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Abstract

Model reduction is an ubiquitous tool in analysis and simulation of
dynamical systems, control design, circuit simulation, structural dynam-
ics, CFD, etc. In the past decades many approaches have been developed
for reducing the order of a given model. Here, we will focus on balancing-
related model reduction techniques that have been developed since the
early 80ies in control theory. The core computations for all the described
techniques consist of solving large-scale matrix equations. In the first
lecture, we will give special emphasis to new techniques from numerical
linear algebra that enable us to solve these large-scale matrix equations
and to apply balanced truncation to large-scale systems arising from var-
ious application areas.

In the second lecture, specific balancing-related techniques for (opti-
mal) control of parabolic differential equations will be discussed. The
methods considered here are based on spatial semi-discretization of the
PDE followed by balanced truncation techniques applied to the resulting
large-scale system of ordinary differential equations. Different choices of
the system Gramians that are used for balancing will be presented. Specif-
ically we will discuss open-loop and closed-loop techniques that allow to
preserve system properties important for controller design. Furthermore
we will discuss how FEM and model reduction error bounds can be com-
bined to compute a reduced-order model of suitable order.

Keywords: Model reduction; Balanced truncation; Lyapunov equation; Algebraic
Riccati equation

AMS Subject Classification: 65F30,93B11,41A20,65F50

Introduction

In our lectures, we will mostly consider linear, time-invariant (LTI) systems of the
form

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0,

(1)

∗Supported by Deutsche Forschungsgemeinschaft, grant BE 2174/7-1.

1



where A ∈ Rn×n is the state matrix, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x0 ∈ Rn

is the initial state of the system. Here, n is the order (or state-space dimension) of
the system and x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rm are the state, output and input of
the system, respectively. In some application areas like structural dynamics, only the
differential equation in (1) is used to describe the model dynamics while in other areas
like control or circuit simulation, the system description provided in (1) almost always
contains the (algebraic) output equation. If the output equation is not present in
the mathematical model used to describe the investigated physical process, one might
simply set y(t) = x(t), i.e., C = In, D = 0, if a method is to be used that needs
the C and D matrices. But often it is also natural in these applications to define
specific variables that can serve as outputs as the complete state is seldom measurable
in practice.

Applying the Laplace transform to (1) under the assumption that x(0) = 0, we
obtain a set of algebraic equations from which an input-to-output mapping can be
defined as follows:

Y (s) = (C(sI −A)−1B + D)U(s),

where s is the Laplace variable and Y, U are the Laplace transforms of y and u,
respectively. Usually, inputs and outputs are assumed to be in L2([0,∞), Rq), q = m, p,
respectively. The associated transfer function matrix (TFM)

G(s) = C(sI −A)−1B + D. (2)

is a real-rational matrix-valued function. Note that any state-space transformation
x 7→ Tx, T ∈ Rn×n nonsingular, yielding a new system description via

(A, B, C, D) 7→ (TAT−1, TB, CT−1, D) (3)

leaves the dynamics of the system and its transfer function invariant as can be seen
from

(CT−1)(sI − TAT−1)−1(TB) + D = C(sIn −A)−1B + D = G(s).

Therefore, there exist infinitely many matrix quadruples (A, B, C, D) representing the
same LTI system. Each element of the associated equivalence class is called a realiza-
tion of the LTI system. It is easy to see that there exist realizations of (1) of arbitrarily
high order, but there is a lower limit on the order n of the system. This number is
called the McMillan degree of the system and will be denoted here by n̂. A realization
of (1) of order n = n̂ is called a minimal realization. In the model reduction methods
discussed here, we will use several specific realizations of LTI systems.

The model reduction problem considered here consists of finding a reduced-order
LTI system,

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(4)

of order r, r � n, with the same number of inputs m, the same number of outputs p,
and associated TFM Ĝ(s) = Ĉ(sI−Â)−1B̂+D̂, so that for the same input function u ∈
L2(0,∞; Rm), we have y(t) ≈ ŷ(t), or, in frequency domain, Y (s) ≈ Ŷ (s). Employing
the Paley-Wiener theorem (Parseval’s identity) and the operator norm induced by the
2-norm in the frequency domain L2, defined for real-rational TFMs by

‖G‖∞ := sup
ω∈R

σmax(G(ω)) ( :=
√
−1, σmax = maximum singular value), (5)

the approximation error can be quantified as

‖y − ŷ‖2 = ‖Y − Ŷ ‖2 ≤ ‖G− Ĝ‖∞‖U‖2 = ‖G− Ĝ‖∞‖u‖2. (6)
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Here, ‖ . ‖ denotes the 2-norm either in the input and output spaces L2(0,∞; Rq) or
the frequency domain L2.

Note that model reduction of discrete-time LTI systems (i.e., linear systems where
the dynamics is driven by difference equations) can be formulated in an analogous
manner using Z- instead of Laplace transformations; see, e.g., [29, 13].

Model (order) reduction is a common task within the simulation, control, and op-
timization of complex physical processes. Often, large systems arise due to accuracy
requirements on the spatial discretization of control problems for fluids or structures
described by partial differential equations, in the context of lumped-circuit approxi-
mations of distributed circuit elements, such as the interconnect or package of VLSI
chips. or in simulations of micro-electro-mechanical systems (MEMS), which have both
electrical and mechanical components, and many other areas. Dimension reduction is
generally required for purposes of computational feasibility and/or storage reduction.

Various reduction techniques have been devised, but many of these are described
in terms that are discipline-oriented or application-specific even though they share
many common features and origins. See the recent monographs and surveys [1, 3, 9,
5, 18, 29, 35]. In case of linear systems, it seems that three approaches play the most
prominent role, these are

• modal truncation and the related techniques of substructuring and static con-
densation,

• Padé and Padé-type approximations, and

• balancing-related truncation techniques.

All three approaches rely on efficient numerical linear algebra techniques to be applica-
ble to very large scale problems with state-space dimensions of order in the thousands
or even in the millions. It is well-known that the first two approaches listed above can
be applied to very large-scale problems, see, e.g., [5, 15, 17, 18]. In contrast to com-
mon belief, it is also possible to apply balanced truncation techniques for large-scale
problems. It is often stated that balanced truncation is not suitable for large-scale
problems as it requires the solution of two Lyapunov equations, followed by an SVD
and that both steps require O(n2) storage and O(n3) flops. This is no longer true
due to several recent developments in numerical linear algebra, allowing to implement
balanced truncation at a cost essentially proportional to the number of nonzeros in A
if it is a sparse matrix (see [31, 28, 21]) or in O(n log2(n)) (see [6]) if A is approxi-
mated by a hierarchical matrix [20]. In our presentations, we will focus on these new
techniques.

In the following, we will provide the necessary background material on balanced
truncation. We will assume that A from (1) is a stable matrix, i.e., the spectrum of
A is contained in the open left half plane. This implies that the system (1) is stable,
that is, all the poles of the associated transfer function G(s) have strictly negative
real parts. Hence, the model reduction procedure should also yield a stable matrix
Â and stable transfer function Ĝ(s). Note that not all model reduction techniques
automatically lead to a stable reduced-order model. In particular, this is an issue for
the abovementioned Padé and Padé-type approximations based on Krylov subspace
methods.

Inspired by the error bound (6), many system-theoretic model reduction methods
for control systems design aim at minimizing ‖G−Ĝ‖∞, although for a given r, finding
Ĝ that minimizes ‖G− Ĝ‖∞ is an open problem even in the scalar case [2]. We focus
here on model reduction based on balanced truncation and related methods and how
these method can be applied to large-scale problems. The proposed methods attempt
to minimize the absolute error ‖G− Ĝ‖∞. Even though they usually do not lead to a
best approximation, fairly tight computable error bounds are available.

Balanced truncation belongs to the class of model reduction methods that rely
on truncating state-space transformations defined by means of a nonsingular matrix
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T ∈ Rn×n, so that

TAT−1 =

»
A11 A12

A21 A22

–
, TB =

»
B1

B2

–
, CT−1 =

ˆ
C1 C2

˜
,

where A11 ∈ Rr×r, and TB and CT−1 are conformably partitioned. With T =ˆ
T T

l , LT
l

˜T ∈ Rn×n and T−1 = [Tr, Lr], Tl ∈ Rr×n, Tr ∈ Rn×r, the reduced-order
model is given by the projections

Â := TlATr = A11, B̂ := TlB = B1, Ĉ := CTr = C1, D̂ := D. (7)

For given r, the problem now is to find Tl, Tr such that ‖G− Ĝ‖∞ is small.
The most common approach to truncation-based model reduction involves balanc-

ing the controllability Gramian Wc and the observability Gramian Wo of the system (1)
given as the solutions of the Lyapunov equations

AWc + WcA
T + BBT = 0, AT Wo + WoA + CT C = 0. (8)

Since Wc and Wo are positive semidefinite, they can be factored as Wc = ST S and
Wo = RT R. When the factors S, R ∈ Rn×n are chosen to be triangular, they are the
Cholesky factors of the Gramians.

From a numerical point of view, the observation that a balanced truncation ap-
proximation can be achieved using the product SRT , instead of the product of the
Gramians themselves, is a key ingredient of a reliable implementation of balanced
model reduction. The resulting square-root (SR) algorithms avoid working with the
Gramians since their condition number is the square of the condition numbers of
the Cholesky factors. In these algorithms, the equations (8) are initially solved for
the Cholesky factors without forming the Gramians explicitly. The Cholesky factor
computation can be achieved, for example, by Hammarling’s method, see [34] and
references therein, or an algorithm described in [11]. Then the singular value decom-
position (SVD)

SRT = [U1 U2]

»
Σ1 0
0 Σ2

– »
V T

1

V T
2

–
,

Σ1 = diag (σ1, . . . , σr),
Σ2 = diag (σr+1, . . . , σn)

(9)

is computed, where

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 ≥ σr+2 ≥ . . . ≥ σn ≥ 0. (10)

If σr > 0 and σr+1 = 0, i.e., Σ2 = 0, then r is the McMillan degree of the given LTI
system, i.e., r = n̂. For a successful model reduction, r should be chosen to give a
natural separation of the states, i.e., one should search for a large gap σr � σr+1.

Finally, the matrices Tl and Tr yielding the reduced-order model (7) for the bal-
ancing state-space transformation are determined by

Tl = Σ
−1/2
1 V T

1 R and Tr = ST U1Σ
−1/2
1 . (11)

It is known that for every choice of r such that σr > σr+1 in (10), using Tl, Tr from
(11) in (7) yields a stable, minimal, and balanced reduced model. The Gramians
corresponding to the resulting transfer function Ĝ(s) are both equal to Σ1. Detailed
discussions of balanced truncation and the square-root methods for implementing them
can be found in [1, 36].

Serial implementations of balanced truncation algorithms and other balancing-
related model reduction techniques are described in the survey article [36]. The de-
scribed implementations are contained in SLICOT [8] and the associated SLICOT
Model Reduction Toolbox for Matlab1.

1See http://www.slicot.org for further details.
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Though balanced truncation does not generally yield the best rth order approxi-
mant of G in the H∞ norm, we obtain the error bounds

σr+1 ≤ ‖G− Ĝ‖∞ ≤ 2

nX
k=r+1

σk. (12)

This a priori error bound makes balanced truncation attractive since it allows an
adaptive choice of the order r of Ĝ. Because of this error bound and its ability to
preserve important system properties like stability, it is desirable to apply balanced
truncation to large-scale models. However, Schur vector solutions of the Lyapunov
equation require O(n3) flops and O(n2) workspace. Even if these requirements could
be reduced, the SVD in (9) requires O(n3) flops and O(n2) workspace. So for the
moment, we will focus on reducing the required resources for this computational step
by employing low-rank factorizations. This approach will turn out to be the key to
the success of the sparse and parallel model reduction algorithms.

The basic idea is to replace the Cholesky factors of the Gramians with low-rank
factors, resulting in a smaller arithmetic cost and workspace requirement. So far, we
have assumed that the Cholesky factors S and R of the Gramians are square n × n
matrices. For non-minimal systems, we have rank(S) < n and/or rank(R) < n. Hence,
rather than working with the singular Cholesky factors, we may use full-rank factors of
Wc, Wo. Since Wc and Wo are positive semidefinite, there exist matrices Ŝ ∈ Rnc×n,
R̂ ∈ Rno×n, such that Wc = ŜT Ŝ, Wo = R̂T R̂, and

nc := rank(Ŝ) = rank(S) = rank(Wc), no := rank(R̂) = rank(R) = rank(Wo).

Although the full-rank factors Ŝ, R̂ can in principle be obtained from S and R, it
is more efficient to compute Ŝ and R̂ directly. The matrices U1, V1, Σ1 in (9) that
are needed to compute the reduced-order model can then be obtained directly from
the SVD of ŜR̂T . This technique yields a significant savings in workspace and com-
putational cost. Using complexity estimates from [19], (9) requires 22n3 flops and
workspace for 2n2 real numbers if U , V are formed explicitly, whereas the SVD of
ŜR̂T requires only 14ncn

2
o + 8n3

o flops and workspace for n2
c + n2

o real numbers. In
practice, for large-scale dynamical systems, the numerical rank of Wc, Wo and Ŝ, R̂ is
often much smaller than n; see [32, 12]. This forms the basis for the balancing-related
model reduction methods described in the two lectures.

The contents of the two lectures will be summarized below, for further information
on efficient balanced truncation methods see [4, 6, 7, 10, 21, 27, 28, 30, 31].

1. Balancing-related model reduction methods for large-scale systems

After reviewing some aspects of system theory necessary for the further understanding
of both lectures, we will review the basics of balanced truncation as summarized above.
Then we will focus on methods for solving the Lyapunov equation (8) that compute
the low-rank factors Ŝ, R̂ directly.

The first approach discussed is based on spectral projection methods, in particular
on the sign function method which allows to compute skew projectors onto the stable
and anti-stable invariant subspaces of a matrix Z ∈ Rn×n, i.e., onto the subspaces
corresponding to all eigenvalues in the open left and right, respectively, half complex

planes. Let Z have no eigenvalues on the imaginary axis and Z = S
h

J−

0
0

J+

i
S−1 be its

Jordan decomposition, where the Jordan blocks in J− ∈ Rk×k and J+ ∈ R(n−k)×(n−k)

contain, respectively, the stable and unstable parts of the spectrum of Z. The matrix

sign function of Z is defined as sign (Z) := S
h
−Ik
0

0
In−k

i
S−1. Note that sign (Z) is

unique and independent of the order of the eigenvalues in the Jordan decomposition of
Z, see, e.g., [25]. Many other definitions of the sign function can be given; see [23] for
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an overview. Some important properties of the matrix sign function are summarized
in the following proposition.

Proposition 1 Let Z ∈ Rn×n have no purely imaginary eigenvalues. Then:

a) (sign (Z))2 = In, i.e., sign (Z) is a square root of the identity matrix;

b) sign
`
T−1ZT

´
= T−1 sign (Z) T for all nonsingular T ∈ Rn×n;

c) sign
`
ZT
´

= sign (Z)T .

d) Let p+ and p− be the numbers of eigenvalues of Z with positive and negative real
part, respectively. Then

p+ =
1

2
(n + tr (sign (Z))), p− =

1

2
(n− tr (sign (Z))).

e) Let Z be stable, then sign (Z) = −In, sign (−Z) = In.

Applying Newton’s root-finding iteration to Z2 = In, where the starting point is
chosen as Z, we obtain the Newton iteration for the matrix sign function:

Z0 ← Z, Zj+1 ←
1

2
(

1

γj
Zj + γjZ

−1
j ), j = 0, 1, 2, . . . , (13)

where γj is an acceleration parameter. Under the given assumptions, the sequence
{Zj}∞j=0 converges with an ultimately quadratic convergence rate and

sign (Z) = lim
j→∞

Zj ;

see [33]. It is easy to see that

P− :=
1

2
(In − sign (Z)), (14)

is a spectral projector onto the stable Z-invariant subspace and P+ := (In+sign (Z))/2
is a spectral projector onto the Z-invariant subspace corresponding to the eigenvalues
in the open right half plane. Now consider the Lyapunov equation

AX + XAT + W = 0, A, W ∈ Rn×n, (15)

where A is stable. The latter assumption is equivalent to (15) having a unique solution
[26]. Let X ∈ Rn×m be this unique solution. Then the straightforward calculation"

In 0

X Im

#"
A 0

W −AT

#"
In 0

−X Im

#
=

"
A 0

0 −AT

#
(16)

reveals that the columns of
h

In
−X∗

i
span the stable invariant subspace of Z :=

h
A
W

0
−AT

i
.

In principle, this subspace, and after an appropriate change of basis, also the solution
matrix X, can be computed from a spectral projector onto this Z-invariant subspace.
The sign function is an appropriate tool for this as P− from (14) is the required spec-
tral projector. A closer inspection of (13) applied to Z shows that we do not even have
to form P− in this case, as the solution can be directly read off the matrix sign (Z):
Using (16) and Proposition 1 reveals that

sign (Z) = sign

 "
A 0

W −AT

#!
=

"
−In 0

2X Im

#
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so that the solution of (15) is given as the lower left block of the limit of (13), divided
by 2. Moreover, the block-triangular structure of Z allows to decouple (13) as

A0 ← A, W0 ← W,
for j = 0, 1, 2, . . .

Aj+1 ←
1

2γj

`
Aj + γ2

j A−1
j

´
,

Wj+1 ←
1

2γj

“
Wj + γ2

j A−1
j WjA

−T
j

”
.

(17)

with X∗ = 1
2

limj→∞Wj . We will then show how this iteration can be modified
to compute a low-rank factor of X directly. This iteration, being significantly less
expensive than the original one, is still O(n3) due to the Aj-iteration. But as it
is composed of basic linear algebra operations only, it parallelizes well so that the
resulting method can be used to solve fairly large Lyapunov equations on parallel
computers, see [12, 14].

As the sign function-based approach does not respect any sparsity structure of
A, we will in the last part of the first lecture describe an approach for large-scale
and sparse Lyapunov equations based on the ADI iteration. For solving Lyapunov
equations (15), the ADI iteration can be written as follows [37]:

(A + pjI)X(j−1)/2 = −W −Xj−1(A
T − pjI),

Xj(A
T + pjI) = −W − (A− pjI)X(j−1)/2.

If the shift parameters pj are chosen appropriately, then limj→∞Xj = X with X0 = 0.
Again, we will describe how this iteration can be modified to yield an (approximate)
low-rank solution factor directly.

Note that with both the described approaches for solving Lyapunov equations, we
can implement an efficient version of balanced truncation based on the small-size SVD
of ŜR̂T as described above.

2. Control-oriented model reduction for parabolic control systems

In the second lecture we will discuss the application of balancing-related model reduc-
tion to (optimal) control problems for parabolic partial differential equations (PDEs).
The methods considered here are based on spatial semi-discretization of the PDE fol-
lowed by balanced truncation techniques applied to the resulting large-scale system
of ordinary differential equations. Obviously, the methods described above apply to
resulting linear systems. As the semi-discretization of the parabolic PDE leads to a
system (1) with an A matrix that can be interpreted as the negative of a discretized
elliptic differential operator, we can use the hierarchical matrix format [20] to store
it. This allows to re-write (17) in the formatted arithmetic for hierarchical matrices
so that the overall complexity comes down to O(n log2(n)), see [6]. Thus, we obtain
a specific implementation of the sign function-based balanced truncation method for
parabolic control systems.

A disadvantage of balanced truncation in the context of infinite-dimensional sys-
tems such as the considered control of parabolic PDEs is that controllers based on
the the reduced-order model may not be robust when applied to the original infinite-
dimensional problem. Therefore, in [16] it is suggested to use instead of balanced
truncation a technique called LQG balancing [22]. It is then proved in [16] that a
robust controller can be based on reduced-order model computed by the truncated
LQG balanced system. The basic idea of LQG balanced truncation is to replace the
Gramians Wc and Wo from (8) by the stabilizing solutions of the dual algebraic Riccati
equations (AREs)

0 = AP + PAT − PCT CP + BT B,

0 = AT Q + QA−QBBT Q + CT C,
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related to the regulator and filter AREs used in linear-quadratic Gaussian (LQG) con-
trol design. Again, P and Q are positive semidefinite and can often be approximated
by low-rank factorizations ŜŜT and R̂R̂T . We will show that Newton’s method ap-
plied to the above AREs (as proposed in [24]) leads to a sequence of approximations
Pj and Qj that are computed as solutions of Lyapunov equations. Any of the methods
for Lyapunov equations described above can be applied here, resulting in an efficient
way to compute the approximate low-rank factors of P and Q directly. Hence we
arrive at implementations of LQG balanced truncation that can be applied to the very
large-scale systems resulting from semi-discretized parabolic control problems.

In the last part of our lecture, we will discuss how FEM and model reduction
error bounds available for the balancing-related methods can be combined to compute
a reduced-order model of suitable order. Several numerical examples will be used
to demonstrate the proposed model reduction techniques. Furthermore, we give an
interpretation of (LQG) balanced truncation as a Petrov-Galerkin projection method
and show how the computed truncation operators Tl and Tr in (11) can be used to
define ansatz functions for the Galerkin projection. Some relations to POD (proper
orthogonal decomposition) will also be discussed.
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