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Bȩdlewo, February 2–5, 2006



Model Reduction

Peter Benner

Introduction

Model Reduction

Examples

Current and
Future Work

References

Overview

1 Introduction
Model Reduction
Systems Theory
Model Reduction for Linear Systems
Application Areas

2 Model Reduction
Goals
Methods
Comparison

3 Examples
Optimal Control: Cooling of Steel Profiles
Microthruster
Butterfly Gyro

4 Current and Future Work

5 References



Model Reduction

Peter Benner

Introduction

Model Reduction

Examples

Current and
Future Work

References

Thanks to

Enrique Quintana-Ort́ı, Gregorio Quintana-Ort́ı, Rafa
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Introduction
Model Reduction

Problem

Given a physical problem with dynamics described by the states
x ∈ Rn, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order
reduction).
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Motivation: Image Compression by Truncated SVD

A digital image with nx × ny pixels can be represented as matrix
X ∈ Rnx×ny , where xij contains color information of pixel (i , j).

Memory: 4 · nx · ny bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

X̂ =
∑r

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X .

The approximation error is ‖X − X̂‖2 = σr+1.

Idea for dimension reduction

Instead of X save u1, . . . , ur , σ1v1, . . . , σrvr .
 memory = r × (nx + ny ) bytes.
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Example: Image Compression by Truncated SVD

Example: Clown

320× 200 pixel
 ≈ 256 kb

rank r = 50, ≈ 104 kb

rank r = 20, ≈ 42 kb
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Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kb

rank r = 100, ≈ 448 kb

rank r = 50, ≈ 224 kb
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Background

Image data compression via SVD works, if the singular values decay
(exponentially).

Singular Values of the Image Data Matrices



Model Reduction

Peter Benner

Introduction

Model Reduction

Systems Theory

Linear Systems

Application
Areas

Model Reduction

Examples

Current and
Future Work

References

Systems Theory

Dynamical Systems

Σ :

{
ẋ(t) = f (t, x(t), u(t)), x(t0) = x0,
y(t) = g(t, x(t), u(t))

with

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.
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Model Reduction for Dynamical Systems

Original System

Σ :


ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order System

bΣ :


˙̂x(t) = bf (t, x̂(t), u(t)),
ŷ(t) = bg(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

f (t, x , u) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
g(t, x , u) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t) 7→ x(s), ẋ(t) 7→ sx(s))
to linear system with x(0) = 0:

sx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),

yields I/O-relation in frequency domain:

y(s) =
(

C (sIn − A)−1B + D︸ ︷︷ ︸
=:G(s)

)
u(s)

G is the transfer function of Σ.
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Model Reduction for Linear Systems

Problem

Approximate the dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

by reduced-order system

˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rp×r , D̂ ∈ Rp×m.

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: minorder (Ĝ)≤r ‖G − Ĝ‖.
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Application Areas
(Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n

⇒ reduce order of original system.
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Application Areas
Micro Electronics

Progressive miniaturization: Moore’s Law states that the
number of on-chip transistors doubles each 12 (now: 18) months.

Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

Increase in packing density requires modeling of interconncet to
ensure that thermic/electro-magnetic effects do not disturb
signal transmission.

Linear systems in micro electronics occur through modified
nodal analysis (MNA) for RLC networks, e.g., when

– decoupling large linear subcircuits,
– modeling transmission lines,
– modeling pin packages in VLSI chips,
– modeling circuit elements described by Maxwell’s equation

using partial element equivalent circuits (PEEC).
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Application Areas
Micro Electronics: Example for Miniaturization

Intel 4004 (1971)

1 layer, 10µ technology,

2,300 transistors,

64 kHz clock speed.

Intel Pentium IV (2001)

7 layers, 0.18µ technology,

42,000,000 transistors,

2 GHz clock speed,

2km of interconnect.
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Application Areas
MEMS/Microsystems

Typical problem in MEMS simulation:
coupling of different models (thermic, structural, electric,
electro-magnetic) during simulation.

Problems and Challenges:

Reduce simulation times by replacing sub-systems with their
reduced-order models.

Stability properties of coupled system may deteriorate through
model reduction even when stable sub-systems are replaced by
stable reduced-order models.

Multi-scale phenomena.
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Model Reduction
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals,
i.e., want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R, Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−),
– minimum phase (zeroes of G in C−),
– passivity (“system does not generate energy”).
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Model Reduction

1 Modal Truncation

2 Guyan-Reduction/Substructuring

3 Padé-Approximation and Krylov Subspace Methods

4 Balanced Truncation

5 many more. . .

Joint feature of many methods: Galerkin or Petrov-Galerkin-type
projection of state-space onto low-dimensional subspace V along W:
assume x ≈ VW T x =: x̃ , where

range (V ) = V, range (W ) = W, W TV = Ir .

Then, with x̂ = W T x , we obtain x ≈ V x̂ and

‖x − x̃‖ = ‖x − V x̂‖.
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Modal Truncation

Idea:

Project state-space onto A-invariant subspace V, where

V = span(v1, . . . , vr ),

vk = eigenvectors corresp. to “dominant” modes ≡ eigenvalues of A.

Properties:

Simple computation for large-scale systems, using, e.g., Krylov
subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.

Error bound:

‖G − Ĝ‖∞ ≤ cond2 (T ) ‖C2‖2‖B2‖2
1

minλ∈Λ (A2) |Re(λ)|
,

where T−1AT = diag(A1,A2).
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Modal Truncation

Idea:

Project state-space onto A-invariant subspace V, where

V = span(v1, . . . , vr ),

vk = eigenvectors corresp. to “dominant” modes ≡ eigenvalues of A.

Difficulties:

Eigenvalues contain only limited system information.

Dominance measures are difficult to compute.
(Litz 1979: use Jordan canoncial form; otherwise merely
heuristic criteria.)

Error bound not computable for really large-scale probems.
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Guyan Reduction (Static Condensation)

Partition states in inner and outer (master) nodes; eliminate inner
nodes in stationary system.

Properties:

+ Simple calculation for large-scale systems with definite A-matrix,
using, e.g., CG algorithm.

+ Natural approach in connection with domain decomposition
methods.

± In ANSYS implemented for dimension reduction.

± Hierarchical application (substructuring) using the modal basis
(Craig-Bampton method) yields efficient methods for
applications in structural mechanics.

− Non-static behavior of the system is ignored.
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Padé Approximation

Idea:

Consider
Eẋ = Ax + Bu, y = Cx

with rational transfer function G (s) = C (sE − A)−1B.

For s0 6∈ Λ (A,E ):

G (s) = m0 + m1(s − s0) + m2(s − s0)
2 + . . .

As reduced-order model use rth Padé approximate Ĝ to G :

G (s) = Ĝ (s) +O((s − s0)
2r ),

i.e., mj = m̂j for j = 0, . . . , 2r − 1

 moment matching if s0 < ∞,

 partial realization if s0 = ∞.
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G (s) = Ĝ (s) +O((s − s0)
2r ),

i.e., mj = m̂j for j = 0, . . . , 2r − 1

 moment matching if s0 < ∞,

 partial realization if s0 = ∞.



Model Reduction

Peter Benner

Introduction

Model Reduction

Goals

Methods

Comparison

Examples

Current and
Future Work

References
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Padé Approximation

Padé-via-Lanczos Method (PVL)

Moments need not be computed explicitly; moment matching is
equivalent to projecting state-space onto

V = span(B̃, ÃB̃, . . . , Ãr−1B) = K(Ã, B̃, r)

(where Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B) along

W = span(CH , ÃHCH , . . . , (ÃH)r−1CH) = K(ÃH , CH , r).

Computation via unsymmetric Lanczos method, yields system
matrices of reduced-order model as by-product.

PVL applies w/o changes for singular E if s0 6∈ Λ (A,E ):
– for s0 6= ∞: Gallivan/Grimme/Van Dooren 1994,

Freund/Feldmann 1996, Grimme 1997

– for s0 = ∞: B./Sokolov 2005
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Padé Approximation

Padé-via-Lanczos Method (PVL)

Difficulties:

No computable error estimates/bounds for ‖y − ŷ‖2.

Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional/Rayleigh

damping (Beattie/Gugercin 2005).

Good approximation quality only locally.

Preservation of physical properties only in very special cases;
usually requires post processing which (partially) destroys
moment matching properties.
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Padé-via-Lanczos Method (PVL)

Difficulties:

No computable error estimates/bounds for ‖y − ŷ‖2.
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Balanced Truncation

Idea:

A system Σ, realized by (A,B,C ,D), is called balanced, if
solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A, B, C , D) 7→ (TAT−1, TB, T−1C , D)

=

„»
A11 A12

A21 A22

–
,

»
B1

B2

–
,
ˆ

C1 C2

˜
, D

«
Truncation  (Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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Balanced Truncation

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.
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Balanced Truncation

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j
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Balanced Truncation

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j

=⇒ Truncate states corresponding to “small” HSVs
=⇒ complete analogy to best approximation via SVD!
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Balanced Truncation

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(
2

∑n

k=r+1
σk

)
‖u‖2.

Several related methods by variation of Gramians for

– closed-loop model reduction (LQG balancing),
– minimum-phase preservation (balanced stochastic

truncation),
– passivity preservation (positive-real balanced truncation).
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Properties:

General misunderstanding: complexity O(n3) – true for several
implementations! (e.g., Matlab, SLICOT).



Model Reduction

Peter Benner

Introduction

Model Reduction

Goals

Methods

Comparison

Examples

Current and
Future Work

References

Balanced Truncation

Properties:

General misunderstanding: complexity O(n3) – true for several
implementations! (e.g., Matlab, SLICOT).

New algorithmic ideas from numerical linear algebra:

– Instead of Gramians P,Q
compute S ,R ∈ Rn×k , k � n,
such that

P ≈ SST , Q ≈ RRT .

– Compute S ,R with
problem-specific Lyapunov
solvers of “low” complexity
directly.
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Balanced Truncation

Properties:

General misunderstanding: complexity O(n3) – true for several
implementations! (e.g., Matlab, SLICOT).

New algorithmic ideas from numerical linear algebra:

Parallelization:

– Efficient parallel algorithms based on matrix sign function.

– Complexity O(n3/q) on q-processor machine.

– Software library PLiCMR with WebComputing interface.

(B./Quintana-Ort́ı/Quintana-Ort́ı since 1999)

Formatted Arithmetic:

For special problems from PDE control use implementation based on
hierarchical matrices and matrix sign function method (Baur/B.),
complexity O(n log2(n)r2).
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Balanced Truncation

Properties:

General misunderstanding: complexity O(n3) – true for several
implementations! (e.g., Matlab, SLICOT).

New algorithmic ideas from numerical linear algebra:

Sparse Balanced Truncation:

– Sparse implementation using sparse Lyapunov solver
(ADI+MUMPS/SuperLU).

– Complexity O(n(k2 + r2)).

– Software:

+ Matlab toolbox LyaPack (Penzl 1999),
+ Software library SpaRed with WebComputing interface.

(Bad́ıa/B./Quintana-Ort́ı/Quintana-Ort́ı since 2003)
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Comparison

Why is Balanced Truncation Superior?

Consider the approximation problem:

project x onto r -dim. subspace V ⊂ Rn such that ‖x − V x̂‖ = min!

Modal truncation chooses from the
(
n
r

)
many A-invariant

subspaces.

PVL chooses exactly one subspace (the Krylov subspace
K(Ã, B̃)).

Balanced truncation can choose V from the complete Grassman
manifold

G(n, r) = {V ⊂ Rn : dimV = r}.
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Why is Balanced Truncation Superior?

Consider the approximation problem:

project x onto r -dim. subspace V ⊂ Rn such that ‖x − V x̂‖ = min!

Modal truncation chooses from the
(
n
r

)
many A-invariant

subspaces.

PVL chooses exactly one subspace (the Krylov subspace
K(Ã, B̃)).

Balanced truncation can choose V from the complete Grassman
manifold

G(n, r) = {V ⊂ Rn : dimV = r}.

Consequence: BT often needs the least states for a prescribed
accuracy/yields the best accuracy for a prescribed number of states.
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Why is Balanced Truncation Not Always Superior?

Consider the approximation problem:

project x onto r -dim. subspace V ⊂ Rn such that ‖x − V x̂‖ = min!

Modal truncation in practice

– corrects larger error by static condensation and
– makes an informed choice of modes based on a-priori

knowledge about input signals.

PVL pre-selects a “good” subspace by picking the expansion
points close to assumed operating frequency.

Balanced truncation aims at global minimization and thereby
sometimes neglects local features.
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Optimal Control: Cooling of Steel Profiles

Mathematical model: boundary control
for linearized 2D heat equation.

c · ρ ∂

∂t
x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = 7, p = 6.

FEM Discretization, different models
for initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement ⇒
n = 1357, 5177, 20209, 79841.

2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.
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Optimal Control: Cooling of Steel Profiles

n = 1357, Absolute Error

– BT model computed with sign
function method,

– MT w/o static condensation,
same order as BT model.

n = 79841, Absolute error

– BT model computed using
SpaRed,

– computation time: 8 min.
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n = 1357, Absolute Error

– BT model computed with sign
function method,

– MT w/o static condensation,
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n = 79841, Absolute error

– BT model computed using
SpaRed,

– computation time: 8 min.
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MEMS: Microthruster

Co-integration of solid fuel with
silicon micromachined system.

Goal: Ignition of solid fuel cells by
electric impulse.

Application: nano satellites.

Thermo-dynamical model, ignition
via heating an electric resistance by
applying voltage source.

Design problem: reach ignition
temperature of fuel cell w/o firing
neighbouring cells.

Spatial FEM discretizatoin of
thermo-dynamical model  linear
system, m = 1, p = 7.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Courtesy of C. Rossi, LAAS-CNRS/EU project “Micropyros”.

http://www.imtek.de/simulation/benchmark
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MEMS: Microthruster

axial-symmetric 2D model

FEM discretisation using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed. modal truncation using
ARPACK, and Z. Bai’s PVL implementation.
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MEMS: Microthruster

axial-symmetric 2D model

FEM discretisation using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed. modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Relative error n = 4, 257
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MEMS: Microthruster

axial-symmetric 2D model

FEM discretisation using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed. modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Relative error n = 4, 257 Relative error n = 11, 445
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MEMS: Microthruster

axial-symmetric 2D model

FEM discretisation using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed. modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Frequency Response BT/PVL
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MEMS: Microthruster

axial-symmetric 2D model

FEM discretisation using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed. modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Frequency Response BT/PVL Frequency Response BT/MT
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MEMS: Microgyroscope (Butterfly Gyro)

By applying AC voltage to
electrodes, wings are forced to
vibrate in anti-phase in wafer
plane.

Coriolis forces induce motion of
wings out of wafer plane
yielding sensor data.

Vibrating micro-mechanical
gyroscope for inertial navigation.

Rotational position sensor.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Courtesy of D. Billger (Imego Institute, Göteborg), Saab Bofors Dynamics AB.

http://www.imtek.de/simulation/benchmark
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MEMS: Butterfly Gyro

FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
 n = 34, 722, m = 1, p = 12.

Reduced model computed using SpaRed, r = 30.

Frequency Repsonse Analysis Hankel Singular Values
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MEMS: Butterfly Gyro

FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
 n = 34, 722, m = 1, p = 12.

Reduced model computed using SpaRed, r = 30.

Frequency Repsonse Analysis

Hankel Singular Values
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Examples
MEMS: Butterfly Gyro

FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
 n = 34, 722, m = 1, p = 12.

Reduced model computed using SpaRed, r = 30.

Frequency Repsonse Analysis Hankel Singular Values
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Parametric Models

ẋ = A(p)x + B(p)u, y = C (p)x + D(p)u,

where p ∈ Rs are free parameters which should be preserved in the
reduced-order model.
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Parametric Models

ẋ = A(p)x + B(p)u, y = C (p)x + D(p)u,

where p ∈ Rs are free parameters which should be preserved in the
reduced-order model.

Frequently: B,C ,D parameter independent,

A(p) = A0 + p1A1 + . . . + psAs .

⇒ (Modified) linear model reduction methods applicable.

Multipoint expansion combined with Padé-type approx. possible.

New idea: BT for reference parameters combined with
interpolation yields parametric reduced-order models.
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Nonlinear Systems

Linear projection

x ≈ V x̂ , ˙̂x = W T f (V x̂ , u)

is in general not model reduction!
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Parametric Models
Nonlinear Systems

Linear projection

x ≈ V x̂ , ˙̂x = W T f (V x̂ , u)

is in general not model reduction!

Need specific methods

– POD + balanced truncation  empirical Gramians
(Lall/Marsden/Glavaski 1999/2002),

– Approximate inertial manifold method (∼ static
condensation for nonlinear systems).
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Parametric Models
Nonlinear Systems

Linear projection

x ≈ V x̂ , ˙̂x = W T f (V x̂ , u)

is in general not model reduction!

Exploit structure of nonlinearities, e.g., in optimal control of
linear PDEs with nonlinear BCs  

– bilinear control systems ẋ = Ax +
∑

j Njxuj + Bu,

– formal linear systems (cf. Föllinger 1982)

ẋ = Ax + N g(Hx) + Bu = Ax +
[

B N
] [

u
g(z)

]
,

where z := Hx ∈ R`, ` � n.
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Thanks for your attention!
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