + \widehat{D}u, & \widehat{C} \in \mathbb{R}^{p \times r}, \quad \widehat{D} \in \mathbb{R}^{p \times m}. \end{aligned}$$

of order $r \ll n$, such that

$$\|y - \widehat{y}\| = \|Gu - \widehat{G}u\| \le \|G - \widehat{G}\|\|u\| < \text{tolerance} \cdot \|u\|.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 \implies Approximation problem: min_{order (\widehat{G})<r $||G - \widehat{G}||$}

Model Reduction for Linear Systems

Model Reduction

Peter Benner

- Introduction Model Reduction Systems Theory Linear Systems Application Areas
- Model Reduction

Examples

Current and Future Work

References

Problem

Approximate the dynamical system

$$\begin{array}{rcl} \dot{x} &=& Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y &=& Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{array}$$

by reduced-order system

$$\begin{aligned} \dot{\widehat{x}} &= \widehat{A}\widehat{x} + \widehat{B}u, & \widehat{A} \in \mathbb{R}^{r \times r}, \quad \widehat{B} \in \mathbb{R}^{r \times m}, \\ \hat{y} &= \widehat{C}\widehat{x} + \widehat{D}u, & \widehat{C} \in \mathbb{R}^{p \times r}, \quad \widehat{D} \in \mathbb{R}^{p \times m}. \end{aligned}$$

of order $r \ll n$, such that

$$\|y - \widehat{y}\| = \|Gu - \widehat{G}u\| \le \|G - \widehat{G}\|\|u\| < \text{tolerance} \cdot \|u\|.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

 \implies Approximation problem: $\min_{\text{order}(\widehat{G}) \leq r} \|G - \widehat{G}\|.$

(Optimal) Control

Model Reduction

Peter Benner

- Introduction Model Reductio Systems Theory Linear Systems Application Areas
- Model Reduction

Examples

Current and Future Work

References

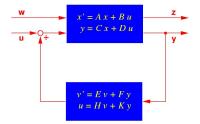
Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$

 \Rightarrow reduce order of original system.



(Optimal) Control

Model Reduction

Peter Benner

Introduction Model Reductio Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

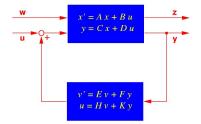
Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

 $\begin{array}{l} \text{Modern} \ (\text{LQG-}/\mathcal{H}_{2}\text{-}/\mathcal{H}_{\infty}\text{-}) \ \text{control} \\ \text{design:} \ \textit{\textit{N}} \geq \textit{\textit{n}} \end{array}$

 \Rightarrow reduce order of original system.



Model Reduction

Peter Benner

Introduction Model Reductior Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

- Progressive miniaturization: Moore's Law states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Model Reduction

Peter Benner

Introduction Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

Current and Future Work

References

- Progressive miniaturization: Moore's Law states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Model Reduction

Peter Benner

- Introduction Model Reduction Systems Theory Linear Systems Application Areas
- Model Reduction

Examples

Current and Future Work

References

- Progressive miniaturization: Moore's Law states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Model Reduction

Peter Benner

- Introduction Model Reduction Systems Theory Linear Systems Application Areas
- Model Reduction

Examples

Current and Future Work

References

- Progressive miniaturization: Moore's Law states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

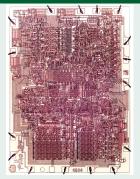
Micro Electronics Example for Miniaturization

Model Reduction

Peter Benner

- Introduction Model Reductio Systems Theory Linear Systems Application Areas
- Model Reduction
- Examples
- Current and Future Work
- References

Intel 4004 (1971)



- \blacksquare 1 layer, 10 μ technology,
- 2,300 transistors,
- 64 kHz clock speed.

Intel Pentium IV (2001)

7 layers, 0.18μ technology,

- 42,000,000 transistors,
- 2 GHz clock speed,
- 2km of interconnect.

Model Reduction

Peter Benner

Introduction Model Reductior Systems Theory Linear Systems Application Areas

Model Reduction

Examples

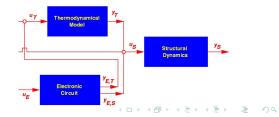
Current and Future Work

References

Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

roblems and Challenges:

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.
- Multi-scale phenomena.



Model Reduction

Peter Benner

Introduction Model Reduction Systems Theory Linear Systems Application Areas

Model Reduction

Examples

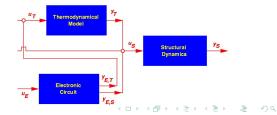
Current and Future Work

References

Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

Problems and Challenges:

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.
- Multi-scale phenomena.



Model Reduction

Peter Benner

- Introduction Model Reductior Systems Theory Linear Systems Application Areas
- Model Reduction

Examples

Current and Future Work

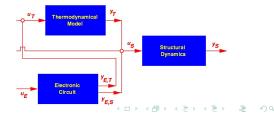
References

Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

Problems and Challenges:

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.

Multi-scale phenomena.



Model Reduction

Peter Benner

- Introduction Model Reductior Systems Theory Linear Systems Application Areas
- Model Reduction

Examples

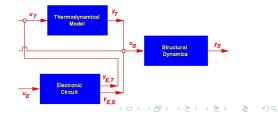
Current and Future Work

References

Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

Problems and Challenges:

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.
- Multi-scale phenomena.



Model Reduction

Model Reduction

Peter Benner

Introduction

- Model Reduction Goals
- Methods
- Examples
- Current and Future Work
- References

Automatic generation of compact models.

 Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\|y - \widehat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- \Rightarrow Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in C⁻),
 - minimum phase (zeroes of G in C⁻⁻).
 - passivity ("system does not generate energy").

Model Reduction

Model Reduction

Peter Benner

Introduction

- Model Reduction Goals
- Methods
- Examples
- Current and Future Work
- References

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\|y - \widehat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

\implies Need computable error bound/estimate!

- Preserve physical properties:
 - minimum phase (zeroes of G in \mathbb{C}^{-}),
 - passivity ("system does not generate energy").

Model Reduction

Model Reduction

Peter Benner

- Introduction
- Model Reduction
- Goals Methods
- Comparisor
- Examples
- Current and Future Work
- References

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \widehat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

- \implies Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy").

Model Reduction

Peter Benner

- Introduction
- Model Reduction
- Goals
- Comparise
- Examples
- Current and Future Work
- References

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\|y - \widehat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- \implies Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy").

Model Reduction

Peter Benner

- Introduction
- Model Reduction
- Goals Mothod
- Compariso
- Examples
- Current and Future Work
- References

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \widehat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- \implies Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy").

Model Reduction

Peter Benner

- Introduction
- Model Reduction
- Goals Mothod
- Compariso
- Examples
- Current and Future Work
- References

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \widehat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- \implies Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy").

Model Reduction

- Peter Benner
- Introduction
- Model Reductio Goals **Methods**
- Compariso
- Current and
- References

- 1 Modal Truncation
- 2 Guyan-Reduction/Substructuring
- 3 Padé-Approximation and Krylov Subspace Methods

- 4 Balanced Truncation
- 5 many more...

Model Reduction

- Peter Benner
- Introduction
- Model Reducti Goals Methods
- Compariso
- Examples
- Current and Future Work
- References

- 1 Modal Truncation
- Guyan-Reduction/Substructuring
- 3 Padé-Approximation and Krylov Subspace Methods
- 4 Balanced Truncation
- 5 many more...

Joint feature of many methods: Galerkin or Petrov-Galerkin-type projection of state-space onto low-dimensional subspace \mathcal{V} along \mathcal{W} : assume $x \approx V W^T x =: \tilde{x}$, where

$$\operatorname{range}\left(V\right)=\mathcal{V},\quad\operatorname{range}\left(W\right)=\mathcal{W},\quad W^{\mathsf{T}}V=I_{r}.$$

Then, with $\widehat{x} = W^T x$, we obtain $x \approx V \widehat{x}$ and

$$\|x-\tilde{x}\|=\|x-V\hat{x}\|.$$

Modal Truncation

Idea:

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Compariso

=

Current and Future Work

References

Project state-space onto A-invariant subspace $\mathcal V,$ where

 $\mathcal{V} = \operatorname{span}(v_1, \ldots, v_r),$

 v_k = eigenvectors corresp. to "dominant" modes \equiv eigenvalues of A.

Modal Truncation

Model Reduction

Peter Benner

Introduction

Model Reduction Goals **Methods**

Current and Future Work

References

Project state-space onto A-invariant subspace \mathcal{V} , where

$$\mathcal{V} = \operatorname{span}(v_1, \ldots, v_r),$$

 v_k = eigenvectors corresp. to "dominant" modes \equiv eigenvalues of A.

Properties:

Idea:

Simple computation for large-scale systems, using, e.g., Krylov subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.
 Error bound:

$$\|G - \widehat{G}\|_{\infty} \leq \operatorname{cond}_2(T) \|C_2\|_2 \|B_2\|_2 \frac{1}{\min_{\lambda \in \Lambda(A_2)} |\operatorname{Re}(\lambda)|},$$

where $T^{-1}AT = \text{diag}(A_1, A_2)$.

Modal Truncation

Model Reduction

Peter Benner

Introduction

Model Reduction Goals **Methods**

Compariso

Current and Future Work

References

Project state-space onto A-invariant subspace \mathcal{V} , where

```
\mathcal{V} = \operatorname{span}(v_1, \ldots, v_r),
```

 v_k = eigenvectors corresp. to "dominant" modes \equiv eigenvalues of A.

Difficulties:

Idea:

- Eigenvalues contain only limited system information.
- Dominance measures are difficult to compute. (LITZ 1979: use Jordan canoncial form; otherwise merely heuristic criteria.)
- Error bound not computable for really large-scale probems.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Model Reduction

Peter Benner

Introduction

Model Reduction Goals **Methods** Comparison

Examples

Current and Future Work

References

Partition states in inner and outer (master) nodes; eliminate inner nodes in stationary system.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals **Methods** Comparison

Examples

Current and Future Work

References

Partition states in inner and outer (master) nodes; eliminate inner nodes in stationary system.

Properties:

+ Simple calculation for large-scale systems with definite A-matrix, using, e.g., CG algorithm.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Compariso

Current and Future Work

References

Partition states in inner and outer (master) nodes; eliminate inner nodes in stationary system.

Properties:

 $+\,$ Simple calculation for large-scale systems with definite A-matrix, using, e.g., CG algorithm.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

+ Natural approach in connection with domain decomposition methods.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Compariso

Current and Future Work

References

Partition states in inner and outer (master) nodes; eliminate inner nodes in stationary system.

Properties:

 $+\,$ Simple calculation for large-scale systems with definite A-matrix, using, e.g., CG algorithm.

- + Natural approach in connection with domain decomposition methods.
- $\pm\,$ In ANSYS implemented for dimension reduction.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

- .

Current and Future Work

References

Partition states in inner and outer (master) nodes; eliminate inner nodes in stationary system.

Properties:

- $+\,$ Simple calculation for large-scale systems with definite A-matrix, using, e.g., CG algorithm.
- + Natural approach in connection with domain decomposition methods.
- $\pm\,$ In ANSYS implemented for dimension reduction.
- \pm Hierarchical application (substructuring) using the modal basis (Craig-Bampton method) yields efficient methods for applications in structural mechanics.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

_ .

Current and Future Work

References

Partition states in inner and outer (master) nodes; eliminate inner nodes in stationary system.

Properties:

- $+\,$ Simple calculation for large-scale systems with definite A-matrix, using, e.g., CG algorithm.
- + Natural approach in connection with domain decomposition methods.
- $\pm\,$ In ANSYS implemented for dimension reduction.
- \pm Hierarchical application (substructuring) using the modal basis (Craig-Bampton method) yields efficient methods for applications in structural mechanics.
- Non-static behavior of the system is ignored.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals

Methods

Comparisor

Examples

Current and Future Work

References

Idea:

Consider

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

with rational transfer function $G(s) = C(sE - A)^{-1}B$.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals

Methods

Compariso

Examples

Current and Future Work

References

Consider

Idea:

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with rational transfer function $G(s) = C(sE - A)^{-1}B$. For $s_0 \notin \Lambda(A, E)$:

$$G(s) = m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Compariso

Examples

Current and Future Work

References

Consider

Idea:

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with rational transfer function $G(s) = C(sE - A)^{-1}B$. For $s_0 \notin \Lambda(A, E)$:

$$G(s) = m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$$

• As reduced-order model use *r*th Padé approximate \widehat{G} to *G*:

$$G(s) = \widehat{G}(s) + \mathcal{O}((s-s_0)^{2r}),$$

i.e.,
$$m_j = \widehat{m}_j$$
 for $j = 0, \ldots, 2r - 1$

- \rightsquigarrow moment matching if $s_0 < \infty$,
- \rightsquigarrow partial realization if $s_0 = \infty$.

Model Reduction

Peter Benner

Introduction

Model Reductior Goals

Methods

Comparisor

Examples

Current and Future Work

References

Padé-via-Lanczos Method (PVL)

Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto
 \$\mathcal{V} = \mathcal{span}(\tilde{B}, \tilde{A}\tilde{B}, \ldots, \tilde{A}^{r-1}B) = \mathcal{K}(\tilde{A}, \tilde{B}, r)\$
 (where \tilde{A} = (s_0 E - A)^{-1}E, \tilde{B} = (s_0 E - A)^{-1}B) along
 \$\mathcal{W} = \mathcal{span}(C^H, \tilde{A}^H C^H, \ldots, (\tilde{A}^H)^{r-1}C^H) = \mathcal{K}(\tilde{A}^H, C^H, r).\$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Model Reduction

Peter Benner

Introduction

Model Reductior Goals

Methods

Compariso

Examples

Current and Future Work

References

Padé-via-Lanczos Method (PVL)

$$\mathcal{W} = \operatorname{span}(\mathit{C}^{\mathit{H}}, \tilde{\mathit{A}}^{\mathit{H}} \mathit{C}^{\mathit{H}}, \ldots, (\tilde{\mathit{A}}^{\mathit{H}})^{r-1} \mathit{C}^{\mathit{H}}) = \mathcal{K}(\tilde{\mathit{A}}^{\mathit{H}}, \mathit{C}^{\mathit{H}}, r).$$

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

 Computation via unsymmetric Lanczos method, yields system matrices of reduced-order model as by-product.

Model Reduction

Peter Benner

Introduction

Model Reductior Goals

Methods

Compariso

Examples

Current and Future Work

References

Padé-via-Lanczos Method (PVL)

 Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{r-1}B) = \mathcal{K}(\tilde{A}, \tilde{B}, r)$$

where
$$ilde{A} = (s_0 E - A)^{-1} E, \; ilde{B} = (s_0 E - A)^{-1} B)$$
 along

$$\mathcal{W} = \operatorname{span}(\mathit{C}^{\mathit{H}}, \tilde{\mathit{A}}^{\mathit{H}} \mathit{C}^{\mathit{H}}, \ldots, (\tilde{\mathit{A}}^{\mathit{H}})^{r-1} \mathit{C}^{\mathit{H}}) = \mathcal{K}(\tilde{\mathit{A}}^{\mathit{H}}, \mathit{C}^{\mathit{H}}, r).$$

- Computation via unsymmetric Lanczos method, yields system matrices of reduced-order model as by-product.
- PVL applies w/o changes for singular E if $s_0 \notin \Lambda(A, E)$:
 - for s_0 $\neq \infty$: Gallivan/Grimme/Van Dooren 1994,

 ${\rm Freund}/{\rm Feldmann}$ 1996, Grimme 1997

– for $\textit{s}_0 = \infty$: B./Sokolov 2005

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Comparisor

Examples

Current and Future Work

References

Padé-via-Lanczos Method (PVL)

Difficulties:

• No computable error estimates/bounds for $||y - \hat{y}||_2$.

Model Reduction

Peter Benner

Introduction

- Model Reduction Goals **Methods**
- Comparison
- Examples
- Current and Future Work
- References

Padé-via-Lanczos Method (PVL)

Difficulties:

- No computable error estimates/bounds for $||y \hat{y}||_2$.
- Mostly heuristic criteria for choice of expansion points. Optimal choice for second-order systems with proportional/Rayleigh damping (BEATTIE/GUGERCIN 2005).

Model Reduction

Peter Benner

Introduction

- Model Reduction Goals Methods
- Comparisor
- Examples
- Current and Future Work
- References

Padé-via-Lanczos Method (PVL)

Difficulties:

- No computable error estimates/bounds for $||y \hat{y}||_2$.
- Mostly heuristic criteria for choice of expansion points. Optimal choice for second-order systems with proportional/Rayleigh damping (BEATTIE/GUGERCIN 2005).

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

Good approximation quality only locally.

Model Reduction

Peter Benner

Introduction

- Model Reduction Goals **Methods**
- Comparisor
- Current and Future Work
- References

Padé-via-Lanczos Method (PVL)

Difficulties:

- No computable error estimates/bounds for $||y \hat{y}||_2$.
- Mostly heuristic criteria for choice of expansion points. Optimal choice for second-order systems with proportional/Rayleigh damping (BEATTIE/GUGERCIN 2005).
- Good approximation quality only locally.
- Preservation of physical properties only in very special cases; usually requires post processing which (partially) destroys moment matching properties.

Model Reduction

Idea:

Peter Benner

Introduction

Model Reduction Goals

Methods

Companiso

Current and

References

A system Σ, realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations AP + PA^T + BB^T = 0, A^TQ + QA + C^TC = 0.

satisfy: $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

wiethous

Examples

Current and Future Work

References

Idea:

 A system Σ, realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations
 AP + PA^T + BB^T = 0, A^TQ + QA + C^TC = 0,
 satisfy: P = Q = diag(σ₁,...,σ_n) with σ₁ ≥ σ₂ ≥ ... ≥ σ_n > 0.
 {σ₁,...,σ_n} are the Hankel singular values (HSVs) of Σ.

Model Reduction

Idea:

Peter Benner

- Introduction
- Model Reduction Goals
- Methods
- Comparisor
- Examples
- Current and Future Work
- References

 A system Σ, realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$\begin{aligned} \mathcal{T}: (A, B, C, D) &\mapsto (TAT^{-1}, TB, T^{-1}C, D) \\ &= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right) \end{aligned}$$

Model Reduction

Idea:

Peter Benner

- Introduction
- Model Reduction Goals
- Methods
- Comparisor
- Examples
- Current and Future Work
- References

- A system Σ, realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations
 - $AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, T^{-1}C, D)$$
$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

Truncation $\rightsquigarrow (\widehat{A}, \widehat{B}, \widehat{C}, \widehat{D}) = (A_{11}, B_1, C_1, D).$

Model Reduction

Peter Benner

Introduction

Model Reduction Goals **Methods** Comparison

Examples

Current and Future Work

References

Motivation:

HSV are system invariants: they are preserved under ${\cal T}$ and determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty, 0) \mapsto L_2(0, \infty): u_- \mapsto y_+$$

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Comparisor

Examples

Current and Future Work

References

Motivation:

HSV are system invariants: they are preserved under ${\cal T}$ and determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty, 0) \mapsto L_2(0, \infty): u_- \mapsto y_+.$$

In balanced coordinates ... energy transfer from u_{-} to y_{+} :

$$E := \sup_{u \in L_{2}(-\infty,0] \atop x(0)=x_{0}} \frac{\int_{0}^{\infty} y(t)^{T} y(t) dt}{\int_{-\infty}^{0} u(t)^{T} u(t) dt} = \frac{1}{\|x_{0}\|_{2}} \sum_{j=1}^{n} \sigma_{j}^{2} x_{0,j}^{2}$$

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Comparisor

Examples

Current and Future Work

References

Motivation:

HSV are system invariants: they are preserved under ${\cal T}$ and determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty, 0) \mapsto L_2(0, \infty): u_- \mapsto y_+.$$

In balanced coordinates ... energy transfer from u_{-} to y_{+} :

$$E := \sup_{\substack{u \in L_2(-\infty,0] \\ x(0)=x_0}} \frac{\int_0^\infty y(t)^T y(t) dt}{\int_{-\infty}^0 u(t)^T u(t) dt} = \frac{1}{\|x_0\|_2} \sum_{j=1}^n \sigma_j^2 x_{0,j}^2$$

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

 \implies Truncate states corresponding to "small" HSVs \implies complete analogy to best approximation via SVD!

Peter Benner

Introduction

Model Reduction Goals Methods

Comparison

Examples

Current and Future Work

References

Properties:

• Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

- .

Current and Future Work

References

Properties:

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of *r* via computable error bound:

$$\|y - \widehat{y}\|_2 \le \left(2\sum_{k=r+1}^n \sigma_k\right) \|u\|_2$$

Model Reduction

- Peter Benner
- Introduction
- Model Reduction Goals
- Methods
- Examples
- Current and Future Work
- References

Properties:

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of *r* via computable error bound:

$$\|y-\widehat{y}\|_2 \leq \left(2\sum_{k=r+1}^n \sigma_k\right) \|u\|_2.$$

- Several related methods by variation of Gramians for
 - closed-loop model reduction (LQG balancing),
 - minimum-phase preservation (balanced stochastic truncation),
 - passivity preservation (positive-real balanced truncation).

Model Reduction

Peter Benner

Introduction

Model Reduction Goals **Methods** Comparison

Current and

Future Work

References

Properties:

General misunderstanding: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Comparisor

Examples

Current and Future Work

References

Properties:

General misunderstanding: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

- Instead of Gramians P, Qcompute $\widehat{S}, \widehat{R} \in \mathbb{R}^{n \times k}$, $k \ll n$, such that

 $P \approx \widehat{S}\widehat{S}^{T}, \quad Q \approx \widehat{R}\widehat{R}^{T}.$

- Compute \widehat{S} , \widehat{R} with problemspecific Lyapunov solvers of "low" complexity directly.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Balanced Truncation

Model Reduction

Peter Benner

Introduction

Model Reduction Goals **Methods**

Compariso

Current and Future Work

References

Properties:

General misunderstanding: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Parallelization:

- Efficient parallel algorithms based on matrix sign function.
- Complexity $\mathcal{O}(n^3/q)$ on *q*-processor machine.
- Software library PLICMR with WebComputing interface.

(B./QUINTANA-ORTÍ/QUINTANA-ORTÍ since 1999)

Balanced Truncation

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

_ .

Current and Future Work

References

Properties:

General misunderstanding: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Parallelization:

- Efficient parallel algorithms based on matrix sign function.
- Complexity $\mathcal{O}(n^3/q)$ on *q*-processor machine.
- Software library $\ensuremath{\operatorname{PLICMR}}$ with WebComputing interface.

(B./QUINTANA-ORTÍ/QUINTANA-ORTÍ since 1999)

Formatted Arithmetic:

For special problems from PDE control use implementation based on hierarchical matrices and matrix sign function method (BAUR/B.), complexity $\mathcal{O}(n \log^2(n) r^2)$.

Balanced Truncation

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods

Compariso

Current and

References

Properties:

General misunderstanding: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Sparse Balanced Truncation:

- Sparse implementation using sparse Lyapunov solver (ADI+MUMPS/SuperLU).
- Complexity $\mathcal{O}(n(k^2 + r^2))$.
- Software:
 - + MATLAB toolbox LYAPACK (Penzl 1999),
 - + Software library SPARED with WebComputing interface. (BADÍA/B./QUINTANA-ORTÍ/QUINTANA-ORTÍ since 2003)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Model Reduction

- Peter Benner
- Introduction
- Model Reduction Goals Methods Comparison
- Examples
- Current and Future Work
- References

Why is Balanced Truncation Superior?

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods Comparison

Examples

Current and Future Work

References

Why is Balanced Truncation Superior?

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Modal truncation chooses from the ⁿ/_r many A-invariant subspaces.

Model Reduction

- Peter Benner
- Introduction
- Model Reduction Goals Methods Comparison
- Examples
- Current and Future Work
- References

Why is Balanced Truncation Superior?

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- Modal truncation chooses from the ⁿ/_r many A-invariant subspaces.
- PVL chooses exactly one subspace (the Krylov subspace *K*(*Ã*, *B*)).

Model Reduction

- Peter Benner
- Introduction
- Model Reduction Goals Methods Comparison
- Examples
- Current and Future Work
- References

Why is Balanced Truncation Superior?

(

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

- Modal truncation chooses from the ⁿ/_r many A-invariant subspaces.
- PVL chooses exactly one subspace (the Krylov subspace $\mathcal{K}(\tilde{A}, \tilde{B})$).
- Balanced truncation can choose V from the complete Grassman manifold

$$\mathcal{G}(n,r) = \{\mathcal{V} \subset \mathbb{R}^n : \dim \mathcal{V} = r\}.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods Comparison

Examples

Current and Future Work

References

Why is Balanced Truncation Superior?

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

- Modal truncation chooses from the ⁿ/_r many A-invariant subspaces.
- PVL chooses exactly one subspace (the Krylov subspace *K*(*Ã*, *B*)).
- \blacksquare Balanced truncation can choose $\mathcal V$ from the complete Grassman manifold

$$\mathcal{G}(n,r) = \{\mathcal{V} \subset \mathbb{R}^n : \dim \mathcal{V} = r\}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Consequence: BT often needs the least states for a prescribed accuracy/yields the best accuracy for a prescribed number of states.

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods Comparison

Examples

Current and Future Work

References

Why is Balanced Truncation Not Always Superior?

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

Modal truncation in practice

- corrects larger error by static condensation and
- makes an informed choice of modes based on a-priori knowledge about input signals.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Model Reduction

Peter Benner

Introduction

Model Reduction Goals Methods Comparison

Examples

Current and Future Work

References

Why is Balanced Truncation Not Always Superior?

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

Modal truncation in practice

- corrects larger error by static condensation and
- makes an informed choice of modes based on a-priori knowledge about input signals.
- PVL pre-selects a "good" subspace by picking the expansion points close to assumed operating frequency.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

Model Reduction

- Peter Benner
- Introduction
- Model Reduction Goals Methods Comparison
- Examples
- Current and Future Work
- References

Why is Balanced Truncation Not Always Superior?

Consider the approximation problem:

project x onto r-dim. subspace $\mathcal{V} \subset \mathbb{R}^n$ such that $||x - V\hat{x}|| = \min!$

Modal truncation in practice

- corrects larger error by static condensation and
- makes an informed choice of modes based on a-priori knowledge about input signals.
- PVL pre-selects a "good" subspace by picking the expansion points close to assumed operating frequency.
- Balanced truncation aims at global minimization and thereby sometimes neglects local features.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Examples Optimal Control: Cooling of Steel Profiles

Model Reduction

Peter Benner

- Introduction
- Model Reduction
- Examples
- Optimal Cooling Microthruster
- Current and Future Work
- References

 Mathematical model: boundary control for linearized 2D heat equation.

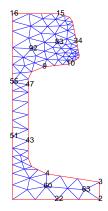
$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$

$$\lambda \frac{\partial}{\partial n} x = u_k - x, \quad \xi \in \Gamma_k, \ 1 \le k \le 7,$$

$$\frac{\partial}{\partial n} x = 0, \qquad \xi \in \Gamma_7.$$

$$\implies m = 7, p = 6.$$

■ FEM Discretization, different models for initial mesh (n = 371), 1, 2, 3, 4 steps of mesh refinement \Rightarrow n = 1357, 5177, 20209, 79841.



- 日本 - 4 日本 - 4 日本 - 日本

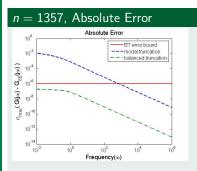
Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.

Examples Optimal Control: Cooling of Steel Profiles

Model Reduction

- Peter Benner
- Introduction
- Model Reductio
- Examples
- Optimal Coolin Microthruster Butterfly Gyro
- Current and Future Work
- References



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

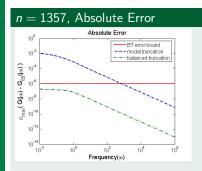
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Examples Optimal Control: Cooling of Steel Profiles

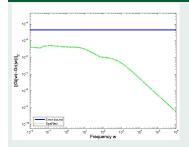
Model Reduction

- Peter Benner
- Introduction
- Model Reductio
- Examples
- Optimal Cooling Microthruster Butterfly Gyro
- Current and Future Work
- References



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

n = 79841, Absolute error



- BT model computed using SpaRed,
- computation time: 8 min.

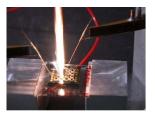
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

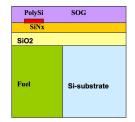
-

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Cooling Microthruster Butterfly Gyro
- Current and Future Work
- References

- Co-integration of solid fuel with silicon micromachined system.
- Goal: Ignition of solid fuel cells by electric impulse.
- Application: nano satellites.
- Thermo-dynamical model, ignition via heating an electric resistance by applying voltage source.
- Design problem: reach ignition temperature of fuel cell w/o firing neighbouring cells.
- Spatial FEM discretization of thermo-dynamical model ~> linear system, m = 1, p = 7.





Source: The Oberwolfach Benchmark Collection http://www.intek.de/simulation/benchmark Courtesy of C. Rossi, LAAS-CNRS/EU project "Micropyros".

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Cooling Microthruster Butterfly Gyro
- Current and Future Work
- References

- axial-symmetric 2D model
- FEM discretisation using linear elements $\rightsquigarrow n = 4,257$, m = 1, p = 7.

- Reduced model computed using SPARED and Arnoldi(A, B).
- Order of reduced model: r = 30 (r = 120 for Arnoldi).

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Cooling Microthruster Butterfly Gyro
- Current and Future Work
- References

- axial-symmetric 2D model
- FEM discretisation using linear elements $\rightsquigarrow n = 4,257$, m = 1, p = 7.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

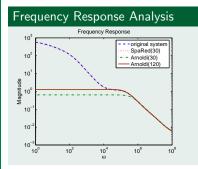
- Reduced model computed using SPARED and Arnoldi(A, B).
- Order of reduced model: r = 30 (r = 120 for Arnoldi).

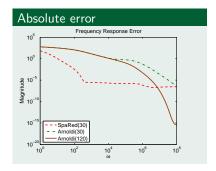


Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Cooling Microthruster Butterfly Gyro
- Current and Future Work
- References

- axial-symmetric 2D model
- FEM discretisation using linear elements $\rightsquigarrow n = 4,257$, m = 1, p = 7.
- Reduced model computed using SPARED and Arnoldi(A, B).
- Order of reduced model: r = 30 (r = 120 for Arnoldi).





◆□▶ ◆□▶ ◆注▶ ◆注▶ 「注」 のへで

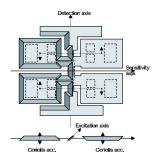
Examples MEMS: Microgyroscope (Butterfly Gyro)

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Cooling Microthruster Butterfly Gyro
- Current and Future Work
- References

- By applying AC voltage to electrodes, wings are forced to vibrate in anti-phase in wafer plane.
- Coriolis forces induce motion of wings out of wafer plane yielding sensor data.

- Vibrating micro-mechanical gyroscope for inertial navigation.
- Rotational position sensor.



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark Courtesy of D. Billger (Imego Institute, Göteborg), Saab Bofors Dynamics AB.

Examples MEMS: Butterfly Gyro

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Cooling Microthruster Butterfly Gyro
- Current and Future Work
- References

■ FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
 → n = 34,722, m = 1, p = 12.

• Reduced model computed using SPARED, r = 30.

Examples MEMS: Butterfly Gyro

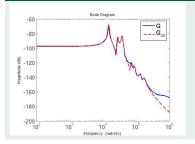
Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Coolin Microthruster Butterfly Gyro
- Current and Future Work
- References

■ FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
 → n = 34,722, m = 1, p = 12.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Reduced model computed using SPARED, r = 30.

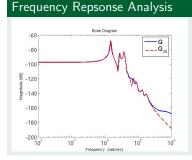


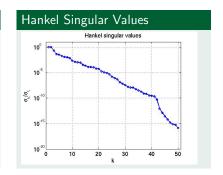
Examples MEMS: Butterfly Gyro

Model Reduction

- Peter Benner
- Introduction
- Model Reduction
- Examples Optimal Coolin Microthruster Butterfly Gyro
- Current and Future Work
- References

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
 → n = 34,722, m = 1, p = 12.
- Reduced model computed using SPARED, r = 30.





・ロト ・ 雪 ト ・ ヨ ト

Parametric Models

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x + D(p)u,$$

where $p \in \mathbb{R}^{s}$ are free parameters which should be preserved in the reduced-order model.

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Model Reduction
Peter Benner

Introduction

Model Reduct

Examples

Current and Future Work

References

Model Reduction

Current and Future Work

Current and Future Work

Parametric Models

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x + D(p)u,$$

where $p \in \mathbb{R}^s$ are free parameters which should be preserved in the reduced-order model.

Frequently: *B*, *C*, *D* parameter independent,

$$A(p) = A_0 + p_1 A_1 + \ldots + p_s A_s.$$

 \Rightarrow (Modified) linear model reduction methods applicable.

Multipoint expansion combined with Padé-type approx. possible.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Model Reduction

Current and Future Work

Current and Future Work

Parametric Models

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x + D(p)u,$$

where $p \in \mathbb{R}^s$ are free parameters which should be preserved in the reduced-order model.

Frequently: B, C, D parameter independent,

$$A(p) = A_0 + p_1 A_1 + \ldots + p_s A_s.$$

 \Rightarrow (Modified) linear model reduction methods applicable.

Multipoint expansion combined with Padé-type approx. possible.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 New idea: BT for reference parameters combined with interpolation yields parametric reduced-order models.

Model Reduction
Peter Benner

Current and Future Work

Parametric Models Nonlinear Systems

Linear projection

$$x \approx V \widehat{x}, \quad \dot{\widehat{x}} = W^T f(V \widehat{x}, u)$$

is in general not model reduction!

Model Reduction
Peter Benner

Current and Future Work Parametric Models Nonlinear Systems

Linear projection

$$x \approx V \widehat{x}, \quad \dot{\widehat{x}} = W^T f(V \widehat{x}, u)$$

is in general not model reduction!

- Need specific methods
 - POD + balanced truncation \rightsquigarrow empirical Gramians (Lall/Marsden/GLAVASKI 1999/2002),
 - Approximate inertial manifold method (\sim static condensation for nonlinear systems).

シック・ 川 ・ 川川・ ・ 川川・ ・ 白・

Model Reduction Peter Benner Introduction

Model Reduct

Examples

Current and Future Work

References

Parametric Models Nonlinear Systems

Linear projection

$$x \approx V \widehat{x}, \quad \dot{\widehat{x}} = W^T f(V \widehat{x}, u)$$

is in general not model reduction!

- Exploit structure of nonlinearities, e.g., in optimal control of linear PDEs with nonlinear BCs ~>>
 - bilinear control systems $\dot{x} = Ax + \sum_{j} N_{j} x u_{j} + Bu$,
 - formal linear systems (cf. Föllinger 1982)

$$\dot{x} = Ax + Ng(Hx) + Bu = Ax + \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} u \\ g(z) \end{bmatrix},$$

where $z := Hx \in \mathbb{R}^{\ell}$, $\ell \ll n$.

References

Model Reduction

Peter Benner

Introduction

Model Reduction

Examples

Current and Future Work

References

G. Obinata and B.D.O. Anderson. Model Reduction for Control System Design. Springer-Verlag, London, UK, 2001.

2 Z. Bai.

Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. APPL. NUMER. MATH, 43(1-2):9-44, 2002.

3 R. Freund.

Model reduction methods based on Krylov subspaces. Acta Numerica, 12:267–319, 2003.

4 P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. State-space truncation methods for parallel model reduction of large-scale systems. PARALEL COMPUT., 29:1701–1722, 2003.

5 P. Benner, V. Mehrmann, and D. Sorensen (editors). Dimension Reduction of Large-Scale Systems. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING, Vol. 45, Springer-Verlag, Berlin/Heidelberg, Germany, 2005.

6 A.C. Antoulas.

Lectures on the Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia, PA, 2005.

7 P. Benner, R. Freund, D. Sorensen, and A. Varga (editors). Special issue on Order Reduction of Large-Scale Systems. LINEAR ALGEBRA APPL., 2005.

Thanks for getting up early!

イロト 不得 とうせい イロト